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ABSTRACT
In order to learn causal models from data, human prior
knowledge is often required to constrain causal structure. In
practice a domain expert often supplies commonsense or fac-
tual knowledge (e.g., “smoking causes lung cancer” or “num-
ber of cylinders affects gas mileage”) to be used alongside
data in the learning algorithm. Unfortunately, this human
expertise is hard to get — an expert may be costly and for
large domains the cost of entering such knowledge may be
prohibitive.

We ask the following question: can the vast knowledge
present in text be used to supplement causal structure learn-
ing by supplying cues similar to those of a human expert?

We introduce a technique for combining knowledge ex-
tracted automatically from text with numerical data to yield
more accurate causal networks. Our method uses sentence-
level facts extracted from the Web by the Open IE [9] sys-
tem, allowing us to leverage recent advances in this burgeon-
ing area.

We evaluate our system on a variety of open datasets,
providing evidence that our hybrid approach yields networks
that are more accurate than purely numerical approaches.

1. INTRODUCTION
There has been much interest in inferring causal relation-

ships from observational data. Although correlation does
not imply causation, there is a persistent intuition that the
two are intimately, though subtly, related.

While controlled experiments and randomized control tri-
als are still the gold standards for inferring causal relation-
ships, observational studies have certain advantages that
make them unlikely to go away any time soon. Benson
and Hartz [4], discussing the role of observational studies
in medicine, write:

Observational studies have several advantages
over randomized, controlled trials, including lower
cost, greater timeliness, and a broader range of
patients.
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Many other authors have drawn similar conclusions [1]
[31] [30].

In domains in which experiments are expensive or infeasi-
ble (domains such as public health, epidemiology, economics,
and public policy, to name a few) observational data that on
their own may be insufficient to make causal claims are typ-
ically combined with causal background knowledge to argue
for particular causal conclusions [19] [11]. Some background
knowledge is based on common sense (e.g. nothing causally
influences the age of a person) or on prior scientific evidence
(e.g. nicotine causes cancer in rats). In either case, if a
human data analyst can encode his or her prior structural
knowledge in the form of a causal graph, statistical methods
can combine that graph with observational data to predict
the effects of interventions on the system, for example how
much lung cancer rates might decrease by if cigarette taxes
were increased by a certain amount [24].

In the age of large, freely available datasets through ser-
vices like Data.gov and the Linked Open Data ecosystem,
the sheer quantity of data that could benefit from causal
analysis has exploded.

This points to a “knowledge bottleneck” [23]: we want to
automate the causal analysis of large datasets to pick out
potential causal relationships, but in many domains where
observational studies are prevalent, causal analysis typically
relies on causal background knowledge [11].

We ask the following question: can the vast knowledge
present in text be used to supply causal background knowl-
edge similar to that of a human expert? If the answer is
yes, then such a system could have access to far more back-
ground knowledge than any one human, and could be run
on datasets with far more—and far more diverse—variables
than a human could practically analyze.

Our approach relies on modern information extraction
(IE)—a family of techniques that transform freeform text
into structured tabular knowledge. We used knowledge ex-
tracted by the Open IE system ([9]), which produces ex-
tractions of the form (subject, verb phrase, object) (see
Table 1 for examples). The database we used was created
by the Open IE system run on several large web corpora,
and it contains over 5 billion of extractions.

Previous work has shown that curated domain-specific
data sources, such gene expression databases, can be useful
for structure learning [2]. In contrast, our work uses knowl-
edge extracted automatically from the web, a much larger
and more diverse source of information, but also full of al-
gorithmic errors, factual errors, and omissions. In addition,
most prior work in causal structure learning has assumed



Each 100 pounds of weight decreases fuel

efficiency by 1%.

This engine produces 160 horsepower, [...].

