
Reconstructing Materials Tetrahedron: Challenges in
Materials Information Extraction

Kausik Hira1, Mohd Zaki2, Dhruvil Seth1,
Mausam1, N. M. Anoop Krishnan1,2

1Yardi School of Artificial Intelligence, 2Department of Civil Engineering
Indian Institute of Technology Delhi

{kausikhira, mohdzaki1995, dhruvilsheth01}@gmail.com
{mausam, krishnan}@iitd.ac.in

Abstract

Discovery of new materials has a documented history of propelling human progress
for centuries and more. The behaviour of a material is a function of its composi-
tion, structure, and properties, which further depend on its processing and testing
conditions. Recent developments in deep learning and natural language processing
have enabled information extraction at scale from published literature such as peer-
reviewed publications, books, and patents. However, this information is spread in
multiple formats, such as tables, text, and images, and with little or no uniformity in
reporting style giving rise to several machine learning challenges. Here, we discuss,
quantify, and document these outstanding challenges in automated information
extraction (IE) from materials science literature towards the creation of a large
materials science knowledge base. Specifically, we focus on IE from text and tables
and outline several challenges with examples. We hope the present work inspires
researchers to address the challenges in a coherent fashion, providing to fillip to IE
for the materials knowledge base.

1 Introduction
Understanding a material’s behaviour requires knowledge about its composition, properties, process-
ing and testing protocols, and microstructure. The materials science (MatSci) tetrahedron shown in
Fig. 1 encompasses the different aspects of a material which are reported by researchers in research
papers, patents, and scientific documents. There exist wide variations in the reporting style of infor-
mation in research papers making the automated MatSci IE a challenging task. Although researchers
have developed rule-based systems, machine learning algorithms, and language models to represent
and extract information from text, tables, and figures in MatSci research papers (see [21, 48] for
detailed reviews), there exists no consolidated work which lists the outstanding challenges in MatSci
IE and guides researchers to areas requiring more attention.

Figure 1: The MatSci tetrahe-
dron

In this work, we thoroughly review MatSci articles and identify
challenges related to the extraction of the aforementioned aspects
of a material, as shown in Fig. 1. We also highlight the outstanding
challenges of autonomously connecting extracted information to-
gether to create a large MatSci KB. Note that there exist millions of
scientific documents reporting information about various materials
known to humans; thus, automation in MatSci IE will lead to a rich
knowledge-base on materials. The outline of the paper is as follows:
First, we explain the methodology of collecting papers for review
and annotation process. Then, in the results and discussion sections,
we start by taking one component from the MatSci tetrahedron, report their locations in the articles
and discuss the challenges in their extraction. We also quantify how frequently a challenge occurs to
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motivate researchers in gauging the amount of information that will be obtained after solving respec-
tive challenges. Specifically, we identify challenges in extracting and connecting the information from
text and tables present in MatSci research papers. Finally, we give some guidelines on information
reporting protocols which are both machine and human-friendly to understand and that researchers
can adopt to streamline automated MatSci IE from research papers. We then conclude the paper
by indicating future research directions and the effect on the domain if the discussed outstanding
challenges are solved.

2 Methodology
Recently in [11], a framework was presented to extract compositions from tables in MatSci articles,
where the training data was annotated using distant supervision while the val and test data were
manually annotated. We have searched for challenges in extracting each component of the MatSci
tetrahedron from the enitre dataset (2536 articles), and then recorded the frequency of each challenge
by randomly taking 50/100 tables containing the relevant information from the val and test dataset, or
manually annotated 50 papers selected arbitarily as per requirement. All statistical figures reported in
this paper rely on manual annotation either from [11] or done by us to ensure their accuracy. Further,
we manually analyzed in a given document where the information is available, in tables or text. All
the results and data associated with the annotation process are shared in the following link.

