
A Solver-Free Framework for Scalable Learning in
Neural ILP Architectures

Yatin Nandwani∗, Rishabh Ranjan∗, Mausam & Parag Singla
Department of Computer Science, Indian Institute of Technology Delhi, INDIA

{yatin.nandwani, rishabh.ranjan.cs118, mausam, parags}@cse.iitd.ac.in

Abstract

There is a recent focus on designing architectures that have an Integer Linear
Programming (ILP) layer following a neural model (referred to as Neural ILP
in this paper). Neural ILP architectures are suitable for pure reasoning tasks
that require data-driven constraint learning or for tasks requiring both perception
(neural) and reasoning (ILP). A recent SOTA approach for end-to-end training of
Neural ILP explicitly defines gradients through the ILP black box [Paulus et al.,
2021] – this trains extremely slowly, owing to a call to the underlying ILP solver
for every training data point in a minibatch. In response, we present an alternative
training strategy that is solver-free, i.e., does not call the ILP solver at all at training
time. Neural ILP has a set of trainable hyperplanes (for cost and constraints in ILP),
together representing a polyhedron. Our key idea is that the training loss should
impose that the final polyhedron separates the positives (all constraints satisfied)
from the negatives (at least one violated constraint or a suboptimal cost value),
via a soft-margin formulation. While positive example(s) are provided as part
of the training data, we devise novel techniques for generating negative samples.
Our solution is flexible enough to handle equality as well as inequality constraints.
Experiments on several problems, both perceptual as well as symbolic, which
require learning the constraints of an ILP, show that our approach has superior
performance and scales much better compared to purely neural baselines and other
state-of-the-art models that require solver-based training. In particular, we are able
to obtain excellent performance on 9× 9 symbolic and visual sudoku, to which the
other Neural ILP model is not able to scale. 2

1 Introduction

There has been a growing interest in the community which focuses on developing neural models
for solving combinatorial optimization problems. These problems often require complex reasoning
over discrete symbols. Many of these problems can be expressed in the form an underlying Integer
Linear Program (ILP). Two different kinds of problem (input) settings have been considered in
the literature: (a) purely symbolic and (b) combination of perceptual and symbolic. Solving an
n-Queens problem given the partial assignment of queens on the board as input would be an example
of the former, and solving a sudoku puzzle given the image of a partially filled board as input would
be an example of the latter. While the first setting corresponds to a pure reasoning task, second
involves a combination of perception and reasoning tasks which need to be solved in a joint fashion.
Existing literature proposes various approaches to handle one or both these settings. One line of
work proposes purely neural models [Palm et al., 2018, Nandwani et al., 2021, Dong et al., 2019] for
solving these tasks representing the underlying constraints and costs implicitly. While standard CNNs

∗Equal contribution. Work done while at IIT Delhi. Current email: rishabhr@andrew.cmu.edu
2Code available at: https://github.com/dair-iitd/ilploss

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

21
0.

09
08

2v
1

 [
cs

.L
G

]
 1

7
O

ct
 2

02
2

https://github.com/dair-iitd/ilploss

are used to solve the perceptual task, neural models such as Graph Neural Networks take care of the
reasoning component. In an alternate view, one may want to solve these tasks by explicitly learning
the constraints and cost of the underlying ILP. While the perceptual reasoning would still be handled
by using modules such as CNN, reasoning is taken care of by having an explicit representation in the
form of an ILP layer representing constraints and costs. Such an approach would have the potential
advantage of being more interpretable, and also being more accurate if the underlying constraints
could be learned in a precise manner. Some recent approaches take this route, and include works
by [Paulus et al., 2021, Pogancic et al., 2020, Berthet et al., 2020]. We refer to the latter set of
approaches as Neural ILP architectures. 3

Learning in Neural ILP architectures is complicated by the fact that there is a discrete optimization (in
the form of an ILP layer) at the end of the network, which is typically non-differentiable, making the
end-to-end learning of the system difficult. One of the possible ways is to instead use an iterative ILP
solving algorithm such as a cutting-plane method [Gomory, 2010] that uses a continuous relaxation
in each iteration which is shown to be differentiable due to the introduction of continuous variables
[Ferber et al., 2020, Wilder et al., 2019]. Most of these works are concerned with learning only the
cost function and assume that the constraints are given. Recent work by Paulus et al. [2021] has
proposed an approach to directly pass the gradients through a black-box ILP solver. Specifically, they
rely on Euclidean distances between the constraint hyperplanes and the current solution obtained
by the ILP solver to produce gradients for backprop. Though this approach improves the quality of
results compared to earlier works involving continuous relaxations, scalability gets severely affected
since an ILP has to be solved at every learning iteration, making the training extremely slow.

We are interested in answering the following question: is there a way to train a neural ILP architecture
in an end-to-end manner, which does not require access to an underlying solver? Such an approach,
if exists, could presumably result in significantly faster training times, resulting in scalability. In
response, we propose a novel technique to back-propagate through the learnable constraints as well
as the learnable cost function of an unknown Integer Linear Program (ILP). During training, our
technique doesn’t solve the ILP to compute the gradients. Instead, we cast the learning of ILP
constraints (and cost) as learning of a polyhedron, consisting of a set of hyperplanes, such that points
inside the polyhedron are treated as positive, and points outside as negative. While a positive point
needs to be classified as positive by each of the hyperplanes, a negative point needs to be classified as
negative only by at least one of the hyperplanes. Our formulation incorporates the learning of ILP
cost also as learning of one of the hyperplanes in the system. We formulate a novel margin-based
loss to learn these hyperplanes in a joint fashion. A covariance based regularizer that minimizes the
cosine similarity between all pairs of hyperplanes ensures that learned constraints (hyperplanes) are
not redundant. Since the training data comes only with positive examples, i.e., solutions to respective
optimization problems, we develop several techniques for sampling the negatives, each of which is
central to the effective learning of our hyperplanes in our formulation.

We present several experiments on problems which require learning of ILP constraints and cost, with
both symbolic as well as perceptual input. These include solving a symbolic sudoku as well as visual
sudoku in which we are given an image of a partially filled board [Wang et al., 2019] (perceptual);
ILPs with random constraints (symbolic), Knapsack from sentence description (perceptual) and key-
point matching (perceptual) from [Paulus et al., 2021]. Our closest competitor, CombOptNet [Paulus
et al., 2021], can not solve even the smallest of the sudoku boards sized 4× 4, whereas we can easily
scale to 9 × 9, getting close to 100% accuracy. We are slightly better on key-point matching, and
obtain significantly better accuracy on random ILPs and knapsack, especially on large problem sizes.
We also outperform purely neural baselines (wherever applicable).

2 Related Work

In the first line of work, a neural model such as a Graph Neural Network (GNN) replaces a combina-
torial solver altogether and implicitly encodes the rules or constraints in their weights, and learns them
from data. Nandwani et al. [2022, 2021], Palm et al. [2018] train a Recurrent Relational Network
for learning to solve puzzles like sudoku, graph coloring, futoshiki etc; Dong et al. [2019] propose
Neural Logic Machines (NLMs) that learn lifted first order rules and experiment with blocks world,
reasoning on family trees etc; Ranjan et al. [2022] use a siamese GNN architecture to learn the

3Although these methods can also train a Neural-ILP-Neural architecture, studying this is beyond our scope.

2

combinatorial problems of graph and subgraph distance computation; Bajpai et al. [2018], Garg
et al. [2019],Garg et al. [2020], Sharma et al. [2022] use GNNs to train probabilistic planners for
combinatorial domains with large, discrete state and action spaces; Selsam et al. [2019], Amizadeh
et al. [2019a,b] train a GNN for solving any CSP when constraints are explicitly given in a standard
form such as CNF, DNF or Boolean Circuits. This is clearly different from us since we are interested
in explicitly learning the constraints of the underlying optimization problem.

