COL865: Special Topics in Computer Applications Physics-Based Animation

13 — Fluid simulation on grids

Review

Navier-Stokes equations for fluid velocity **u**(**x**, *t*):

$$\partial \mathbf{u}/\partial t + (\mathbf{u} \cdot \nabla) \mathbf{u} = \rho^{-1} (-\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}_{ext})$$

 $\nabla \cdot \mathbf{u} = 0$

Solve on grid via *splitting*:

- **Advection**: $\mathbf{u}^{(1)} = \operatorname{advect}(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$
- **Body forces:** $u^{(2)} = u^{(1)} + f_{ext} \Delta t$
- Viscosity: $\mathbf{u}^{(3)} = \mathbf{u}^{(2)} + v \nabla^2 \mathbf{u} \Delta t$
- **Pressure**: $\mathbf{u}^{n+1} = \mathbf{u}^{(3)} \nabla p \Delta t$ so that $\nabla \cdot \mathbf{u}^{n+1} = 0$

Advection

Advection

Advection of passive scalar *c* by velocity field **u**:

 $\partial c/\partial t + \mathbf{u} \cdot \nabla c = 0$

Given $c^n = c(\mathbf{x}, t^n)$, solve for $c^{n+1} = c(\mathbf{x}, t^{n+1})$ $c^{n+1} = advect(c^n, \mathbf{u}, \Delta t)$ Lagrangian: $\dot{x}(t) = v_t(x(t))$ Eulerian: $\frac{\partial f_t(x)}{\partial t} = \operatorname{div}(v_t(x)f_t(x))$ Theorem: $f_t(x(0)) = f_0(x(t))$ $v_t(x) = v(x)$ $\int_{t} \int_{t} \int_{t$

[Peyré 2018]

Finite differences

$$\partial c / \partial t + \mathbf{u} \cdot \nabla c = 0$$

Directly discretize $\partial c/\partial t$, ∇c with standard FD formulas

• Upwinding, Lax-Friedrichs, Lax-Wendroff, ... [Trefethen Ch. 3.2]

Explicit schemes limited by CFL condition:

 $\Delta t \le a \Delta x / \|\mathbf{u}\|$ for some constant *a*

Particle view of advection:

u

C^{*n*+1}

Particle moves through velocity field: $d\mathbf{x}_i/dt = \mathbf{u}(\mathbf{x}_i)$

 $C(\mathbf{x}_{i^{n+1}}, t^{n+1}) = C(\mathbf{x}_{i^{n}}, t^{n})$

Idea:

- 1. For each grid node of *c*^{*n*}, create a particle
- 2. Trace particles forward with $d\mathbf{x}_i/dt = \mathbf{u}(\mathbf{x}_i)$ over Δt

But particles don't land on grid nodes of c^{n+1}

Simple fix [Stam 1999]:

- 1. For each grid node of c^{n+1} , create a particle
- 2. Trace particles **backwards** over $-\Delta t$, look up (interpolated) value in c^n , write into c^{n+1}

Advantage: Unconditionally stable

Limitation: Numerical diffusion

- Monotone cubic interpolation [Fedkiw et al. 2001, App. B]
- Higher-order correction schemes [Kim et al. 2005, Selle et al. 2006]

[Fedkiw et al. 2001]

Particle advection

Keep *c* stored on particles that persist across time steps [Zhu and Bridson 2005]

- 1. Trace particles forward with $d\mathbf{x}_i/dt = \mathbf{u}_{grid}(\mathbf{x}_i)$ as usual
- Transfer c_i values to grid nodes: weighted average using grid interpolation weights

[Jiang et al. 2015]

Diffusion doesn't accumulate over time steps

Particle advection

 $\mathbf{u}^{(1)} = \text{advect}(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$

- Move particles using u_{grid}
- Transfer particle **u**_i to grid
- $\mathbf{u}^{(2)} = \mathbf{u}^{(1)} + \mathbf{f}_{\text{ext}} \Delta t$

 $\mathbf{u}^{(3)} = \mathbf{u}^{(2)} + \mathbf{v} \, \nabla^2 \mathbf{u} \, \Delta t$

$$\mathbf{u}^{n+1} = \mathbf{u}^{(3)} - \nabla p \Delta t, \ \nabla \cdot \mathbf{u}^{n+1} = 0$$

At next time step, **u** on grid will have changed

- *Particle-in-cell (PIC)*:
 First transfer values u_i = u(x_i)
 - Problem: diffusion
- Fluid implicit particle (FLIP):
 Only transfer change in u
 (i.e. effect of forces)

See Zhu and Bridson [2005] for details

Particle advection

Pure FLIP is unstable

Fix: Blend with small amount (1%-5%) of PIC

[Jiang et al. 2015]