3 Results and Discussions
Table 1: Information in
MatSci papers

Text Table
Precursors 80 10

Compositions 78 74
Properties 32 82
Processing 100 10

Testing 96 20

To highlight the outstanding challenges in IE related to each node of the
MatSci tetrahedron, we randomly sampled 50 publications and identified
where they are reported inside the research papers. Table 1 shows the the
percentages of papers reporting raw materials (precursors), compositions,
properties, processing, and testing methods in text and tables. Note that
the same information could be reported in both text and table and hence
the percentages may add to more than 100. Although we found that
compositions are documented in both text and tables in most papers, an
in-depth analysis revealed that only 33.21% of the total compositions
were reported in the text, whereas 85.92% of compositions were present in tables. The overlap exists
due to researchers mentioning the same composition in both text and tables. Processing and testing
conditions are mostly reported in text, while in 80% articles, precursors are in text. 82% articles
report properties in tables. In the following sections, we discuss the outstanding challenges that need
to be addressed for completing the MatSci tetrahedron for a given material.

3.1 Composition extraction
Since the majority of the material compositions are reported in tables, we first discuss the outstanding
challenges in extracting compositions from tables, followed by their extraction from text.

3.1.1 From tables:
We investigated 100 randomly selected composition tables from the manually annotated val-
test data of [11] to report our empirical findings on each challenge’s occurrence frequency.

Figure 2: Nominal (batch) and An-
alyzed Composition

a. Variation in table structure and information content:
Based on table classification rules proposed by [11], tables can
be of two types - Multi-Cell Composition (MCC) and Single-
Cell Composition (SCC), which are sub-divided into tables
containing complete information (CI) and partial information
(PI), described further in 6.2.1 with Fig .7. The most prevalent
were MCC-CI (36%), followed by SCC-CI (30%). PI tables
are less common, with 24% being present as MCC-PI and the remaining 10% as SCC-PI, which is
the outstanding challenge, remaining already addressed by [11] to a satisfactory level.
b. Presence of nominal and experimental compositions: In 3% of the tables, we observed
both nominal and analyzed/experimental compositions are reported. The nominal composition
is the amount of chemicals taken initially to prepare the material, and analyzed/experimental
composition refers to the actual composition of material obtained after analysing the manufac-
tured material. (see Fig.2) [46] [32]. These values are not reported in any fixed pattern, which
makes it difficult to separate the nominal and analyzed composition correctly after extraction.
c. Composition in table headers: Most tabular IE models like Tabbie, [15] DiSCoMaT, [11] perform
better when row/column headers contain appropriate heading of its contents. In MatSci tables, the
headers are mostly material IDs, compound names, properties, processing and testing labels, and the
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inner cells contain corresponding values. However, in 6% of the tables, we found that the compounds
with their values were present in the heading, which makes it hard for the IE models to extract the
desired information. For instance - Se58Ge33Pb9 [16] or x=10%, x=20%,... [24] are column headers
which contain both the compounds and corresponding concentration in the heading. 67% of these
were SCC-CI, whereas the rest 33% were MCC-PI tables.

Figure 3: References to other pa-
pers regarding composition.

d. Compositions and related info inferred from other doc-
uments : In 11% of the tables [4] [5], we found that material
composition and associated information are present in other
research papers and given as references in the tables or their
captions (see Fig. 3). Extracting the information from other
papers will be challenging due to accessibility to those works.

3.1.2 From text:
Now, we report the challenges in extracting the compositions reported in the text of the MatSci
research papers by investigating 50 randomly selected compositions from the manually annotated
val-test data of [11] and reported our anecdotal findings on each challenge’s occurrence frequency.

a. Different formats of compositions: The composition does not adhere to a predetermined pattern
and encompasses various variations. Some notable examples are added to the appendix 6.2.2(a).