Inverse Optimization [Chan et al., 2021] aims to learn the constraints (cost) of a linear program (LP)
from the observed optimal decisions. Recently [Tan et al., 2019, 2020] use the notion of Parameterized
Linear Programs (PLP) in which both the cost and the constraints of an LP are parameterized by
unknown weights. [Gould et al., 2019] show how to differentiate through continuous constrained
optimization problem using the notion of a ‘declarative node’ that uses implicit function theorem
[Mingari Scarpello and Ritelli, 2002]. Similar to this are other works [Amos and Kolter, 2017,
Agrawal et al., 2019] that define methods for differentiating through other continuous problems like
convex quadratic programs (QPs) or cone programs. While all these techniques are concerned with
learning the constraints (cost) for optimization problems defined over continuous variables, our focus
is on learning constraints (cost) for an ILP which involves optimization over discrete variables and
can be a significantly harder problem.

In the space of learning cost for an ILP, several approaches have been proposed recently. [Pogancic
et al., 2020] give the gradient w.r.t. linear cost function that is optimized over a given discrete space.
[Rolínek et al., 2020a,b] exploit it for the task of Deep Graph Matching, and for differentiating
through rank based metrics such as Average Precision/Recall respectively. [Berthet et al., 2020]
replace the black-box discrete solver with its smooth perturbed version during training and exploit
‘perturb-and-MAP’ [Papandreou and Yuille, 2011] to compute the gradients. On similar lines, [Niepert
et al., 2021] also exploit perturb-and-MAP but propose a different noise model for perturbation and
also extends to the case when the output of the solver may feed into a downstream neural model.
These methods assume the constraints to be given, and only learn the cost for an ILP.

Other methods use relaxations of specific algorithms for the task of learning the constraints and cost
for an ILP. Ferber et al. [2020] backprop through the KKT conditions of the LP relaxation created
iteratively while using cutting-plane method [Gomory, 2010] for solving an MILP; Wilder et al.
[2019] add a quadratic penalty term to the continuous relaxation and use implicit function theorem to
backprop through the KKT conditions, as done in Amos and Kolter [2017] for smooth programs;
Mandi and Guns [2020] instead add a log-barrier term to get the LP relaxation and differentiate
through its homogeneous self-dual formulation linking it to the iterative steps in the interior point
method. Wang et al. [2019] uses a low rank SDP relaxation of MAXSAT and defines how the
gradients flow during backpropagation. Presumably, these approaches are limited in their application
since they rely on specific algorithmic relaxations.

Instead of working with a specific algorithm, some recent works differentiate through a black-box
combinatorial solver for the task of learning constraints [Paulus et al., 2021]. The solver is called at
every learning step to compute the gradient. This becomes a bottleneck during training, since the
constraints are being learned on the go, and the problem could become ill-behaved resulting in a
larger solver time, severely limiting scalability of such approaches. In contrast, we would like to
perform this task in a solver-free manner. [Pan et al., 2020] propose learning of constraints for the task
of structured prediction. They represent the linear constraints compactly using a specific two layer
Rectifier Network [Pan and Srikumar, 2016]. A significant limitation is that their method can only be
used for learning constraints, and not costs. Further, their approach does not do well experimentally
on the benchmark domains that we compare with. [Meng and Chang, 2021] propose a non-learning
based approach for mining constraints in which for each training data (c,y), a new constraint is
added which essentially imply that no other target can have better cost than the given target y for the
corresponding cost c. We are specifically interested in learning not only the constraints, but also the
cost of an ILP from data. Convex Polytope Machines (CPM) [Kantchelian et al., 2014] learns a non
linear binary classifier in the form of a polytope from a dataset of positive and negative examples.
In contrast, our goal is to learn the cost as well as constraints for an ILP where both the constraints
and the cost could be parameterized by another neural network. Also, we do not have access to any
negative samples.

3

3 Differentiable ILP Loss

3.1 Background and Task Description

We are interested in learning how to solve combinatorial optimization problems that can be expressed
as an Integer Linear Program (ILP) with equality as well as inequality constraints:

arg min
z∈Zn

cT z subject to Uz = v; Gz + h ≥ 0 (1)

Here c ∈ Rn represents an n dimensional cost vector, the matrix U ∈ Rm1×n and v ∈ Rm1

represent m1 linear equality constraints, and the matrix G ∈ Rm2×n and h ∈ Rm2 represent m2

linear inequality constraints, together defining the feasible region.

Without loss of generality, one can replace an equality constraint uTi z = vi by two inequality
constraints: uTi z ≥ vi and −uTi z ≥ −vi. Here ui and vi represent the ith row of the matrix U and
ith element of the vector v respectively. Using this, one can reduce ILP in eq. (1) to an equivalent
form with just inequality constraints:

arg min
z∈Zn

cT z subject to Az + b ≥ 0 (2)

Here matrix A ∈ Rm×n is row-wise concatenation of the matrices G,U and −U. Vector b ∈ Rm
is a row-wise concatenation of vectors h,−v and v, and m = 2m1 + m2 is the total number
of inequality constraints. We represent the ith constraint aTi z + bi ≥ 0, as [ai|bi]. The integer
constraints z ∈ Zn make the problem NP hard.

Neural ILP Architecture: In a neural ILP architecture, the constraint matrix A, vector b, and
the cost vector c are neural functions fA, fb, and fc (of input x) parameterized by learnable Θ =
(θA, θb, θc), i.e., A = fA(x; θA); b = fb(x; θb); c = fc(x; θc). This results in a different ILP
for each input x. For an input x, the solution given by a neural ILP model, MΘ(x), is nothing but
the optima of the following paramterized ILP where A,b, c are replaced by corresponding neural
functions fA, fb, fc evaluated at input x:

MΘ(x) = arg min
z

(fc(x; θc))
T
z subject to fA(x; θA)z + fb(x; θb) ≥ 0, z ∈ Zn (3)

Example of visual-sudoku: In k × k visual-sudoku, the input x is an image of a sudoku puzzle and
y∗ ∈ {0, 1}n is the corresponding solution, represented as a n = k3 dimensional binary vector: the
integer in each of the k2 cells is represented by a k dimensional one-hot binary vector. Function
fc(x; θc) parameterizing the cost is nothing but a neural digit classifier that classifies the content of
each of the k2 cells into one of the k classes. The neural functions fA and fb are independent of the
input x as the constraints are the same for every k × k sudoku puzzle. Therefore, fA(x; θA) = θA,
and fb(x; θb) = θb, where θA is just a learnable matrix of dimension m× n and θb is a learnable
vector of dimension m. See Bartlett et al. [2008] for an ILP formulation of k × k sudoku with 4k2

equality constraints in a n = k3 dimensional binary space {0, 1}n.

Learning Task: Given a training dataset D = {(xs,y∗s) | s ∈ {1 . . . S}} with S training samples,
the task is to learn the parameters Θ = (θA, θb, θc), such that y∗s = MΘ(xs) for each s. To do so,
one needs to define derivatives ∂L

∂A ,
∂L
∂b , and ∂L

∂c w.r.t. A,b, and c respectively, of an appropriate loss
function L. Once such a derivative is defined, one can easily compute derivatives w.r.t.θA, θb, and
θc using the chain rule: ∂L

∂θA
= ∂L

∂A
∂fA(x;θA)

∂θA
; ∂L
∂θb

= ∂L
∂b

∂fb(x;θb)
∂θb

; and ∂L
∂θc

= ∂L
∂c

∂fA(x;θc)
∂θc

. Hence,
in the formulation below, we only worry about computing gradients w.r.t. the constraint matrix A,
vector b, and the cost vector c.

