COL865: Special Topics in Computer Applications
Physics-Based Animation

5 — Time integration



Paper discussions this Thursday

1. Selleetal., “A Mass Spring Model for Hair Simulation”, 2008
2. Liuetal., “Fast Simulation of Mass-Spring Systems”, 2013
Lead: me

Your job:

- Read both papers before Thursday’s class

- Come prepared with questions, comments, ideas (at least one)



Today

Runge-Kutta methods,
implicit methods, leapfrog 2
and symplectic Euler ¥ Y )

Time integration
- Forward and backward Euler, / / / /

‘\\—//‘ e g

- Accuracy and stability analysis

- Reading: Numerical Algorithms Ch. 15



Forward Euler

y'(t)=@(t, y(t)
Choose t = ty, use forward difference y'(t0) = (y! — y0)/At
yr=y0+ @(to, yo) At
Drawbacks:
- Based on first-order accurate discretization of time derivative

- Can be unstable if forces are stiff / time step is large



Test problem

Consider a damped harmonic oscillator
x"'==kx—-cx’

Analytical solution:

x(t) = e~t?(a; coswt + a, sinwt)
w=+k—c2/4

-orward Euler solutions with different At:

x'(t)

N\
4
A\
A
\
i\
W

x(1)




Backward Euler

= y0) /At = y'(t1) = @(tL, y2)
yr=(t, y1) At =0

Also known as “implicit Euler” (vs. FE = explicit Euler)

Accuracy still O(At), but can take arbitrarily large time steps!

Drawback: Lots of artificial dissipation, especially for large At



Accuracy and stability analysis




Accuracy analysis

An oversimplified analysis:
(for rigorous version, see Numerical Analysis Ch. 5.2)

Taylor series: y(t1) = y(to) + y'(to) At + V2 y”(to) At2 + -+
Forward Euler: y1 = y0 + y'(to) At
Local error between computed y! and true y(t1) = O(At?)

Error will accumulate over O(1/At) time steps, so global error is
O(At): forward Euler is first-order accurate

Same analysis for backward Euler: also first-order



Stability

ODE is stable if two nearby solutions remain nearby

Y = (,7(—?”" Yy = (ﬁ.’(f"’f
A A
.
L\ /
\' u [
f B —— '_T — » |
Stable (a < 0) Unstable (@ > 0)

We want numerical solution of stable ODE to also be stable
« How to determine if an ODE is stable?

- How to determine if a numerical method is stable?



Stability analysis

Consider an autonomous linear ODE (RHS independent of t)

y' =Ay

Take eigendecomposition, A= QAQ1
(Ais diagonal, both Q and A may be complex)

Expressy in eigenbasis: z=Q-ly
z'=N\z
All components of z are decoupled!

Zl'=A1 V4|
Zz':Az V4p)



Stability analysis in 1 variable

NPARNE
Z'=Az
Re(A)<0 Re(A)=0
Solution: z(t) = et z(0) Im(A) >0
+ Im(A) = frequency of oscillations _

+ Re(A) =rate of growth/decay

ODE is stable if Re(A) <0




Stability analysis of forward Euler

Forward Euler: 21 = (1 + A At) 20 2}

=z1=(1+A At)" 20

FE solution is stable if |1 +A At| < 1 - /1\
A At must lie in the stability region: U

- With larger A (stiffer springs / more damping),
At must become smaller to remain in stability region

+ If Re(A) =0 (no damping), forward Euler is not stable for any At!



Stability analysis of backward Euler

Backward Euler: z1 = (1 — A At)-1 20

=70 =(1-A At)n 20

Stable if|[1-AAt]1<1... _ U

Always true if Re(A) < 0! 4|

BE is unconditionally stable, 2}
or A-stable



Review

For any autonomous linear ODE:
+ Forward Euleris stableif |1 +A At| <1
- Backward Euler is always stable if ODE is stable

Stability condition must hold for every eigenvalue A; ...
Bad news for FE if even a single extremely stiff force in system



Runge-Kutta methods




Higher-order methods

Recall interpretation of ODE as quadrature:

m—mzﬁhwwmw

Forward Euler = quadrature point at start of interval

yr=y0+@(to, y0) At

Midpoint method = quadrature point at center. But what’s y":?
Take explicit approximation: FE step of length At/2

y"=y0+ (1o, y0) At/2
yl :yO + (p(tVz, y‘/z) At



Explicit midpoint method

y"=y0+ (1o, y0) At/2
yl :yO + (p(t‘/z, y‘/z) At

Second-order accurate

- Even though y*:is only first-order...
why?

Stability region: |1 +A At + %2 (A At)?2| < 1

I\

b ~1

&




Runge-Kutta methods

Equivalent form:
@O = (t0, y0)
Q%= @(t0+ Y2 At, yo + 2 (p° At)
yl :yO + (p‘/z At

Higher-order generalization: Evaluate @ at various quadrature
points, chosen using previously evaluated values of @

o= @(t°+ 0 At, y9)
Q1= @(t0+ c1 At, yO + (a10 Qo) At)
P2 = Q(t0+ ¢y AL, yO + (020 Qo + 021 1) At)

y1=y0+ (bo Qo+ b1 1+byy+---) At



RK4: “the” Runge-Kutta method

(p(t°+0 At, y0)
ng =@(t0+ 2 At, y0 + V2 (g At)
(0 + 2 At, yo + 2 (p1 At)

gos— <p(t0+ 1 At, yo + ¢, At) -4
yi=y0+ (Yo o+ V3 1+ Y32+ p3) A

Fourth-order accurate

Reduces to Simpson’s rule if ¢(t) independent of y



Butcher tableaus

Compact way of expressing RK methods

o= @(t°+ 0 At, y0) 0

P1=Q(t0+c1 At, Y0 + (010 Qo) At) C1 | 410

P2 = ¢(t0 + ) At,yo + ((120 (Po + 021 QDl) At) Co 3?1 3?2 |
yl:yo+(b0(p0+bl(p1+b2(p2+"')At bO bl b2

Example: RK4 0
P 1/2 ] 1/2
1/2| 0 1/2

1 |0 0 1
1/6 1/3 1/3 1/6




Butcher tableaus

- What is the tableau for explicit midpoint?