b. Extracting variable values in text: Extracting values from variables is challenging since the
variable values are specified in different formats with some present only in text. For instance, "A
series of tellurite glasses with nominal composition (80-x)TeO2–xGeO2–10Nb2O5–10K2O, where
x = 0, 10, 20, 30, 40, 50, 60, 70 and 80 mol%, hereafter named 8T0G, 7T1G, 6T2G, 5T3G, 4T4G,
3T5G, 2T6G, 1T7G and 0T8G, respectively, were doped with 0.2 to 4 mol% ErO1.5" [25] has x
values present only in text. A few other formats are added to the appendix 6.2.2(b).

c. Low recall in extracting compositions expressed with variables: 28% of the articles had
compositions written with variables, within which 28.57% did not provide any values for the variables
in the text. Among the 71.53% where values were present, 40% of them didn’t mention the step size
for the range of values taken by the variable, such as - "x[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: WO3],
where 0.1≤x≤1 in molar weight fraction." [1] The step size of 0.1 was mentioned nowhere in the text
but could be inferred from the composition table present in the paper. Therefore, extracting only from
the text will cause a low recall, and this can be resolved by connecting the variables to the correct
composition table containing the variable.

3.1.3 From table and text jointly:
Extracting information from PI tables is harder than extracting from CI tables, as we have to connect
the table’s partially mentioned composition correctly to one among many compositions mentioned
in the text. We went through 50 manually detected PI tables noted in the val test data of [11] and
found 36% of the tables to be far from the regular ones. We discussed some of the challenges and our
statistical findings in this section and also demonstrated a regular MCC-PI table in Fig 8.

a. Unusual variables used: Other than the common variables x,X,y,z,Z, we also encounter variables
like R, A, Y, and S in 4% of the manuscripts. Distinguishing some of them such as S or Y are difficult
as they are valid symbols for elements [13].

Figure 4: (a) Variable ‘x’ not in table. (b) Composition
across multiple columns.

b. Variables representing composition
in text not found in tables: A generic
way of extracting the composition when
an arithmetic equation of the composition
containing variables is mentioned in the
text is to connect it to the variables located
in the headings of the table and substitute it
with values mentioned under it. Extraction
becomes difficult if there is an absence or mismatch between the variable name in the table and the
text, as shown in Fig. 4(a). We confronted 8% of the tables to have this challenge [45].

c. Composition present across multiple columns: The composition of the material is spread across
multiple columns/rows (instance depicted in Fig. 4(b) [18]), or the table doesn’t follow any fixed
orientation; which makes retrieval extremely challenging. Seen among 4% of the PI tables.
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3.2 Property extraction from tables
We detected the property tables and looked for challenges in their [11] entire dataset, and analyzed
100 arbitrarily selected property tables from their val_test dataset to state our empirical statistics.
a. Semantically similar row/column headers: We saw 19% of the tables having either headers with
similar descriptions for separate entities or the abbreviations used to describe different properties are
semantically very close (see Fig. 10). For example - heading of columns are Re2O3 density (g/cm3)
and Glass density (g/cm3) [22], or in another table are Tg , Tx1, Tx2, Tx3, ∆Tx, Tm [10]. Identifying
the desired property by a predictor model or someone without domain knowledge can be difficult.

b. Same property measured under different conditions: The same property can be measured
with different techniques under different conditions. Therefore, it is important to extract the correct
contextual information related to the reported property. Some recurrent scenarios include witnessing
tables with various refractive indexes (RIs) at different wavelengths [33] (see Fig. 5), glass transition
temperatures at different heating rates [9], or hardness at different testing loads. We encountered 9%
of the property tables exhibiting this challenge.

c. Information in caption/footer instead of tables: Often, properties are mentioned with abbre-
viations in the headings of tables, which are semantically close to other properties (for example -
Figure 10). The information regarding their abbreviation is commonly found in the caption or footer
of the table. We observed 30% of the tables having this characteristic [39] [7]. We also saw 2% of
the tables having no information on the properties’ units but were found in the caption and footer of
the tables [30]. Hence, text from these locations should also be considered for IE.

d. Multiple ways of reporting same unit: For instance, for g/cm3 we found articles with gm/cm3, g
cm−3, g/cm3, gcm−3, g/cc, gm/cc, gw/cm3, gm cc−1; and for kg/m3, we witnessed kgm−3, kg/m3,
kg m−3. Extracting the correct unit and normalizing it to a standard form is essential for storing
information on properties. Interestingly, while there are standard rules for writing SI units [42], as
illustrated here, it is observed that these are not followed strictly in scientific publications.