The existing approaches, e.g., [Paulus et al., 2021], explicitly need access to current model prediction
MΘ(x). This requires solving the ILP in eq. (3), making the learning process extremely slow.
In contrast, we present a ‘solver-free’ framework for computation of an appropriate loss and its
derivatives w.r.t. A,b, and c. Our framework does not require solving any ILP while training, thereby
making it extremely scalable as compared to existing approaches.

3.2 A Solver-free Framework

Conversion to a constraint satisfaction problem: As a first step, we convert the constraint op-
timization problem in eq. (2) to an equivalent constraint satisfaction problem by introducing an

4

additional ‘cost–constraint’: cT z ≤ cTy∗, equivalent to am+1 = −c and bm+1 = cTy∗.
Note that the above cost–constraint separates the solution y∗ of the original ILP in eq. (2) from
the other feasible integral points. This is because y∗ must achieve the minimum objective value
cTy∗ amongst all the feasible integral points and hence no other feasible integral point z can obtain
objective value less than or equal to cTy∗. The new constraint [am+1|bm+1] together with the
original m constraints guarantee that y∗ is the only solution satisfying all of the (m+ 1) constraints.
This results in the following equivalent linear constraint satisfaction problem:

arg min
z∈Zn

0T z subject to Az + b ≥ 0 ; cT z ≤ cTy∗ (4)

Constructing such an equivalent satisfaction problem requires access to the solution y∗ of the original
ILP in eq. (2) and that is already available to us for the training data samples. By rolling up the cost
vector c into an additional constraint with the help of y∗, we have converted our original objective of
learning both the cost and constraints to just learning of constraints in eq. (4).

The main intuition behind our framework comes from the observation that each of the m linear
constraints defining the feasible region are essentially m linear binary classifiers (hyperplanes) in
Rn separating the ground truth y∗ from the infeasible region. The additional cost–constraint in
eq. (4) separates y∗ from other integral samples feasible w.r.t. the original m constraints. Learning
constraints of an ILP is akin to simultaneously learning m linear binary classifiers separating y∗

from other infeasible points of the original ILP along with learning a classifier for cost–constraint,
separating y∗ from other feasible integral points.

For a vector y∗ to lie inside the feasible region, all the classifiers need to classify it positively, and
hence it acts as a positive data point for all the m+ 1 binary classifiers. In the absence of explicitly
provided negative samples, we propose a couple of strategies for sampling them from Zn for each
ground truth y∗s . We discuss them in detail in section 3.3. For now, let Ny∗ be the set of all the
negative samples generated by all our sampling techniques for a ground truth positive sample y∗. In
contrast to a positive point which needs to satisfy all the m+ 1 constraints, a negative point becomes
infeasible even if it violates any one of the m+ 1 constraints. As a result, it would suffice if any one
of the m+ 1 classifiers correctly classify it as a negative sample (refer to appendix for an illustration).
While learning, one should not assign a negative sample to any specific classifier as their parameters
are being updated continuously. Instead, we make a soft assignment depending upon the distance of
the negative sample from the hyperplane. With this intuition, we now formally define our ILP–Loss.

Formulating solver-free ILP–Loss: Let d(z; [ai|bi]) =
aT
i z+bi

|ai| represent the signed Euclidean
distance of a point z ∈ Rn from the hyperplane corresponding to the constraint [ai|bi]. We want the
signed distance from all the hyperplanes to be positive for the ground truth samples and negative
from at least one hyperplane for all the sampled negative points. We operationalize this via a margin
based loss function:

L(A,b, c,y∗|Ny∗) = λposL+ + λnegL− + λcovLo where (5)

L+ =
1

m

m∑
i=1

max{0, µ+ − d(y∗; [ai|bi])} (6)

L− =
1

|Ny∗ |
∑

y−∈Ny∗

m+1∑
i=1

wiy− max{0, µ− + d(y−; [ai|bi])} (7)

Lo =

m∑
i,j=1;i 6=j

aTi aj
|ai||aj |

'

(
m∑
i=1

ai
|ai|

)2

(8)

wiy− =
e(−d(y

−;[ai|bi])/τ)

m+1∑
j=1

e(−d(y−;[aj |bj])/τ)

(9)

We call L+, L−, and Lo as the positive, negative and covariance loss respectively. The average in L+

ensures that a ground truth sample is positively classified by all the classifiers. µ+ and µ− are the
hyperparameters representing the margins for the positive and the negative points respectively. wiy− in
L− represents the soft assignment of y− to the ith constraint [ai|bi] and is computed by temperature

5

annealed softmax over the negative distances in eq. (9). Softmax ensures that the hyperplane which is
most confident to classify it as negative gets the maximum weight. When y− lies inside the feasible
region, then the most confident classifier is the one closest to y−. To avoid the pathological behaviour
of decreasing the loss by changing the weights, we ensure that gradients do not flow through wiy− in
eq. (7).

The temperature parameter τ needs to be annealed as the training progresses. A high temperature
initially can be seen as ‘exploration’ for the right constraint that will be violated by y−. This is
important as the constraints are also being learnt and are almost random initially, so a given negative
y− should not commit to a particular hyperplane. Additionally, this encourages multiple constraints
to be violated for each negative, which leads to a robust set of constraints. As the training progresses,
we reduce the temperature τ , ensuring that the most confident classifier with the least signed distance
gets almost all the weight, which can be seen as ‘exploitation’ of the most confident classifier. If y−
is correctly classified as a negative with a margin µ− by any classifier i.e., d(y−; [ai|bi]) ≤ −µ−
for some i, then the corresponding negative loss, max{0, µ− + d(y−; [ai|bi])}, becomes zero, and a
low value of τ ensures that it gets all the weight.

The last term Lo acts as a regularizer and tries to ensure that no two learnt constraints are similar.
We call it the covariance loss as it maximizes the covariance between the constraint unit vectors.
Equivalently, it minimizes the cosine similarity between all pairs of constraints. The weights
λpos, λneg, and λcov are computed dynamically during training with a multi-loss weighing technique
using coefficient of variations as described in Groenendijk et al. [2021]. Intuitively, the loss term
with maximum variance over the learning iterations adaptively gets most of the weight.

Other details:

Parameterization of equality constraints: Recall that we replace an equality uTi z = vi by two
inequality constraints: vi ≤ uTi z ≤ vi. In practice, to enhance learnability, we add a small margin of
ε on both sides: vi − ε ≤ uTi z ≤ vi + ε. We pick an ε small enough so that the probability of the
new feasible region to include an infeasible integral point is negligible, but higher than µ+ so that the
positive point can be inside the polyhedron by the specified margin.
Known boundaries: In many cases, the boundary conditions on the output variables are known, i.e.,
z ∈ Y = [l, u]n, where l and u are the lower and upper bounds on each dimension of z. We handle
this by adding known boundary constraints: l ≤ zi ≤ u,∀i ∈ {1 · · ·n}.
Over-parameterization of constraints: As done in Paulus et al., we also over-parameterize each
constraint hyperplane by an additional learnable offset vector oi which can be viewed as its own local
origin. Radius ri represents its distance from its own origin oi, resulting in the following hyperplane
in the base coordinate system: aTi z + ri − oTi ai/|ai| ≥ 0.
Initialization of A: The way we initialize the constraints may have an impact on the learnability.
While [Paulus et al., 2021] propose to sample each entry of ai uniformly (and independently) between
[−0.5, 0.5], we also experiment with a standard Gaussian initialization. The latter results in initial
hyperplanes with their normal directions (ai’s) uniformly sampled from a unit hyper-sphere. In
expectation, such initialization achieves minima of Lo that measures total pairwise covariance.