• Better fix: Use APIC [Jiang et al. 2015], PolyPIC [Fu et al. 2017]

Pressure

Pressure

- $\mathbf{u}^{(1)} = \operatorname{advect}(\mathbf{u}^n, \mathbf{u}^n, \Delta t)$
- $u^{(2)} = u^{(1)} + f_{ext} \Delta t$
- $\mathbf{u}^{(3)} = \mathbf{u}^{(2)} + v \nabla^2 \mathbf{u} \Delta t$

After these steps, we have intermediate velocity $\mathbf{\tilde{u}} = \mathbf{u}^{(3)}$

$$\mathbf{u}^{n+1} = \mathbf{\tilde{u}} - \nabla p \,\Delta t,$$
$$\nabla \cdot \mathbf{u}^{n+1} = 0$$

"Project out" the divergence in $\boldsymbol{\tilde{u}}$

Pressure as decomposition

Helmholtz-Hodge decomposition:

Decompose $\boldsymbol{\tilde{u}}$ into divergence-free and curl-free components

[Tong et al. 2003]

Given $\tilde{\mathbf{u}}$, find "nearest" vector \mathbf{u}^{n+1} in divergence-free subspace

$$\mathbf{u}^{n+1} = \underset{\nabla \cdot \mathbf{u}=0}{\operatorname{arg\,min}} \iiint \rho \|\mathbf{u} - \tilde{\mathbf{u}}\|^2 \, \mathrm{d}V$$

Orthogonal projection

- \Rightarrow always reduces energy $\iiint \rho \|\mathbf{u}\|^2 dV$
- ⇒ unconditionally stable

Computing the pressure

Just plug it in:

$$\mathbf{u}^{n+1} = \mathbf{\tilde{u}} - \nabla p \,\Delta t,$$
$$\nabla \cdot \mathbf{u}^{n+1} = 0$$

$$\Rightarrow \nabla \cdot \tilde{\mathbf{u}} - \nabla^2 p \,\Delta t = 0$$

- 1. Compute $\nabla \cdot \tilde{\mathbf{u}}$
- 2. Solve PDE: $\nabla^2 p \Delta t = \nabla \cdot \tilde{\mathbf{u}}$ for *p*
- 3. Apply force $\nabla p \Delta t$ to get \mathbf{u}^{n+1}

Finding scalar field with specified Laplacian: Poisson problem

Pressure projection

Spatial discretization

Issues discretizing grad, div:

- Forward, backward diff: directional bias
- Centered diff: *null space problem*

$$\nabla p = 0$$
?!

$$\rightarrow$$
 \leftarrow \rightarrow \rightarrow \rightarrow

Solution: **Staggered grid**, a.k.a. **marker-and-cell (MAC) grid**

Staggered grids

Scalars at cell centers, vector components on perpendicular faces

Fits nicely with grad, div:

- Value of $\nabla \cdot \mathbf{u}$ at cell center
- Components of ∇p on faces

Implementation note: Be very careful about indexing!

• 3 separate arrays: $u_x(m+1, n, o), u_y(m, n+1, o), u_z(m, n, o+1)$

Pressure projection on staggered grids

1. Compute $\nabla \cdot \tilde{\mathbf{u}}$

$$(\nabla \cdot \mathbf{u})_{i,j} \approx (u_{i+\frac{1}{2},j} - u_{i-\frac{1}{2},j})/\Delta x + (v_{i,j+\frac{1}{2}} - v_{i,j-\frac{1}{2}})/\Delta x$$

Looks like discrete version of divergence theorem $(\iiint \nabla \cdot \mathbf{u} \, dV = \oiint \mathbf{u} \cdot \mathbf{n} \, dA)$

2. Define Laplacian $\nabla^2 p$ as usual:

$$(\nabla^2 p)_{i,j} \approx (p_{i-1,j} + p_{i+1,j} + p_{i,j-1} + p_{i,j+1} - 4 p_{i,j})/\Delta x^2$$

Pressure boundary conditions

Solid boundaries:

- Fix $\mathbf{\tilde{u}} \cdot \mathbf{n} = 0$ (no-through boundary condition)
- Pressure shouldn't change this, so $\nabla p \cdot \mathbf{n} = 0$ (Neumann boundary)

 $p_{-1,j} = p_{0,j}$

$$(\nabla^2 p)_{0,j} \approx (p_{-1,j} + p_{1,j} + p_{0,j-1} + p_{0,j+1} - 4 p_{0,j}) / \Delta x^2$$
$$= (p_{1,j} + p_{0,j-1} + p_{0,j+1} - 3 p_{0,j}) / \Delta x^2$$

Free surfaces: *p* = 0 (next class)

p = 0

