How to describe the motion of a system subject to constraints?

- Reduced coordinates
- Penalty forces
- Differentiating the constraints
- Projection methods

Projection methods

Inextamentative of static inastaneisitity of cloth

[Goldenthal et al. 2007]

[Goldenthal et al. 2007]

Projection methods

Find constraint forces to make the system exactly satisfy **g**(**x**) = **0** at the end of the time step!

Example: semi-implicit Euler

$$\mathbf{v}^{n+1} = \mathbf{v}^n + \mathbf{M}^{-1} \left(\mathbf{f}^n + \mathbf{f}_c \right) \Delta t$$
$$\mathbf{x}^{n+1} = \mathbf{x}^n + \mathbf{v}^{n+1} \Delta t$$
$$\mathbf{g}(\mathbf{x}^{n+1}) = \mathbf{0}$$

Set $\mathbf{f}_c = \mathbf{J}^T \mathbf{\lambda}$, solve for $\mathbf{\lambda}$

Linearization looks like earlier constraint equation:

$$(\mathbf{J} \mathbf{M}^{-1} \mathbf{J}^{\mathsf{T}}) \mathbf{\lambda} = -(\mathbf{J} \mathbf{M}^{-1} \mathbf{f}^n + \mathbf{J} \mathbf{v}^n / \Delta t)$$

Projection methods

Since $\mathbf{g} = \mathbf{0}$ is imposed on \mathbf{x}^{n+1} , try to evaluate \mathbf{J} also at \mathbf{x}^{n+1}

Various interpretations:

- Mass-orthogonal projection: Take time step ignoring constraints, then project to "closest" point on g(x) = 0 manifold
- Impulse-based method:

Apply an impulse $\mathbf{J}^{\mathsf{T}} \mathbf{\lambda} \Delta t$ at end of time step so that $\mathbf{g}(\mathbf{x}^{n+1}) = \mathbf{0}$

 Splitting method: Instead of integrating ẍ = M⁻¹ (f + f_c), first integrate ẍ = M⁻¹ f then ẍ = M⁻¹ f_c Several types of projection methods are possible:

- Apply constraint impulse at beginning of time step (*pre-stabilization*), or at end (*post-stabilization*)...
- ...to satisfy position equation g(xⁿ⁺¹) = 0, or velocity equation
 J(xⁿ⁺¹) vⁿ⁺¹ = 0

Limitation: Time integration accuracy reduces to first-order (unless you also include $J^T \lambda$ in prediction step)

Outro: Collisions as inequality constraints

Inequality constraints

$\mathbf{g}(\mathbf{x}) = 0$	g (x) ≤ 0
$J v = 0, f_c = J^T \lambda$	$\mathbf{g}(\mathbf{x}) = 0 \Rightarrow \mathbf{J} \mathbf{v} \le 0, \ \mathbf{f}_{c} = \mathbf{J}^{T} \mathbf{\lambda}$
	$\mathbf{g}(\mathbf{x}) < 0 \Rightarrow \mathbf{J}\mathbf{v} = \text{anything}, \mathbf{f}_{c} = 0$

Inequality constraints

Penalty forces, projection methods can be applied

New issues: constraints can change between inactive & active

- How to detect when constraints become active
- Elastic vs. inelastic response, sustained contact