3.3 Negative Sampling

A meaningful computation of ILP–Loss in eq. (5) depends crucially on the negative samples N ∗y .
Randomly sampling negatives from Zn is one plausible strategy, but it may not be efficient from the
learning perspective: any point which is far away from any of the classifiers will easily be classified
as negative and will not contribute much to the loss function. In response, we propose multiple
alternatives for sampling the negative points:
1. Integral k-hop neighbours: We sample the integral neighbours that are at an L1 Distance of k
from y∗. For small k, these form the hardest negatives as they are closest to the positive point. Note
that it is possible for a few integral neighbours to be feasible w.r.t. the m constraints, but they must
have worse cost than the given ground truth y∗. Such samples contribute towards learning the cost
parameters θc.
2. Project and sample: We project the ground truth y∗ on each of the m hyperplanes and then
randomly sample an integral neighbour of the projection, generating a total of m negatives. Sampling
probability in the jth dimension depends on the jth coordinate of the projection: if value of the
jth coordinate is r /∈ Z, then we sample floor(r) and ceil(r) with probability ceil(r) − r and
r − floor(r) respectively. If r ∈ Z, then we sample r with probability 1. Projection samples are

6

Table 1: Board accuracy and training time for different board sizes of symbolic and visual sudoku
(for CombOptNet, “-” denotes time-out after 12 hours)

Symbolic Sudoku Visual Sudoku

Board Accuracy (%) Training Time (min) Board Accuracy (%) Training Time (min)

4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9 4x4 6x6 9x9

Neural (RRN) 100.0 99.1 91.3 5 7 110 99.8 97.5 71.1 120 65 97
CombOptNet 0.0 0.0 0.0 - - - 0.0 0.0 0.0 - - -
SATNet 100.0 96.8 28.5 1 74 299 98.0 80.8 17.8 79 89 205
ILP–Loss (Ours) 100.0 100.0 100.0 1 2 52 99.7 98.8 98.3 3 11 92

close to the boundary of the currently learnt polyhedron, thus taking the training progress into account.
Further, each hyperplane is likely to be assigned to a close-by negative due to projection sampling.
3. Batch negatives: We consider every other ground truth y∗s′ s

′ 6= s in the minibatch as a potential
negative sample for y∗s . This is particularly useful for learning the cost parameters θc when the
learnable constraints are the same for all the ground truth samples, such as in sudoku. In such cases,
a batch–negative y∗s′ being a feasible point of the original ILP formulation, must always satisfy all of
the m learnable constraints of the original ILP in eq. (2). Hence, the only way for y∗s′ to be correctly
classified as a negative for y∗s is by violating the cost constraint in eq. (4), Learning cost parameters
θc that result in violation of the cost constraint for every batch–negative helps in ensuring that the
ground truth y∗s indeed has the minimum cost.
4. Solver based: Although our approach is motivated by the objective of avoiding solver calls, our
framework is easily extensible to solver-based training by using the solution to the currently learnt
ILP as a negative sample. This is useful when the underlying neural networks parameterizing A,b or
c are the bottleneck instead of the ILP solver. While we do not use solver negatives by default, we
demonstrate their effectiveness in one of our experiments where the network parameterizing c indeed
takes most of the computation time.

4 Experiments

The goal of our experiments is to evaluate the effectiveness and scalability of our proposed approach
compared to the SOTA black-box solver based approach, i.e., CombOptNet [Paulus et al., 2021]. We
experiment on 4 problems: symbolic and visual sudoku [Wang et al., 2019], and three problems from
[Paulus et al., 2021]: random constraints, knapsack from sentence description and key-point matching.
We also compare with an appropriately designed neural baseline for each of our datasets. To measure
scalability, in each of the domains, we compare performance of each of the algorithms in terms of
training time, as well as accuracy obtained, for varying problem sizes. For each of the algorithms, we
report time till the epoch that achieves best val set accuracy and exclude time taken during validation.
We kept a maximum time limit of 12 hours for training of each algorithm. We next describe details of
each of these datasets, appropriate baselines, and our results. See the appendix for the details of the
ILP solver used in our experiments, the hardware specifications, the hyper-parameters, and various
other design choices.

4.1 Symbolic and Visual Sudoku

This task involves learning the rules of the sudoku puzzle. For symbolic sudoku, the input x is a
matrix of digits whereas for a visual sudoku, the x is an image of a sudoku puzzle where a digit is
replaced by a random MNIST image of the same class. A k × k sudoku puzzle can be viewed as
an ILP with 4k2 equality constraints over k3 binary variables [Bartlett et al., 2008]. For symbolic
sudoku, each of the k2 cells of the puzzle is represented by a k dimensional binary vector which takes
a value of 1 at ith dimension if and only if the cell is filled by digit i, resulting in a k3 dimensional
representation of the input x ∈ Rn where n = k3. On the other hand, for visual sudoku, each of the
digit images in the k2 cells are decoded (using a neural network) into a k dimensional real vector,
resulting in a k3 dimensional learnable cost c ∈ Rn. The k3 dimensional binary output vector
(solution) y∗ is created analogous to symbolic input. Our objective is to learn the constraint matrix
A = fA(x; θA) = θA and vector b = fb(x; θb) = θb, representing the linear constraints of sudoku.
For symbolic sudoku, the cost vector c = −x is known, where as for visual sudoku, the cost vector
c = fc(x; θc) is a function of the input image x, parameterized by θc which also needs to be learned.

7

Table 2: Mean of the vector accuracy (MΘ(x) = y∗) and training time over the 10 random datasets
in each setting of Random constraints. Number of learnable constraints is twice the number of

ground truth constraints. See appendix for std. err. over the 10 runs.
Vector Accuracy (%) Training Time (min)

1 2 4 8 1 2 4 8

Binary CombOptNet 97.6 95.3 84.3 63.4 8.2 13.5 26.5 40.8
ILP–Loss (Ours) 97.8 96.0 92.8 87.8 7.3 11.6 18.1 27.5

Dense CombOptNet 89.3 74.8 34.3 2.0 9.9 16.8 24.7 48.2
ILP–Loss (Ours) 96.6 86.3 74.0 41.5 7.3 15.6 17.6 20.6

Dataset: We experiment with 3 different datasets for k = 4, 6, and 9. We first build symbolic sudoku
puzzles with k digits, and use MNIST to convert a puzzle into an image for visual sudoku. For 9× 9
sudokus, we use a standard dataset from Kaggle [Park, 2017], for k = 4 we use publically available
data from Arcot and Kalluraya [2019], and for k = 6 we use the data generation process described
in Nandwani et al. [2022]. We randomly select 10, 000 samples for training, and 1000 samples for
testing for each k. To generate the input images for visual-sudoku, we use the official train and test
split of MNIST[Deng, 2012]. Digits in our train and test splits are randomly replaced by images in
the MNIST train and test sets respectively, avoiding any leakage.

Baselines: Our neural baseline is Recurrent Relational Networks (RRN) [Palm et al., 2018]: a purely
neural approach for reasoning based on Graph Neural Networks. We use the default set of parameters
provided in their paper for training RRNs. We note that the RRN baseline uses additional information
in the form of graph structure which is not available to our solver. We make this comparison to see
how well we perform compared to one of the SOTA techniques for this problem. We also compare
against another neuro-symbolic architecture using SATNet [Wang et al., 2019] as the reasoning layer.
The neural component in all the neuro-symbolic methods is a CNN that decodes images into digits.

Results: Table 1 compares the performance and training time of our method against the different
baselines described above. CompOptNet fails miserably on this problem, not being able to complete
training for any of the sizes in the stipulated time. The purely neural model gives a decent performance
and is competitive with ours for smaller board sizes. But for larger board size of 9× 9, we beat RRN
based model by a significant margin of about 25 points and 9 points in visual and symbolic sudoku,
respectively. While SATNet performs comparable on smaller 4× 4 sudoku puzzles, its performance
degrades drastically to 17.8% for 9× 9 board size on visual sudoku. See appendix for a comparison
on the dataset used in Wang et al. [2019].