↓

argument 1 relation argument 2
weight decreases fuel efficiency
engine produces horsepower

Table 1: Sample extractions from Open IE.

that background knowledge comes in the form of hard con-
straints (PC, Eberhardt, CITATION). As part of ongoing
work, we have formulated an optimization schemes that in-
tegrates soft causal constraints and is therefore applicable
to noisy automatic extractions.

Furthermore, most previous work on using text for struc-
ture learning has focused on data-predictive tasks like log
likelihood or mean squared error, without regard to causal
structure.1While this is useful for making predictions about,
for example, whether a person with a given set of attributes
has a particular disease, it is not useful for determining
whether a particular factor causes a disease, or how a new
law might affect some measurable outcome. A classic exam-
ple of this distinction is medical symptoms: symptoms of a
disease are strong predictors of the disease but do not cause
it. For a more formal explanation of the difference between
causal and non-causal models, see Appendix A.

2. BACKGROUND
Most approaches to learning causal structure from data

are based on the idea of learning a Bayesian network. These
methods fall broadly into constraint-based methods and score-
based methods [24].

Constraint-based structure learning methods try to detect
conditional independences in the data using various statisti-
cal tests, and then search for networks that obey these con-
straints. Some of them have the feature that they will mark
the presence of certain edges as being ambiguous if there ex-
ist multiple Bayesian network structures that describe the
data equally well but disagree on the presence of that edge,
which may be an advantage for causal learning (on the basis
that “don’t know” is better than a wrong answer) [24].

One of the earliest constraint-based algorithms was the
PC algorithm [28], which interleaves conditional indepen-
dence tests with edge deletions to minimize the number of
tests it has to perform. Other constraint-based methods,
such as IAMB [32], pursue different search strategies. Re-
cently, search based on SAT-solvers has been proposed [17].

Score-based algorithms optimize an objective function that
combines the likelihood of the data with some complexity-
penalizing prior which favors networks with fewer edges [24].
These methods include greedy hill-climbing, in which all
single-edge additions and deletions are evaluated to see if
any will increase the score, and this process is repeated un-
til a local optimum is reached. Typically these methods
output a complete Bayesian network in which all edges are

1Gene interaction networks are the exception, where the goal
is not merely prediction but to uncover the true interaction
network structure [33] [10].

oriented.
There have been successful applications where Bayesian

network structure learning has been use to learn causal net-
works directly from data, particularly in the area of gene
networks. Friedman et al [10] was one of the first groups
to use a score-based optimization scheme to learn a causal
Bayesian network describing a gene network. Maathuis et al
[22] used a constraint-based algorithm based on the PC algo-
rithm to learn a gene network in the high-dimension setting
with many genes and few data points.

In addition to learning causal relationships from data,
there has been work in extracting causal knowledge from
text.

Girju and Moldovan [12] extracted cause-effect pairs from
WordNet glosses and used these pairs to learn a set of causal
verb phrases from the TREC-9 corpus. They followed a
bootstrapping procedure: any verb phrase in the text con-
necting a known cause to a known effect was marked as
causal, and these verb phrases were later used to do extrac-
tion.

Radinsky, Davidovich, and Markovitch [25] extracted causal
relations from news headlines and used them to predict pos-
sible effects of a given event. For example, the algorithm pre-
dicted that the event “Magnitude 6.5 earthquake rocks the
Solomon Islands” could cause the event “Tsunami-warning
will be issued in the Pacific Ocean”.

Most similar to our work, Sanchez-Graillet and Poesio [27]
developed a system for constructing Bayesian networks using
causal facts extracted from a source document. However,
their system did not combine relate these facts to numerical
data in any way.

In the realm of information extraction more generally, the
Open IE that we use in the work distinguished itself from
other systems in that it is not restricted to extracting a fixed
set of relations [9] [3], making it well suited to applications
like ours in which the relations of interest are not well rep-
resented in most knowledge-extraction systems. There are
other web-scale IE systems such as NELL [5], for instance,
which is based on an iterative bootstrapping scheme with
weak human supervision. However, the NELL system does
not appear to have causal knowledge relevant to our task.