3.3 IE or manufacturing and characterizing materials
a. Precursor extraction: A research paper generally investigates materials of a similar kind.
Therefore, researchers rarely mention any material identifier in the text, hence it has to be assumed
that all the materials are manufactured using the same precursors. In research papers where batch
composition is mentioned in tables, the challenges are similar as mentioned in Section 3.1.1(b). In
papers where researchers discuss the patented materials, they refer to them by their trademark name,
for example, Pyrex, BOROSIL, Gorilla, etc. and hence their precursor information is not provided.
However, papers discussing materials reported in previous publications, provide references to those
papers reporting the required information in detail.

b. Processing conditions extraction: Let’s consider the set of sentences describing the processing
conditions: “. . . powders were weighed and mixed thoroughly before being transferred to a 90 Pt/10
Rh crucible, heated at 320°C and maintained between 1000 and 1400°C depending on composition,
for approximately 25 min. After annealing for approximately three hours, the glass was allowed
to cool slowly to room temperature. . . ”. Hence, the challenges here are to extract temperatures
and duration for each process, like heating, annealing, and cooling, along with the environmental
conditions and experimental apparatus. Sometimes, these conditions are also mentioned in the table
(see Fig. 5), and their extraction poses similar challenges as described in Section 3.2(b).

Figure 5: Multiple challenges.

c. Testing conditions extraction: Consider the following
example: “The porous microstructure of the matrix was inves-
tigated by scanning electron microscopy (SEM) (JEOL JSM
T330A), by infrared spectroscopy (IR) in a FT-IR spectrom-
eter (Perkin Elmer Spectrum 2000), and by X-ray powder
diffractometry (XRD) (Siemens D-5000). The phase separa-
tion process was investigated by Raman microscope. The room
temperature Raman measurements were performed through
Raman imaging microscope (Renishaw) system 3000, with the 632.8 nm He–Ne laser line for
excitation”. The testing conditions mainly comprise the sample characteristics, dimensions, test
name, instrument name, instrument settings, and testing variables like temperature, wavelength, load,
etc. The boldface text indicates the information to be extracted for obtaining a complete understanding
of the testing process of a material. Fig. 5 lists different wavelengths at which a material is tested to
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obtain wavelengths. The challenges faced in IE for this case will be similar to Section 3.2(b).
Material structure: To study the structure of materials, researchers perform x-ray diffraction studies,
obtain the Raman spectra, optical micrographs, and scanning electron micrographs depending upon
the depth of detail about the material structure required. This information is mostly reported in the
figure and the figure description in the text provides some important details about the material’s
structure. In the statement, “The Raman spectrum of the porous phase (Fig. 6(b)) shows only one
band at 277 cm−1 assigned to silica vibrations...”, the information about Raman spectra is already
shown in the graph, and the text mentions only critical findings.

To summarise, the extraction of precursors, processing, and testing conditions from text poses
challenges related to named entity recognition and relation extraction, which requires the need for
specialized datasets and model development. This will also overcome the challenge of linking the
extracted entities with the target materials. The challenges faced during IE from tables for these
variables require overcoming similar challenges as explained earlier for composition (Section 3.1.1)
and properties (Section 3.2)