4.2 Random constraints

This is the synthetic dataset borrowed from Paulus et al.. The training data D = {(cs,y∗s)|s ∈
{1 · · ·S}} is created by first generating a random polyhedron P ⊆ Y by sampling m′ hyper-
planes {[a′i|b′i] | a′i,b′i ∈ Rn, i ∈ {1 · · ·m′}} in an n dimensional bounded continuous space
Y . A cost vector cs ∈ Rn is then randomly sampled and corresponding y∗s is obtained as
y∗s = arg minz∈P cTs z, z ∈ Zn. Objective is to learn a constraint matrix A and vector b such
that for a ground truth (c,y∗) pair, y∗ = arg minz∈Y c

T z, z ∈ Zn, and Az + b ≥ 0.

Dataset: Restricting Y to [0, 1]n and [−5, 5]n results in two variations, referred as ‘binary’ and
‘dense’ settings, respectively. For both of the output spaces, we experiment with four different settings
in n = 16 dimensional space by varying the number of ground truth constraints as m′ = 1, 2, 4, and
8. For each m′, we experiment with all the 10 datasets provided by Paulus et al. and report mean and
standard error over the 10 models. The training data in each case consists of 1600 (c,y) pairs and
model performance is tested for 1000 cost vectors.

Baseline: Here we compare only against CombOptNet. A neural baseline (an MLP) is shown to
perform badly for this symbolic problem in Paulus et al.. Hence we exclude this in our experiments.

Results: Table 2 presents the comparison of the two algorithms in terms of accuracy as well as time
taken for training. While we perform marginally better than CombOptNet in terms of training time,
our performance is significantly better, on almost all problems in the dense setting, and the larger
problems in the binary setting. We are roughly 25 and 40 accuracy points better than CombOptNet

8

Table 3: Mean accuracy and train-time over 10 runs for various knapsack datasets with different
number of items in each instance. For N = 25, 30, “-” represents timeout of 12 hours and we
evaluate using the latest snapshot of the model obtained within 12 hours of total training. See

appendix for std. err. over the 10 runs.
Vector Accuracy (mean in %) Training Time (mean in min)

10 15 20 25 30 10 15 20 25 30

CombOptNet 63.2 48.2 30.1 2.6 0.0 41.0 61.4 153.0 - -
ILP–Loss (Ours) 71.4 58.5 48.7 41.0 28.4 44.0 51.0 82.2 106.1 111.6

on the largest problem instance with 8 constraints in the binary and dense settings respectively. This
result demonstrates that our approach is not only faster in terms of training time, but also results in
better solutions compared to the baseline, validating the effectiveness of our approach.

4.3 Knapsack from Sentence Descriptions

This task, also borrowed from Paulus et al., is based on the classical NP-hard Knapsack problem.
Each input consists of N sentences describing the price and weight of N items and the objective is to
select a subset of items that maximizes their total price while keeping their total weight less than the
knapsack’s capacity C: arg maxpT z s.t. wT z ≤ C, z ∈ {0, 1}N , where p,w ∈ RN are the price
and weight vectors, respectively. Each sentence has been converted into a d = 4096 dimensional
dense embedding using Conneau et al. [2017], so that each input is N × d dimensional vector x. The
corresponding output is y∗ ∈ {0, 1}N . The knapsack capacity C is fixed for all instances in a dataset.
The task is to learn the parameters θc, θA and θb of a neural network that extracts the cost and the
constraints from x. Note that here both the cost and the constraints need to be inferred from the input.

Dataset: The dataset in Paulus et al. has 4500 train and 500 test instances with fixed N = 10
items, extracted from a corpus containing 50, 000 sentences and their embeddings. In addition
to experimenting with the original dataset, to demonstrate the scalability of our method, we also
bootstrap new datasets withN = 15, 20, 25 and 30, by randomly selecting sentences from the original
corpus. Each bootstrapped dataset has 4500 train and 500 test instances.

Results: Table 3 presents a comparison between the training time and accuracy of our method against
CombOptNet. We significantly outperform the baseline in terms of accuracy across all the datasets.
For the smallest problem size with only 10 items, our training time is comparable to the baseline. This
is expected as for small problems, ILP may not be the bottleneck, and the relative speedup obtained
by solver free method gets offset by the increased number of iterations it may require to train. Our
relative gain increases significantly with increasing problem size. CombOptNet fails to complete
even a single epoch in the stipulated time and results in 0% accuracy on the largest problem.

4.4 Keypoint Matching

Here we experiment on a real world task of matching key points between two images of different
objects of the same type Rolínek et al. [2020b]. The input x consists of a pair of images (I1, I2) of
the same type along with a shuffled list of coordinates (pixels) of k keypoints in both images. The
task is to match the same keypoints in the two images with each other. The ground truth constraint
enforces a bijection between the keypoints in the two images. The output y is represented as a k × k
binary permutation matrix, i.e., entries in a row or column should sum to 1. The cost c is a k × k
sized vector parameterized by θc. The goal is to learn A, b and θc.

Dataset: We experiment with image pairs in SPair-17k [Min et al., 2019] dataset used for the task of
keypoint matching in [Rolínek et al., 2020b]. Since the neural ILP models can deal with a fixed size
output space, we artificially create 4 datasets for 4, 5, 6 and 7 keypoints from the original dataset.
While generating samples for k keypoints dataset, we randomly sample any k annotated pairs from
input image pairs that have more than k keypoints annotated. See appendix for details on dataset size.

Baselines: We compare against a strong neural baseline which is same as the backbone model
parameterizing the k2 dimensional cost vector in [Rolínek et al., 2020b]. It is trained by minimizing
BCE loss between negative learnt cost (−c) and target y∗. We create an additional baseline by doing
constrained inference with ground truth constraints and learnt cost (‘Neural + CI’) in table 4.

9

Table 4: Average point-wise accuracy and training times over 3 runs with different random seeds for
varying # of keypoints. Neural + CI denotes ILP inference with known constraints over the cost

learnt by neural model. See appendix for std. err. over the 3 runs.
Pointwise Accuracy (in %) Training Times (in min)

4 5 6 7 4 5 6 7

Neural 80.88 78.04 75.39 73.49 148 37 3 40
Neural + CI 82.42 79.99 77.64 75.88 148 37 30 40
CombOptNet 83.86 81.43 78.88 76.85 41 67 144 279
ILP–Loss (Ours) 81.76 79.59 77.84 76.18 115 92 106 109
ILP–Loss + Solver (Ours) 84.64 81.27 79.51 78.59 43 73 99 174

Results: Table 4 presents the percentage of keypoints matched correctly by different models. In
this experiment, the bottleneck w.r.t. time is the backbone neural model instead of the ILP solver.
Therefore, we also experiment with solver based negatives in our method (ILP–Loss + Solver). While
ILP–Loss using solver-free negatives performs somewhat worse than CombOptNet in terms of its
accuracy, especially for smaller problem sizes, using solver based negatives helps ILP–Loss surpass
CombOptNet in terms of both the accuracy and training efficiency for large problem sizes (and
makes it comparable on others). This is because a solver based negative sample is guaranteed to
be incorrectly classified (as positive) by the current hyperplanes, and hence provides a very strong
training signal compared to solver-free negatives in ILP–Loss. We obtain a gain of up to 5 points
over the Neural baseline, which is roughly double the gain obtained by Neural + CI.