The idea of combining data with external information to
learn Bayesian networks has been around for a long time.
Heckerman et al [14] and Castelo and Siebes [6] developed
generic mathematical formulations for learning Bayesian net-
work structures with prior probabilities defined on the space
of all networks and parameters.

There has been work aimed at using text as a source of
prior information to improve Bayesian network structure
learning from data, mostly in the medical domain. Antal
et al [2] use the concurrence statistics of medical terms in
MEDLINE medical abstracts and a collection of journals se-
lected by experts to learn an improved predictive model of
ovarian cancer. Imoto et al [18] developed a Bayesian net-
work model and optimization procedure for combining gene
microarray data with prior knowledge to learn more accurate
gene networks.

Along similar lines, there has been work combining knowl-
edge elicited from a human expert with numerical data to
learn better Bayesian networks. Richardson and Domingos
[26], for instance, developed a model for incorporating noisy
knowledge from multiple experts into a Bayesian network
structure learning algorithm.



3. OUR APPROACH
In our problem formulation, the input is a tabular dataset

with m samples (which we also refer to as rows) and n vari-
ables (columns). Each column ci comes with a text label si
related to its semantic meaning. In the datasets we worked
with, typical column labels are shown in Table 2. Some dis-
crete variables take on values in a set of strings (for example,
the variable “make” in the Automobile dataset can take on
the values“audi”, “bmw”, etc). When available, these strings
are also provided to the algorithm, but they are not required.

We also assume that we are given a knowledge base con-
taining text extractions of the form given in Table 1, al-
though these are permitted to be noisy or incomplete.

The desired output of the system is a directed graph where
the presence of edge (i, j) indicates that variable ci is a di-
rect causal influence on variable cj with respect to all the
variables in the dataset {c1 . . . cn}. We do not permit self-
edges.

In our approach, we frame the problem as binary classifi-
cation on each pair of columns (ci, cj). Our basic strategy
for generating text features is to query Open IE for tuples
related to the column labels si and sj and count the results
in various ways.

3.1 Entity linking and query expansion
The first challenge in carrying out this strategy is that

facts in the knowledge base may not refer directly to the
column labels si or sj but rather to synonyms or seman-
tically related terms. Since Open IE has a named entity
linker that maps tuple arguments to Wikipedia entries, a
natural approach is to map the column labels to Wikipedia
entries as well, then query Open IE for tuples that refer to
the same concepts. We include counts results from these
types of queries as part of our feature sets.

However, we found that under such a scheme, there are
relatively few matches between Open IE and the datasets.
This is because the requirements for named entity linking
are quite strict—two strings should only be linked to the
same concept if there is a very high confidence that they
refer to the same thing.

By contrast, in our setting we found it is acceptable to
match quite loosely. For example, consider the causal rela-
tionship “fly ash → concrete compressive strength” (fly ash
is an ingredient in concrete). It turns there are no tuples
in Open IE relating the Wikipedia concepts Fly ash and
Compressive strength, but there are text matches be-
tween “ash” and “strength” (which turn out to be correct
causal tuples).

Consequently, in addition to search based on concepts, we
also adopted a query-expansion approach in which we gen-
erated many possible text strings from each of the original
column labels, including splitting all words apart into indi-
vidual queries (we also tried just taking the head word, but
the results were no better). An even richer set of queries was
obtained by using the Cross Wikis dataset [29], which pro-
vides a huge collection of strings that people have used as an-
chor text on the web to link a Wikipedia article. We first use
a Google search to map from column name to Wikipedia en-
try, then use the Cross Wikis dataset to generate the top five
anchor text strings that link to that entry (filtering out cer-
tain words that commonly appear as noise in that dataset,
such as “wikipedia”).

3.2 Causal text features
As stated earlier, we transform the Open IE query results

into features by counting. We have two ways of counting
— by instance and by tuple — and we apply each of these
counting schemes to the query results filtered in different
ways.