3.4 MatSci Knowledge-base: Linking extracted information
The tetrahedron, as shown in Fig. 1, will be considered complete for a given material if its properties,
processing, testing conditions, and raw materials required to manufacture are available. To this
end, researchers need to connect extracted compositions with these variables, which can be done
by connecting different paragraphs of the paper, text with tables, or tables with other tables in the
paper, mainly through their material IDs. For instance, in [41], we obtain the composition of CAS1
from Table 1 and Tg of this material from Table 3. We detected 187 out of 2536 (7.37%) publications
where inter-table IE is necessary and found difficulties in 81 of them.
a. Different material IDs in different tables: The same materials have been reported with different
IDs in different tables. 21 out of 81 research papers (25.93%) have this challenge [35] [23].
b. Material IDs absent from tables: We detected a few MatSci papers where no IDs are present in
the tables. There exist 23 out of those 81 documents (28.40%) having this challenge [31].
c. One of the tables doesn’t contain material IDs: While connecting two tables; we found cases
where IDs are mentioned only in one table [2] (37 out of 81 papers (45.67%) with this challenge).
As the material ID is a very important factor in connecting tables, we did an intensive analysis on the
type of IDs that are reported in the tables mentioned in the Table. 2 of the Appendix.

4 Guidelines for writing IE-friendly MatSci tables
Tables should be reported in such a way that automated extraction and the detection of the desired
information are easy. Some of our suggestions are as follows:
a. Use MCC-CI tables with column orientation. (93% of MatSci tables follow column orientation).
b. The headers should contain the chemical formula of the constituent compounds/elements, along
with the reported properties’ acronyms, processing, and testing conditions, if any, written in a standard
form. If precursors, processing, and testing conditions are common, they can be omitted from tables.
c. Units should be reported following the standard rules [42] in the column headers of the tables.
d. Material IDs should mandatorily be reported in the first column and formed as an acronym of its
comprising constituents. There should be only one unique ID referring to a material in the article.
e. Table structure: [[ID], [C1], [C2], [P1], [P2], ...], where ‘C’ denotes the constituting com-
pound/elements noted by their descending proportions, and ‘P’ refers to the properties of the material,
should be followed.

5 Conclusion and future work
The literature is replete with IE challenges and algorithms to extract information about materials.
However, there exists no study that quantifies how much benefit can be obtained if a particular
challenge is solved. In this paper, we have identified and quantified several unresolved challenges
present in IE for every aspect of the MatSci tetrahedron. Specifically, we pointed out the locations in a
MatSci research paper, where each piece of information on the MatSci tetrahedron of a given material
is reported. Further, we outline the challenges associated with the extraction of this information and
linking them to build the MatSci KB. This will motivate researchers to focus on the outstanding
challenges in the field, giving a direction on where to look and how much gain they might expect
from resolving each challenge. In the end, we have suggested an IE-friendly table format, which will
enhance the automated extraction of the desired information and improve the tabular understanding
of the researchers. Such concerted efforts are required to streamline the reporting in MatSci articles,
thereby accelerating IE towards materials discovery.
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6 Appendix

In the main paper, we discussed unsolved challenges while extracting each feature of the material
tetrahedron from published research works. Here, in this section, we will address some more
challenges besides those that were mentioned in the article. Some of them have been solved, which
we will mention; while the rest remain unsolved.

The details of all the research papers used in this study, along with annotations
to identify the challenges, are available at https://anonymous.4open.science/r/
MatSci-IE-Challanges-AI4MAT

6.1 Common Challenges faced for during information extraction from tables

We begin by discussing the problems encountered for all-encompassing IE tasks. While challenge a
has been resolved in [11] and b in [12] [11], no solution for challenge c was seen.

a. Distractor rows or columns: Additional contents in the table that are irrelevant to our desired
information.

b. Different orientation of tables: Each table can have either of the two orientations - row or
column, which is essential to recognize in order to extract information precisely. We saw 100 random
composition tables and 100 random property tables and observed that 7% of the tables are represented
with row orientation (see Fig.5), whereas 93% of the tables are represented with column orientation
(see Fig. 8).