5 Conclusion and Future Work

We have presented a solver–free framework for scalable training of a neural ILP architecture. Our
method learns the linear constraints by viewing them as linear binary classifiers, separating the
positive points (inside the polyhedron) from the negative points (outside the polyhedron). While
given ground truth acts as positives, we propose multiple strategies for sampling negatives. A simple
trick using the available ground truth outputs in the training data, converts the cost vector into a
constraint, enabling us to learn the cost vector and constraints in a similar fashion.

Future work involves extending our method to neural-ILP-neural architectures, i.e., where the output
of ILP is an input to a downstream neural model (see appendix for a detailed discussion). Second, a
neural ILP model works with a fixed dimensional output space, even though the constraints for the
same underlying problem are the same in first order logic, e.g., constraints for k × k sudoku puzzles
remain the same in first order irrespective of k. Creating neural ILP models that can parameterize the
constraints on the basis of the size of the input (or learnt) cost vector is a potential direction for future
work. Lastly, the inference time with the learnt constraints can be high, especially for large problems
like 9× 9 sudoku. In addition, the learnt constraints might not be interpretable even if the ground
truth constraints are. In future, we would like to develop methods that distill the learnt constraints
into a human-interpretable form, which may address both these limitations.

Acknowledgements

We thank IIT Delhi HPC facility4 for computational resources. We thank anonymous reviewers
for their insightful comments that helped in further improving our paper. We also thank Ashish
Chiplunkar, whose course on Mathematical Programming helped us gain insights into existing
methods for ILP solving, and Daman Arora for highly stimulating discussions. Mausam is supported
by grants from Google, Bloomberg, 1MG and Jai Gupta chair fellowship by IIT Delhi. Parag
Singla was supported by the DARPA Explainable Artificial Intelligence (XAI) Program with number
N66001-17-2-4032. Both Mausam and Parag are supported by IBM AI Horizon Networks (AIHN)
grant and IBM SUR awards. Any opinions, findings, conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views or official policies, either
expressed or implied, of the funding agencies.

4http://supercomputing.iitd.ac.in

10

References
Ananye Agarwal, Pradeep Shenoy, and Mausam. End-to-end neuro-symbolic architecture for image-

to-image reasoning tasks. CoRR, abs/2106.03121, 2021. URL https://arxiv.org/abs/2106.
03121.

Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, and
J. Zico Kolter. Differentiable convex optimization layers. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 9558–9570, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/9ce3c52fc54362e22053399d3181c638-Abstract.html.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019a. URL https:
//openreview.net/forum?id=BJxgz2R9t7.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. PDP: A general neural framework for
learning constraint satisfaction solvers. CoRR, abs/1903.01969, 2019b. URL http://arxiv.
org/abs/1903.01969.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural net-
works. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research, pages 136–145. PMLR, 2017. URL
http://proceedings.mlr.press/v70/amos17a.html.

Vaibhav Arcot and Samarth Kalluraya. Data set of 4x4 sudoku puzzles and solutions. https:
//github.com/Black-Phoenix/4x4-Sudoku-Dataset, 2019.

Aniket Bajpai, Sankalp Garg, and Mausam. Transfer of deep reactive policies for MDP planning. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10988–
10998, 2018.

Andrew Bartlett, Timothy Chartier, Amy Langville, and Timothy Rankin. An integer programming
model for the sudoku problem. 04 2008.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 9508–9519. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/6bb56208f672af0dd65451f869fedfd9-Paper.pdf.

Timothy C. Y. Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and
applications. 2021.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Martha
Palmer, Rebecca Hwa, and Sebastian Riedel, editors, Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, pages 670–680. Association for Computational Linguistics, 2017. doi:
10.18653/v1/d17-1070. URL https://doi.org/10.18653/v1/d17-1070.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
B1xY-hRctX.

11

https://arxiv.org/abs/2106.03121
https://arxiv.org/abs/2106.03121
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
http://arxiv.org/abs/1903.01969
http://arxiv.org/abs/1903.01969
http://proceedings.mlr.press/v70/amos17a.html
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset
https://proceedings.neurips.cc/paper/2020/file/6bb56208f672af0dd65451f869fedfd9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6bb56208f672af0dd65451f869fedfd9-Paper.pdf
https://doi.org/10.18653/v1/d17-1070
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX

Aaron M. Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 1504–1511. AAAI Press, 2020. URL https://ojs.aaai.
org/index.php/AAAI/article/view/5509.

Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural transfer for RDDL planning. In
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019, pages 631–636. AAAI Press, 2019.

Sankalp Garg, Aniket Bajpai, and Mausam. Symbolic network: Generalized neural policies for
relational mdps. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 3397–3407. PMLR, 2020.

Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs and an algorithm
for the mixed integer problem. In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L.
Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey,
editors, 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-
the-Art, pages 77–103. Springer, 2010. doi: 10.1007/978-3-540-68279-0_4. URL https:
//doi.org/10.1007/978-3-540-68279-0_4.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks: A new hope.
CoRR, abs/1909.04866, 2019. URL http://arxiv.org/abs/1909.04866.

Rick Groenendijk, Sezer Karaoglu, Theo Gevers, and Thomas Mensink. Multi-loss weighting with
coefficient of variations. In IEEE Winter Conference on Applications of Computer Vision, WACV
2021, Waikoloa, HI, USA, January 3-8, 2021, pages 1468–1477. IEEE, 2021. doi: 10.1109/
WACV48630.2021.00151. URL https://doi.org/10.1109/WACV48630.2021.00151.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

Alex Kantchelian, Michael Carl Tschantz, Ling Huang, Peter L. Bartlett, Anthony D. Joseph,
and J. Doug Tygar. Large-margin convex polytope machine. In Zoubin Ghahramani,
Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3248–3256, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
b147a61c1d07c1c999560f62add6dbc7-Abstract.html.

Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
51311013e51adebc3c34d2cc591fefee-Abstract.html.

Tao Meng and Kai-Wei Chang. An integer linear programming framework for mining constraints
from data. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pages 7619–7631. PMLR, 2021. URL http:
//proceedings.mlr.press/v139/meng21a.html.

Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for
semantic correspondence. CoRR, abs/1908.10543, 2019. URL http://arxiv.org/abs/1908.
10543.

Giovanni Mingari Scarpello and Daniele Ritelli. A historical outline of the theorem of implicit
functions. Divulgaciones Matemáticas, 10, 01 2002.

12

https://ojs.aaai.org/index.php/AAAI/article/view/5509
https://ojs.aaai.org/index.php/AAAI/article/view/5509
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1007/978-3-540-68279-0_4
http://arxiv.org/abs/1909.04866
https://doi.org/10.1109/WACV48630.2021.00151
https://www.gurobi.com
https://www.gurobi.com
https://proceedings.neurips.cc/paper/2014/hash/b147a61c1d07c1c999560f62add6dbc7-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/b147a61c1d07c1c999560f62add6dbc7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
http://proceedings.mlr.press/v139/meng21a.html
http://proceedings.mlr.press/v139/meng21a.html
http://arxiv.org/abs/1908.10543
http://arxiv.org/abs/1908.10543

Yatin Nandwani, Deepanshu Jindal, Mausam, and Parag Singla. Neural learning of one-of-many
solutions for combinatorial problems in structured output spaces. In International Conference on
Learning Representations (ICLR), 2021.

Yatin Nandwani, Vidit Jain, Mausam, and Parag Singla. Neural models for output-space invariance in
combinatorial problems. In International Conference on Learning Representations (ICLR), 2022.
URL https://arxiv.org/abs/2202.03229.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 14567–14579. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 3372–3382, 2018.
URL http://papers.nips.cc/paper/7597-recurrent-relational-networks.