In Open IE, each tuple of the form (argument1, rela-
tion, argument2) is associated with a number of instances,
which are sentences from different webpages that all express
the same fact. The more times the fact is mentioned on
different pages, the more confident we should be that it is
correct, so we use the total number of instances returned by
a query as one type of counting feature.

The other type of counting feature is based on the number
of tuples. This feature is meant to capture the strength in
a slightly different, way, based on the number of different
phrasings of the relationship between arguments.

Up to this point, we have not said anything about the
relation, only the arguments.

We generate two different types of features based on the
relation.

The first, which we call all exts counts all instances or tu-
ples, without filtering based on the relation. Say we are gen-
erating count features for a particular pair of strings (a, b).
For all exts we generate queries of each of the following
forms:

(a, , b), (b, , a), (a, , ), ( , , b), (1)

where the underscore indicates a wildcard field that can
match anything. The latter two are intended to allow the
classifier to down-weight strings that are mentioned frequently
on the web regardless of their relationship to one another.

The second type of feature based on the relation, which
we call causal exts, counts instances or tuples of the form
(a, rel→, b), (b, rel←, a), which we call rightward and left-
ward causal relations respectively. The strings rel→ and
rel← in these queries must match a predetermined list of
strings that suggest a causal relationship from left to right
or right to left, respectively.

We generated these lists of causal strings via a bootstrap-
ping procedure similar to that of [12]. We started by gener-
ating a list of pairs of strings where we knew the first causally
influenced the second. Then we searched Open IE for rela-
tions connecting each of these pairs, in both the rightward
and leftward configuration. Finally we filtered the results of
this bootstrapping by hand to remove obvious noise.

3.3 Confounder features
If two variables are correlated in a dataset, mathematical

theory and human intuition tell us that one variable may
causally influence the other or there may be a third vari-
able (possibly in the dataset, but possibly not) that causally
influences both of the correlated variables [24]. Common
causes that are not in the dataset are a big potential prob-
lem for causal structure learning, and many causal learning
methods explicitly assume there are none.

Open IE provides an interesting capability: given a pair of
variables in a dataset, we can search for entities in the world
that causally influence both of them. If there are a lot of
such entities, presumably we should decrease our confidence
that the pair of variables directly influence one another.



dataset cols rows domain col labels
Automobile 26 205 mechanical curb weight,

city mpg,
engine size

Hepatitis 20 155 health fatigue,
ascites,
alk phosphate

Concrete 9 1030 industrial fine aggregate,
superplasticizer,
water

Adult2 15 2000 economic age,
education,
agrossincome

NHEFS3 17 1746 health bronch,
pepticulcer,
diabetes

Table 2: Dataset characteristics.

We perform both of the following queries:

( , rel→, a) ∪ (a, rel→, ) (2)

( , rel→, b) ∪ (b, rel←, ) (3)

and count the number of arguments that match a wild card
on both the first line (causes of a) and the second line (causes
of b).

3.4 Correlation feature
Although correlation is not causation, in practice, large

correlations are trusted as more likely to be causal than
small correlations [19].

We tried mutual information as a simple measure of sta-
tistical correlation, but it did not generalize well between
datasets. We ended up using a statistic based on the G2 test
of independence, which is similar the χ2 test. In essence,
G2 computes the expected counts in each bin in the joint
probability table of two variables under the hypothesis of
independence, and compares the observed counts to the ex-
pected counts. We converted the p-value from the G2 test
into the log-odds ratio (log(p)/log(1− p)) and used that as
our feature.

4. EXPERIMENTS

4.1 Data
Our experiments focused on four datasets drawn from the

UCI repository and another made available by Miguel Her-
nan at the Harvard School of Public Health [15]. In keeping
with our goal to be as domain-general as possible, they cover
areas ranging from medicine to automobiles (see Table 2).
The criteria used to select them were that the variables had
to have semantically meaningful labels, and there had to
be at least one extraction in Open IE that related to the
dataset.