Figure 6: Multiple tables concate-
nated to form larger table.

c. Multiple tables merged in one: A rarely seen challenge
(<1%) illustrated in Figure 6, where many tables are concate-
nated in a long or broad table, which leads to difficulties in
extracting the targeted details. [44]

6.2 Other challenges faced in composition extraction:

6.2.1 From tables:

We start by illustrating the different types of tables mentioned in Section 3.1.1(a) in Figure 7. When
the entire composition is written within a single cell, it is classified as an SCC table [29][47], whereas
when the composition is written across multiple cells of the table by reporting the value of each
constituent (compounds or elements) of the composition in separate cells, it is defined as a MC
table [17][27]. Now if the table contains all the constituents of the material, we can say it as CI
table (complete information). But if it contains only some constituents, like mentioning the value of
only one compound of the material, we then need to look into the text of the article and connect it
with the table in-order to extract the composition completely. These tables are named as PI tables
(partial information). Often MCC-PI tables are written using mathematical expressions with variables
representing a particular constituent [19], as shown in Figure 8.

MCC-CI

Sample ID P2O5 BaO CaF2

BaPF0 50 50 0

BaPF2 50 48 2

BaPF4 50 46 4

SCC-CI

Composition Tg ±5 °C

75TeO2–25ZnO 315

75TeO2–18ZnO–7ZnF2 278

75TeO2–9ZnO–16ZnF2 261

Classification of composition tables

SCC-PI

Composition Sensitivity

5% TiO2 0.22 ± 0.01

10% TiO2 0.28 ± 0.01

15% TiO2 0.19 ± 0.01

MCC-PI

Glass ID Mol% PbF2 nD

ZBLAYLP10 10.0 1.568

ZBLAYLP10 15.0 1.564

Table Footer text: ZBLAYLPx=56ZrF4 (29−x)BaF2–xPbF2–3.5LaF3–
2YF3–2.5AlF3–7LiF.

Figure 7: Classification of composition tables
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Figure 8: Typical MCC-PI table

We discuss six more challenges which can be seen in the com-
position tables. Challenge a has already been handled by [11].
In challenge b, extraction of compositions mentioned with
atomic%, atomic fraction and parts per million (ppm) is still
outstanding, whereas extraction of dopant concentration from
challenge c has not been solved yet. The rest of the Challenges
- d, e, and f haven’t been addressed by the community yet and
should be given attention too.

a. One Composition with multiple units: Consider the following example composition -
0.85TeO2+0.15WO3+0.1wt%Ag2O+0.076wt%CeO2 [8]. Here, for a given material, different
components are measured in different units (mol% and wt%). This is found in 2% of the tables
making composition extraction challenging.

b. Composition expressed with different units in various articles: such as mol%, weight%,
atomic%, mol fraction, weight fraction, atomic fraction, and ppm. Among them, the most commonly
used unit is mol%, followed by weight%.

c. Percentage not equal to 100: In some papers, even after extracting the whole composition
correctly, we observe that the sum of the coefficient doesn’t sum up to 100, whereas we also notice
the presence of the reverse scenario. Especially in the case of doping, the sum exceeds 100, which is
correct. The challenge is to identify where we need to normalize the values extracted and where we
shouldn’t. We noted that dopant is reported in 2% of the composition tables.

d. Compounds with different units in the same table: Sometimes, the same composition is
recorded with multiple units having different values, which makes it hard to separate duplicate data.
We encountered this situation in 2% of the composition tables. [20]

e. Compounds inferred from material ID: In 7% of the tables, we confronted IDs from which
valuable information regarding the composition was present. For example - some of them had the
molar ratios of compounds present in the glass, while others had the composition written in an
abbreviated form. We also found IDs where composition has been mentioned as a substring in it.
[28]

f. Variables used to represent compounds: When a composition is expressed with variables, it
mostly denotes the various concentrations of the compounds in different materials. However, in some
articles, we came across compositions where variables have been used to represent compound names
instead of their values. One such example is: RE36Y20Al24Co20 (RE = Ce, Pr, Nd, Sm, Gd, Tb, Er,
Sc) [49]. We saw the presence of this scenario in 1% of the tables.