Xingyuan Pan and Vivek Srikumar. Expressiveness of rectifier networks. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 2427–2435. JMLR.org, 2016. URL http://proceedings.
mlr.press/v48/panb16.html.

Xingyuan Pan, Maitrey Mehta, and Vivek Srikumar. Learning constraints for structured prediction
using rectifier networks. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4843–4858. Association for Computational Linguistics,
2020. doi: 10.18653/v1/2020.acl-main.438. URL https://doi.org/10.18653/v1/2020.
acl-main.438.

George Papandreou and Alan L. Yuille. Perturb-and-map random fields: Using discrete optimization
to learn and sample from energy models. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu,
and Luc Van Gool, editors, IEEE International Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pages 193–200. IEEE Computer Society, 2011. doi:
10.1109/ICCV.2011.6126242. URL https://doi.org/10.1109/ICCV.2011.6126242.

Kyubyong Park. 1 million sudoku games. https://www.kaggle.com/datasets/bryanpark/
sudoku, 2017.

Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 8443–8453. PMLR, 2021. URL http://proceedings.mlr.press/v139/paulus21a.
html.

Marin Vlastelica Pogancic, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Dif-
ferentiation of blackbox combinatorial solvers. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=BkevoJSYPB.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. Greed: A neural framework for learning graph distance functions. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022.

Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica P., Claudio Michaelis,
and Georg Martius. Optimizing rank-based metrics with blackbox differentia-
tion. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 7617–7627. Computer

13

https://arxiv.org/abs/2202.03229
https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
http://papers.nips.cc/paper/7597-recurrent-relational-networks
http://proceedings.mlr.press/v48/panb16.html
http://proceedings.mlr.press/v48/panb16.html
https://doi.org/10.18653/v1/2020.acl-main.438
https://doi.org/10.18653/v1/2020.acl-main.438
https://doi.org/10.1109/ICCV.2011.6126242
https://www.kaggle.com/datasets/bryanpark/sudoku
https://www.kaggle.com/datasets/bryanpark/sudoku
http://proceedings.mlr.press/v139/paulus21a.html
http://proceedings.mlr.press/v139/paulus21a.html
https://openreview.net/forum?id=BkevoJSYPB

Vision Foundation / IEEE, 2020a. doi: 10.1109/CVPR42600.2020.00764. URL
https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_
Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html.

Michal Rolínek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vít Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXVIII, volume
12373 of Lecture Notes in Computer Science, pages 407–424. Springer, 2020b. doi: 10.1007/
978-3-030-58604-1_25. URL https://doi.org/10.1007/978-3-030-58604-1_25.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill.
Learning a SAT solver from single-bit supervision. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

Vishal Sharma, Daman Arora, Florian Geißer, Mausam, and Parag Singla. Symnet 2.0: Effectively
handling non-fluents and actions in generalized neural policies for rddl relational mdps. In
Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022,
Eindhoven, Netherlands, August 1-5, 2022, 2022.

Yingcong Tan, Andrew Delong, and Daria Terekhov. Deep inverse optimization. In Louis-
Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019,
Thessaloniki, Greece, June 4-7, 2019, Proceedings, volume 11494 of Lecture Notes in Com-
puter Science, pages 540–556. Springer, 2019. doi: 10.1007/978-3-030-19212-9_36. URL
https://doi.org/10.1007/978-3-030-19212-9_36.

Yingcong Tan, Daria Terekhov, and Andrew Delong. Learning linear programs from optimal
decisions. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e44e875c12109e4fa3716c05008048b2-Abstract.html.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 6545–6554. PMLR, 2019. URL
http://proceedings.mlr.press/v97/wang19e.html.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 1658–1665. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33011658. URL https:
//doi.org/10.1609/aaai.v33i01.33011658.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] . In Conclusion and future works
section 5

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

14

https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-58604-1_25
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.1007/978-3-030-19212-9_36
https://proceedings.neurips.cc/paper/2020/hash/e44e875c12109e4fa3716c05008048b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e44e875c12109e4fa3716c05008048b2-Abstract.html
http://proceedings.mlr.press/v97/wang19e.html
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1609/aaai.v33i01.33011658

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code is now
available at https://github.com/dair-iitd/ilploss

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details are in experiments section 4 under ‘Training Methodology’
and in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In three out of four experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the experiments section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Datasets are cited in

the respective experiment sections.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

Appendix

3 Differentiable ILP Loss

3.2 A Solver-free Framework

In fig. 1, we consider a 2-dimensional ILP with 4 ground truth constraints ãiT z+b̃i ≥ 0, i = 1, 2, 3, 4,
a cost vector c̃, and target solution y∗. The dots represent points in Z2. The solid lines represent
hyperplanes (here lines) corresponding to the constraints, and the dashed line represents our cost-
constraint. The shaded area in fig. 1a is the feasible region of the constraint satisfaction problem:

arg min
z

0T z subject to Ãz + b̃ ≥ 0 ; c̃T z ≤ c̃Ty∗ ; z ∈ Z2

Figure 1a shows the ground truth ILP. The signs of ãi’s and b̃i’s are such that the closed polyhedron
(here polygon) containing the blue points forms the feasible region Ãz + b̃ ≥ 0. The green point is
optimal w.r.t. the cost c̃. The red points are infeasible, i.e., Ãz + b̃ < 0 for red points. Note that the
target solution y∗ (point with green border) is the only integral point in the shaded region. The other
blue points violate the cost constraint c̃T z ≤ c̃Ty∗, and the red points violate at least one of the four
feasibility constraints ãiT z + b̃i ≥ 0, i ∈ {1 · · · 4} .

Figure 1b shows a possible situation during learning. For simplicity, consider temperature close to
zero (τ ≈ 0), so that only the closest hyperplane contributes to the negative loss for a negative sample.
Also consider margins close to zero (µ+ ≈ 0, µ− ≈ 0). In fig. 1b, the point with the green border

15

https://github.com/dair-iitd/ilploss

(a) Ground Truth ILP (b) Intermediate Learnt ILP

Figure 1: An illustration of our framework. Figure on the left shows 4 ground truth constraints that
need to be learnt. Blue dots are the only feasible integral points w.r.t. the 4 constraints. Shaded area

containing only the dot with green border is the feasible region after we add the cost constraint
(dashed line). Figure on the right shows an intermediate scenario while learning. The green-bordered

dot (positive) is outside the intermediate 4th constraint and the red dot (negative) is inside the
intermediate 3rd constraint. Positive and negative losses encourage the 4th and the 3rd hyperplanes

to move in the direction shown by the green and red dotted arrows respectively.

is outside the shaded region, whereas one red point is inside. The ground truth y∗ is on the wrong
side of only the fourth hyperplane, i.e., aT4 y

∗ + b4 < 0, and hence it is the only contributor to the
positive loss, i.e., L+ = − 1

4d(y∗; [a4|b4]), where d(y∗; [a4|b4]) =
aT
4 y∗+b4

|a4| < 0. The red negative
point denoted as y− (inside the shaded region) being closest to the third hyperplane contributes
d(y−; [a3|b3]) =

aT
3 y−+b3

|a3| > 0 to the negative loss L−. The green and red dotted arrows indicate
the directions of movement of the constraint hyperplanes on weight update.

4 Experiments

Details of the ILP Solver and the hardware used for experiments: To solve the learnt ILPs, we
use Gurobi ILP solver [Gurobi Optimization, LLC, 2022] available under ‘Named-user academic
license’. All our experiments were run on 11 GB ‘GeForce GTX 1080 Ti’ GPUs installed on a
machine with 2.60GHz Intel(R) Xeon(R) Gold 6142 CPU. For each of the algorithms, we kept a
maximum time limit of 12 hours for training.