The number of samples m in each dataset ranged from 155
to 2000, and the number of columns n ranged from 9 to 26.
We constructed ground-truth causal graphs by hand, using
a combination of common sense and web resources. Every
ordered pair of nodes (A,B) in each dataset was labeled as
“causal”, “non-causal”, or “uncertain”, and evaluations were
over the causal and non-causal pairs only.

4.2 Main results
Our main result is shown in Figure 1. We compare the

best algorithms based on: semantic Open IE data, numerical
data, and combination of both. We used a linear SVM with
a 70-30 train-test split, and tuned the hyper parameters via
5-fold cross validation on the training set.

The combination of both Open IE data and numerical
data performed the best (AUC = 0.81), followed closely by
the Open IE data alone (AUC = 0.78). Surprisingly the PC
algorithm, the best numerical structure learning algorithm
among those we evaluated (AUC = 0.58), did worse than
the simple numerical statistic G2 (AUC = 0.64).

Figure 1: Structure learning with Open IE data,
numerical data, and the combination of both.

Figure 2 shows the relative performance of the pure nu-
merical structure learning algorithms we tried. We evalu-
ated three different methods representing three major strate-
gies in the literature: the PC algorithm [] (representing
constraint-based algorithms), greedy hill-climbing (HC) with
the BDE prior of Heckerman et al [] (representing score-
based algorithms), and IAMB [] (representing Markov-blanket-
based methods).

In Figure 3 we show the relative contribution of each type
of text feature to the overall performance of Open IE+G2.
About 50% of the overall increase above the baseline ran-
dom performance is accounted for by the all exts features
(AUC = 0.65), which count Open IE extractions without
taking causal relations into account. The causal exts fea-
tures, which count Open IE extractions involving a causal re-
lation, improve performance to about 84% of total (AUC =
0.76). The confounder features bring performance up a
modest 6%, with the numerical G2 statistic making up the
final 10%.

2Original Adult dataset contains 32,562 samples. We se-
lected a subset for efficiency reasons and because prior work
indicates that in simulations, 2000 samples is sufficient to
learn causal networks with 15 nodes [7].
3Original NHEFS dataset contains 61 variables—we selected
a subset to make labeling the groundtruth graph more man-
ageable.



Figure 2: Comparison of numerical structure learn-
ing algorithms.

Figure 3: Ablation study showing contribution of
each type of text feature to Open IE performance.

4.3 External validation
Since both the ground-truth labels and causal relation fea-

tures were created by us, a natural question is whether we
are over-fitting to these five datasets.

It was challenging to find external datasets that contained
causal labels on real data. The datasets of the Causality
Workbench [13], a major developer of causal learning compe-
titions, intentionally do not include semantic labels, making
the OpenIE approach inapplicable.

Instead, we use the MPI causal pairs benchmark [16],
which is relatively small (86 pairs initially, 57 pairs after
we removed semantic pairs that already appear in our 5
datasets) and unfortunately only contains data and labels
for pairs of variables, not entire datasets. As a result, we
did not evaluate the PC algorithm and other structure nu-

merical learning methods on this dataset. However, we were
able to use the MPI data to test whether our OpenIE-based
method could perform well on datasets besides our own.

The results from this evaluation are shown in Figure 4,
and indeed performance is similar (AUC = 0.71 compared
with AUC = 0.76 on our data)4, suggesting that over-fitting
is not occurring to a large extent.

Figure 4: Results on the MPI causal pairs dataset.

4.4 Why numerical methods are failing
Another natural question is why are the numerical struc-

ture learning methods doing so badly compared to previ-
ously reported results?