6.2.2 From text

a. Different formats of compositions examples: A few instances of such different formats are:
1. "Erbium-doped glasses with the molar composition 40GeO2.10SiO2.25Nb2O5.25K2O, plus 0.1
to 4 mol% of ErO1.5, were prepared using mixtures of the respective oxides (99.99% purity), with
exception of K2O, which was added in the form of K2CO3" [36].
2. "Bulk samples of (Se80Te20)100−xAgx (0 ≤ x ≤ 4) system were prepared by conventional melt
quenching technique. High-purity (99.999%) elements with appropriate atomic percentages were
sealed in a quartz ampoule (length ∼ 100 mm and internal diameter ∼ 6 mm) in a vacuum of 10 - 5
mbar" [40].
3. "The samples having chemical composition of 2(Ca,Sr,Ba)O–TiO2–2SiO2 were examined. CaO,
SrO and BaO contents in the samples were varied as shown in Table 1. RO% shows molar percent of
CaO, SrO or BaO in total RO of CaO+SrO+BaO." [43]

b. Extracting variable values in text: Extracting values from variables is challenging since the
variable values are specified in different formats with some present only in text. For instance, A series
of tellurite glasses with nominal composition (80-x)TeO2–xGeO2–10Nb2O5–10K2O, where x = 0, 10,
20, 30, 40, 50, 60, 70 and 80 mol%, hereafter named 8T0G, 7T1G, 6T2G, 5T3G, 4T4G, 3T5G, 2T6G,
1T7G and 0T8G, respectively, were doped with 0.2 to 4 mol% ErO1.5 [25] has x values present only
in text. A few instances of other formats of composition with variables are shown below:

1. "The non-isothermal crystallization kinetics of xLi2S–(1-x)Sb2S3, x=0–0.17 were investigated
using differential scanning calorimetry (DSC)" [6].
2. "To ascertain the effect of the glass composition on fluorescence parameters around 1.86 µm, we
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prepared and experimented on two series of glasses. The first one was aR1
2O(1-a)TeO2 where ’a’ was

0, 10, 15, 20, 30 mol%, and ‘R1’ was Li, Na, K. The second one was bR11O.cR2
111O3(1-b-c)TeO2

where ‘b’ was 0, 10, 20, 30 mol%, and ‘c’ was 0.5% or 16.5%, and ‘R11’ = Ba, ‘R111’ = Al, Ga, or
In. To find the effect of concentration quenching, the concentration of thulium oxide was varied from
0.01 to 5.0 mol%" [14].
3. "Glasses with composition in mol%: 51ZrF4, 16BaF2, 5LaF3, 3AlF3, 20LiF, 5PbF2 have been
prepared by melting of the powders (commercial raw materials of purity higher than 99.99%) in a
covered vitreous carbon crucible at about 850 °C for 45 min in a dry argon glove box with a water
content lower than 5 ppm. The melt was poured into a preheated copper mould at 240 °C and slowly
cooled down to room temperature. The doping ion was added in excess to the formula +xErF3 from
0.01 to 11 mol% corresponding to 0.02 to 22 × 1020 Er3+ ions/cm3. The samples obtained were of
good optical quality" [26].

c. Unit not mentioned: 39.53% compositions had no unit specified explicitly.

d. Percentages not summing to 100: Out of 78% compositions found in the text, 17.94% of them
did not have the sum of coefficients of the compounds equal to 100 and needed to be normalized.

e. Recognition of full forms and abbreviations: Instead of providing precise composition values,
full forms are employed in lieu of abbreviations. A few instances are:

1. "Lithium disilicate glass was prepared in 30 g quantity by heating stoichiometric homogeneous
mixtures of lithium carbonate (99.0%), Synth, and silica (99.9999%), Santa Rosa, for 4 h at 1500 °C
in a platinum crucible. has the composition of lithium disilicate indirectly." [38]

2. "The silica glass samples used in the present experiment were prepared by melting quartz crystals
at 1800 °C for 1 h in a one atmosphere hydrogen gas, and they contained nearly the same amount of
SiOH and SiH has the composition of silica (SiO2) indirectly." [37]

f. Unstable composition extraction: Unstable reagents are also identified as the composition due to
a lack of robust parsers. AlO4 is used as a reagent while SiO2 can be a composition.

6.2.3 From table and text jointly:

As extraction from PI is harder than CI tables, it will benefit the community if a standard form is
followed for the PI tables. Figure 8 is a good example of a standard MCC-PI tables from which we
can extract the composition without much difficulties. Let us look into the less-seen PI challenges.

Figure 9: Some part of the compo-
sition in table, rest of it in the text.

a. Composition partly in the table and partly in text: Al-
though we know that PI tables contain the composition partly,
we expect the text to contain the full composition. But in sel-
domly seen occurrences, as depicted by Figure 9, we found
that only the remaining part of the composition, which isn’t
mentioned in the table, is present in the text, which makes
connecting and extracting the whole composition extremely
difficult. This was seen in less than 1% of the PI tables.

6.3 Other challenges faced in property extraction from tables:

Before discussing the other unresolved challenges faced during property extraction, we would like to
exhibit Fig.10 [10] in order to demonstrate the table seen in Section 3.2(a) and (b).

Figure 10: Property description in
caption & semantically close head-
ings.

a. Same property reported with different units: Scarce
occurrence (1%) of property tables were seen where two
columns/rows of the same property having values in differ-
ent units were recorded, which can lead to duplication of data
while extracting. For instance - glass transition temperature
(Tg) is mentioned in both ◦C and K [34]. This problem might
be tackled by post-processing with rule-based systems.

b. Range of values (min-max) given instead of mean value:
Seldomly (<1%), we encounter tables where the values of prop-
erties are mentioned in range rather than a fixed value. For example - we saw Tg values mentioned in
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as 930-945 ◦C [3]. One has to make the decision of taking the min, max, or mean of the documented
values.

c. Property recorded under various acronyms: It is a common practice to record property names
with their abbreviations. Some properties can have various abbreviations, like density is represented
with either ρ or d, Young’s modulus with YM or E, activation energy with E0, Ae, Ea, or E a.

6.4 ID Analysis:

Challenges % of occurence
Standard Glass Name 8

Acronyms/Codes 80
Alphabets 8

Natural Numbers 12
Decimal Numbers ϵ

Acronym∗ + Processing Cond as ID 8
ID Present in Middle ϵ

Apparently Two IDs Present 4
Ratios as IDs ϵ

Composition and State of Glass Info in ID 4
Contains Info About Processing Condition 20

Same IDs but Different Composition ϵ
IDs Interconnected ϵ

Table 2: Various forms of ID encountered

As material ID is the key component in con-
necting glasses from tables to text, or between
two different tables, or also in between different
sections of the text, we went through arbitrar-
ily selected 25 articles containing material IDs
in the tables and recorded their semantic pat-
tern in order to observe the semantics used by
authors to refer to their materials. We found
that a whopping majority of the authors prefer
to use acronyms or self-made codes to refer to
the glasses, followed by natural numbers, alpha-
bets, and standard glass names. Occasionally,
we also see IDs containing relevant information
like the processing conditions of the material,
or information about the state of the glass like
amorphous or crystalline, and its composition. ID are generally present at the beginning of the table,
and very rarely we see an ID column to be present in the middle or end. Its not a very good idea to
make IDs inter-dependable, which can cause difficulties in extracting the materials.

Note: * represents may or may not be present, ϵ represents <1% in Table 2.
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