- Heun’s method is given by the following tableau.
How does it work?

0
1] 1
1/2 1/2

- What quadrature scheme does it look like?



Implicit methods




Second-order implicit methods

EM, Heun’s method: second-order, not unconditionally stable
Instead of approximating future y’s, make them implicit in 2

Implicit midpoint:

t0+th Y04y
ylzyo+<p( : ’y 2)/ At

Trapezoidal method:

tO’ 0 tl, 1
y12y0+((p( y?) + o y)>At

2

Both second-order accurate, equivalent for linear problems



Stability

Implicit midpoint and trapezoidal method
are unconditionally stable

Stability region: Re(A) <0

Artificial oscillations for large time steps

Backward Euler Implicit midpoint




L-stability

Backward Euler Implicit midpoint

A-stability: If Re(A) <0, then |y2|/|y°| = 1
L-stability: If Re(A) <0 and At » o, then |y!|/|y0| > 0

Backward Euler is L-stable, but implicit midpoint and trapezoidal
method are not



BDF2

What if we use second-order finite
difference approximation of y'? 3|

- Centered differences is no good. Why?

- Second-order backward differences:

y'(tn+l) = (3/2 yn+l — Zyn + 1/2 yn—l)/At

Second-order accurate, A-stable,
L-stable, less dissipative than BE

This is a multistep method: uses two previous states y” and yn-1

Downsides: Needs to be “kickstarted” with one-step method,
not good near nonsmooth points (e.g. collisions)



Symplectic methods




Verlet/leapfrog integration

Suppose findependent of v. Then we can just write x"' = M1 f(x).
Apply three-point formula for second derivative:
(xn+l — ) XN + xn—l)/AtZ =M1 f(xn)

= X1 =2 xn - x"1 + M1 f(xn) At2

Another interpretation: Let (x7 — x71)/At = v~

vhrta=yn-72+ M-1 f(xn) At
XN+l = xn + ynt'2 At

xn

Also called “leapfrog” integration



Symplectic Euler

Compare forward Euler:

vi=v0+ M-1f(x0, v0) At
X1 =x0+vo At

Backward Euler:

vi=vO0+ M-1f(x:, vi) At
X1=x0+viAt

Symplectic Euler: implicitin v, explicitin x

vi=vO0+ M-1f(x0, vi) At
X1 =x0+ vl At

Using f(x9, v0) is usually good enough — then no solve needed



Symplecticity

“Symplectic” is a technical term with a complicated meaning

In absence of damping, symplectic methods conserve volumes in
phase space (even for nonlinear systems!)

Tend to conserve energy in the
long term (if they remain stable) / /
Leapfrog, SE, IM are symplectic

— — ———

[Stern and Desbrun 2006]



Summary




Summary of integration methods

Accuracy

Stability

Symplectic

Forward Euler

Backward Euler

Explicit midpoint,
Heun’s method

RK4

Implicit midpoint,
trapezoidal

BDF2

Leapfrog,
symplectic Euler

1st order

1st order

2nd order

4th order

2nd order

2nd order

LF: 2nd,
SE: 1st

explicit

implicit

explicit

explicit

implicit

implicit

explicit /
semi-implicit

conditional

L-stable

conditional

conditional

A-stable

L-stable

conditional

NoO

No

NoO

No

IM: yes,
TR: no

NoO

yes



Summary of integration methods

Which to use?

- Unconditional stability on stiff problems: BE, BDF2
- Long-term energy conservation: SE, IM, TR

- Fast and easy to implement: SE, EM, Heun’s

- High-accuracy reference solution for validation: RK4

FE: just don’t



Implementation notes

Always try to decouple model and integrator
Model should provide methods to:

. get number of DOFs n,

+ get/set current state vectory € Rn,

- evaluate current time derivative p(y) € R»

Then you can switch integrators as needed, reuse integrator
code for different problems, etc.



Implementation notes

e.g. Explicit midpoint:

yO = model.getState()
@O = model.getDerivative()
model.setState(y0 + 0O At/2)

®h = model.getDerivative()
model.setState(y® + ¢h At)

See Pixar notes for more



Implementation notes

For some integrators (BE, SE, ...), may need to provide more:
- get/set current position x, velocity v e Rn,

- getinertia matrix M € R,

- compute current force f(x, v) € Rn



Adaptive time stepping

If fis changing rapidly, may need to reduce At for accuracy/
stability. How to know when?

- In numerical analysis: see Burden & Faires Ch. 5.5

- In graphics: problem-de

nendent time step criteria

. Collisions not resolvead

= reduce At

. Continuum mechanics (elasticity, fluids, etc.) = stability

criteria (e.g. CFL condition)

Caveats: Adaptivity is hard
symplectic methods

to do for BDF2, breaks properties of



Next class

Equation solving and optimization

- Solving systems of equations for -\
implicit methods

- Numerical optimization for
robust quasistatic simulation

- Solomon, Numerical Algorithms, Ch. 8;
Nocedal and Wright, Numerical Optimization, Ch. 2, 3