Part of the reason seems to be that most evaluations we
found in the literature are either: a) on synthetic data gener-
ated from Bayesian networks, or b) on gene networks, where
the statistical assumptions of Bayesian networks are poten-
tially more accurate [33]. As a sanity check, we ran PC on
synthetic data. The results were striking: on the Lucas net-
work [13], a network with 11 nodes and 2000 samples, the
PC algorithm was able to achieve a detection rate of 100%
at a false-positive rate of 1% — essentially perfect.

This result hints that existing structure learning algo-
rithms are quite sensitive to distributional assumptions, in
agreement with results reported in [17].

5. CURRENT AND FUTURE WORK

5.1 Global joint graph optimization
One unsatisfying aspect of causal structure learning with

prior knowledge is that we may not be learning new causal
knowledge, but rather simply putting what is already known
into a model. This is fine if the application you have in mind
is to learn parameters from the data, but if you actually want
to learn something new about causal structure, we would
hope for more.

4The MPI dataset consists of pairs (A,B) and the task is
to determine direction as A → B or A ← B. The G2 and
confounder features do not make much sense in this case
(they are both symmetric), so we did not include them in
our comparison.



The theory of causal Bayesian networks suggests a natural
sort of constraint propagation should be possible, in which
prior knowledge orients some edges, and these constraints
are propagated to other edges with then also become ori-
ented, thus representing new knowledge about causal struc-
ture.

The simplest case of this is the situation depicted below.

A→ B → C

A← B → C

A← B ← C

Each of these Bayesian networks encodes the same set
of conditional independences: namely, A ⊥⊥ C |B. As a
result, any structure learning method based on conditional
independence relationships observed in the data ail not be
to determine which is correct. However, if prior knowledge
tells us that there is a path from A to B, then the ambiguity
disappears: there is only one member of the equivalence class
consistent with A ⊥⊥ C |B and A → B—namely top case,
where B → C. Thus we have learned the direction of (B,C)
from prior knowledge about (A,B) combined with numerical
data.

In light of this, it seems desirable to formulate the problem
not as a per-edge detection task, but as a joint optimization
procedure over all edges simultaneously.

As part of ongoing work, we have formulated this as a
discrete optimization which we solve in a logic programming
language called answer set programming [21]. This is similar
to recent work by Hyttinen [17], who applied SAT solvers
to estimate causal structure (they use hard constraints to
encode prior knowledge but suggest MAX-SAT as a way to
incorporate soft constraints.)

One nice feature of the logic programming approach is it
is easy to encode the fact that the sentence “A causes B”
may mean A→ Z → B.

We incorporate terms in the objective function to reward
paths that agree with OpenIE extractions, penalize double
edges, penalize violations of conditional independence con-
straints (v-structures)

Early results are promising, and the solver is often able
to find the optimum graph within a few minutes. However,
we’ve found that it is hard to find a setting of the penalty
parameters that generalizes well.

5.2 Data prediction
We have also been conducting experiments in which our

objective is not to learn a graph structure which matches
a causal ground-truth, but instead to maximize the log-
likelihood of a non-causal predictive model.

The fact that the constraint-based algorithms such as PC
and IAMB are not doing very well suggests that the naive as-
sumptions about conditional independence may not hold in
our datasets, and thus those constraints in the optimization
may need to be altered in some way. There are other struc-
ture learning algorithms that relax the statistical assump-
tions somewhat (like the FCI algorithm [24]), and building
on these are an interesting direction for future work.

6. CONCLUSION

We developed a system that combines the information in
web text with numerical data to reconstruct more accurate
causal graphs. Since our method is fully automated and is
connected to an ever-growing web-scale knowledge base, it
can potentially scale up to large datasets involving knowl-
edge from many different domains. We envision possible
applications in data mining and data visualization, in which
the relationships deemed most likely to be causal are brought
to the users attention.

AI systems with large amounts of knowledge have not his-
torically played a major role in data analysis, since those
systems that did incorporate knowledge have mostly been
fairly application-specific. We speculate that approaches
similar to the one presented here may one day bring about
knowledge-rich automated data analysis systems that work
on a wide variety of domains.
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APPENDIX
A. CAUSAL BAYESIAN NETWORKS

The goal of causal modeling is to predict what will hap-
pen to a system when a certain action is performed. In all
frameworks for predicting the outcomes of actions (hence-
forth causal models), an important object of study is the
probability distribution of the outcome X conditioned on
the action taken Z, which we write as p(X |Z).

One the most popular formalisms for causal modeling,
popularized by Pearl [24], is the causal Bayesian network,
also known as a causal directed acyclic graph (causal DAG).
Causal Bayesian networks take advantage of a particular fac-
torization of p(X |Z) in certain systems. Causal Bayesian
networks are closely related to the normal Bayesian networks
which are widely known in computer science, and in fact,
causal Bayesian networks can be expressed as traditional
Bayesian networks with extra nodes representing “interven-
tions” [8] (see Figure 5).

In a causal Bayesian network, the outcome variable X
is defined as a product of n outcome variables (x1, . . . , xn).
Each individual variable could represent something like whether
a particular person smokes cigarettes in a certain timeframe
or whether they get lung cancer in another timeframe. In
the simplest interpretation of causal models, these variables
are interpreted as “manipulatable” variables, which will be
defined below.

The first assumption usually made is that an action cor-
responds to setting a subset of the outcome variables
to be certain values. More formally, let S(xi) denote the
possible values of an outcome variable xi. The action vari-
able Z is then a product of n individual variable manipu-
lations (z1, . . . , zn). Each variable manipulation zi is either
the null action ∅ or a “set-variable” action which fixes xi to
one of its possible values. Formally, we have

zi ∈S(z1) = (S(xi) ∪ {∅}), (4)

Z ∈S(z1)× ...× S(zn). (5)

Already this assumption hints at how causal modeling can
learn the outcomes of actions that are never performed dur-
ing learning: the non-null actions are in 1-to-1 correspon-
dence with different the values a variable can assume spon-
taneously. Intuitively, this correspondence suggests we may
be able to learn something about what effect a particular
action would have just by waiting until its corresponding

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://www.mensxmachina.org/files/presentations/cmu_tsamardinos.pdf
http://www.mensxmachina.org/files/presentations/cmu_tsamardinos.pdf


outcome variable assumes the appropriate value, instead of
actively setting it.

The second assumption is that the distribution p(X |Z,Θ)
factorizes according to the directed acyclic graph (DAG) in
Figure 5), in the sense of a classical Bayesian network (cf.
Pearl). Each action variable zi has a single directed edge
connecting it to its corresponding outcome variable xi.

x1

x2

x3

z1

z2

z3

Figure 5: The augmented graph representation of a
causal Bayesian network. Action variables are red
squares, observable variables are blue circles.

The final assumptions involve the conditional probability
distribution of each node given its parents. Intuitively, there
is a “default” distribution p(X |Z = ∅) (the outcome distri-
bution given the null action) from which the model derives
other distributions conditional on non-null actions. More
formally, we assume:

p(xi =j |X − {xi}, Z = z) = 1 if zi = j
p(xi = j | paX(xi), Z = ∅) if zi = ∅
0 otherwise

(6)

where X − {xi} represents all outcome variables besides xi
and paX(xi) represents pa(xi) ∩ X, the intersection of the
parent set of xi and X.

There are a few important properties to notice about this
model class.

First, if some node xj is not a descendent of xi, then
xj ⊥⊥ zi. Informally, this means that the action zi only
influences the descendants of xi. This can be proven by
using the properties of d-separation. Specifically, it can be
shown that zi is d-separated from all non-descendants of xi
conditioned on the empty set.5

Second, the DAG relating the outcome variables can be
regarded as a Bayesian network in its own right: the dis-
tribution p(X |Z = ∅,Θ) is the pure “passively observed”
distribution. In fact Pearl, in his later work, eliminates the
action variables zi from his notation entirely, and the sub-
graph relating the outcome variables X is the DAG under
study. We will call this subgraph the outcome subgraph.

5This is because zi has no parents, and exactly one edge,
zi → xi. Clearly any active path between zi and another
node xj must include that edge. Since we are conditioning
on the empty set, this forces any active path between zi and
another node xj to in fact be a directed path from zi to
xj , through xi. The non-descendants of xi are exactly the
nodes for which no such paths exist, making them exactly
the nodes which are d-separated from zi.

Third, the direction of the edges in the outcome subgraph
always matters. In fact two models of this form express the
same set of probability distributions (i.e. they are Markov
equivalent) if and only if their outcome subgraphs are iden-
tical. Consider the case of a network with just two outcome
variables x1 and x2 connected by an edge x1 → x2 (see Fig-
ure 6). In this Bayesian network, the direction of the edge
contains no information: in either case, the set of conditional
independences implied by the graph is the same (namely,
there are no implied conditional independences). Contrast
this with the augmented graph containing action variables
z1 and z2. In this case, the direction of the edge between x1
and x2 does matter. If the edge is x1 → x2, then z1 and x2
are d-separated (and thus independent) conditioned on x1.
However, this is not the case if x1 ← x2.

x1 x2 x1 x2

x1

z1

x2

z2

x1

z1

x2

z2

Figure 6: Two models that are Markov equiv-
alent without action nodes, but are no longer
Markov equivalent when action nodes are added. V-
structures highlighted for emphasis.

These properties are interesting because they more closely
match human reasoning and intuition. If a variable is set to
a value, it makes intuitive sense that any variables which are
descendants of that variable should be affected. In the clas-
sical Bayesian network setting, if we take conditioning on
a variable as a proxy for “setting it”, we get the slightly
counter-intuitive result that distribution of the variable’s
parents changes. Cognitive scientists such as Steven Slo-
man have shown that humans make systematic errors when
handling probabilistic models and statistical conditioning —
errors that reveal a bias towards the model properties de-
scribed above.

What we are doing here is expressing causal semantics
using Bayesian networks. Pearl, one of the progenitors of
the Bayesian network formalism, claims that his original
Bayes net formulation was in fact inspired by causal intu-
ition, but that in retrospect the original Bayes net formu-
lation failed to capture those intuitions correctly. In light
of this, it is slightly odd to express the more intuitive me-
chanics of causal DAG models using the non-intuitive me-
chanics of Bayes nets. I would claim, however, that most
computer scientists are more familiar with the formal prop-
erties of Bayesian networks than with the various formaliza-
tions of causal intuition. Thus for this exposition, which is
intended to somewhat demystify causal modeling, it makes
sense to express our causal models in the language of Bayes
nets. Pearl’s later works introduce a collapsed form of these
Bayesian networks in which each action node is merged with
its corresponding outcome variable, and each action event
zi = k is denoted by do(xi = k).

One possible criticism of this model class is that in real
life, one cannot force a variable have a particular value with



probability 1 — there is always some noise. In fact, this
model class can express such noisy relationships by intro-
ducing hidden outcome variables. The observable outcome
variables can then be made to depend noisily on the hid-
den ones. In some sense, the action variables only represent
an idealized modeling construct, not the real actions that
people can perform.6

Another problem is that the acyclicity constraint is awk-
ward for modeling some systems. Dawid [8] gives two exam-
ples of this: the ideal gas law relating pressure, temperature,
and volume; and the relationship between supply, demand,
and price. In these cases, the acting on variable x1 influences
x2, and acting on x2 also influences x1. In a DAG-based
formalism this directionality cannot be expressed. However,
there are alternative models that can represent causal cycles,
for example chain graph models ([20]).

6In practice, the distinction between an “idealized action”
and a noisy action may be moot if the level of noise is suffi-
ciently low, in which case there is no need to introduce extra
variables.
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