4.1 Symbolic and Visual Sudoku

Hyperparameters and other design choices: (a) # of learnable constraints: We keepm = (n+1)/2
as the number of learnable equality constraints where n = k3 is the number of binary variables. (b)
Margin: We find that a margin of 0.01 works well across domains and problem sizes. (c) Temperature:
we start with a temperature τ = 1 and anneal it by a factor of 0.1 whenever the performance on a
small held out set plateaus. (d) Early Stopping: we early stop the training based on validation set
performance, with a timeout of 12 hours for each experiment. We bypass the validation bottleneck
of solving the ILPs from scratch by providing the gold solutions as hints when invoking Gurobi.
(e) Negative Sampling: For sampling neighbors, we select all the n one hop neighbors, and an
equal number of randomly selected 2,3 and 4 hop neighbors, resulting in a total of 4n neighbors.
(f) Initialization: we initialize ai from a standard Gaussian distribution for CombOptNet and our
method.

Comparison with SATNet on their dataset: Wang et al. use a different set of 9 × 9 puzzles for
training and testing sudoku and report 63.2% accuracy on visual sudoku, different from what it
obtains on our dataset. Hence we trained both SATNet and our model on the dataset available on

16

Table 5: Mean ± std err of the vector accuracy (MΘ(x) = y∗) and training time over the 10 random
datasets in each setting of Random constraints. Number of learnable constraints is twice the number

of ground truth constraints. CombOpt: CombOptNet
Vector Accuracy (%) Training Time (min)

1 2 4 8 1 2 4 8

Binary

CombOpt 97.6± 0.4 95.3± 0.5 84.3± 3.5 63.4± 4.0 8.2± 1.7 13.5± 1.6 26.5± 1.4 40.8± 4.0
ILP–Loss 97.8± 0.4 96.0± 0.3 92.8± 0.6 87.8± 3.4 7.3± 1.7 11.6± 1.9 18.1± 2.4 27.5± 4.8

Dense

CombOpt 89.3± 1.1 74.8± 1.9 34.3± 5.6 2.0± 0.6 9.9± 1.4 16.8± 1.3 24.7± 2.0 48.2± 2.3
ILP–Loss 96.6± 0.3 86.3± 2.3 74.0± 5.4 41.5± 5.7 7.3± 1.1 15.6± 2.1 17.6± 2.6 20.6± 4.5

Table 6: Mean ± std err. of accuracy and train-time over 10 runs for various knapsack datasets with
different number of items in each instance. For N = 25, 30, TO represents timeout of 12 hours and

we evaluate using the latest snapshot of the model obtained within 12 hours of total training.
CombOpt: CombOptNet

Vector Accuracy (mean± std. err. in %) Training Time (mean± std. err. in min)

10 15 20 25 30 10 15 20 25 30

CombOpt 63.2±0.6 48.2±0.4 30.1±1.0 2.6±0.3 0.0±0.0 41.0±4.1 61.4±4.6 153.0±8.8 TO TO
ILP–Loss 71.4±0.4 58.5±0.3 48.7±0.7 41.0±0.5 28.4±0.7 44.0±5.7 51.0±7.9 82.2±9.8 106.1±7.7 111.6±11.0

SATNet’s Github repo. Interestingly, on their visual sudoku dataset which we believe to be easier (as
shown by performance numbers), our run of SATNet achieves 71.0% board accuracy whereas our
method achieves 98.3%.

4.2 Random Constraints

Hyperparameters and other design choices: We keep number of learnable constraints as twice the
number of ground truth constraints, i.e., m = 2m′, as Paulus et al. report best performance in most of
the settings with it. Here we initialize ai uniformly between [−0.5, 0.5]. Rest of the hyperparamters
are set as in the case of sudoku.

Results: See table 5 for the standard error of the accuracy and training time over 10 random datasets
for different number of ground truth constraints.

4.3 Knapsack from Sentence Descriptions

Hyperparameters and other design choices: Following Paulus et al., we use a two-layer MLP with
hidden-dimension 512 to extract c and A from N d-dimensional sentence embeddings, and keep
b = 1. Number of constraints m is set to 4, a setting which achieves best performance in Paulus
et al.. A notable difference is in the output layer of our MLP. Paulus et al. assume access to the
ground truth price and weight range ([10, 45] and [15, 35] respectively), and use a sigmoid output
non-linearity with suitable scale and shift to produce A and c in the correct range. We do the same
for CombOptNet, but for ILP–Loss we simply use a linear activation at the output. We note that
training CombOptNet with linear activation without access to the ground truth ranges gives poorer
results.

Results: See table 6 for standard error over 10 runs with different random seeds for varying knapsack
sizes.

4.4 Keypoint Matching

Hyperparameters: For each k, the number of learnable constraints is set to 2k: same as the number
of ground truth constraints. For keypoints 5,6 and 7, in addition to random initialization, we also
experiment by initializing the backbone cost parameters θc with the one obtained by training it on 4
keypoints and pick the one which obtains better accuracy on val set. This happens for all the methods
for keypoints 6 and 7.

17

Table 7: Keypoint Matching: Number of train and test samples for datasets with different keypoints
Num Keypoints 4 5 6 7
#Test 10,474 9,308 7,910 6,580
#Train 43,916 37,790 31,782 26,312

Table 8: Mean ± std error of point-wise accuracy and training times over 3 runs with random seeds
for varying number of keypoints. Neural+CI denotes ILP inference with known constraints over the

cost learnt by neural model.
Pointwise Accuracy (mean ± std err in %) Training Times (mean ± std. err. in min)

4 5 6 7 4 5 6 7

Neural 80.88±0.87 78.04±0.40 75.39±0.50 73.49±0.55 148±26 37±12 30±9 40±13
Neural + CI 82.42±0.55 79.99±0.16 77.64±0.25 75.88±0.43 148±26 37±12 30±9 40±13
CombOptNet 83.86±0.62 81.43±0.49 78.88±0.65 76.85±0.54 41±15 67±8 144±31 279±39
ILP–Loss 81.76±1.71 79.59±0.18 77.84±0.36 76.18±0.06 115±13 92±3 106±1 109±5
ILP–Loss + Sol. 84.64±0.62 81.27±1.12 79.51±0.53 78.59±0.55 43±12 73±10 99±9 174±25

For ILP–Loss with only solver and batch negatives (ILP–Loss + Sol.) , we start with a temperature
τ = 0.1 and anneal it by a factor of 0.5 whenever performance on a small validation set plateaus.
For ILP–Loss with only solver–free negatives, we start with a temperature τ = 0.5 and anneal it by
a factor of 0.2 at 10th and 30th epoch. As done in Paulus et al. [2021], we initialize ai uniformly
between [−0.5, 0.5]. Rest of the hyperparmeters are same as those used for sudoku.

Dataset details: See table 7 for the number of train and test samples in the four datasets created for
4, 5, 6, and 7 keypoints.

Results: See table 8 for the standard error of point-wise accuracy and training times over 3 runs with
different random seeds for varying number of keypoints.

5 Future Work

Discussion on training Neural-ILP-Neural architectures: In the current formulation, availability
of the solution to the ground truth ILP is important for our solver-free approach to work. Specifically,
it is required to: 1.) convert the constrained optimization problem to a constraint satisfaction problem
by including the cost-constraint eq. (4), and 2.) to calculate the positive loss eq. (6). However, in
a Neural-ILP-Neural architecture, the intermediate supervision for only the Neural-ILP part (i.e.,
solution of the ground truth ILP) is not available.

On the other hand, solver based methods such as CombOptNet, do not require access to the solution
of the ground-truth ILP. Instead, they rely on the solution of the current intermediate ILP (during
learning) to compute the gradients of the loss and thus their approach is not solver free. We note that
even though in princple they can train Neural-ILP-Neural architectures, their experiments are only in
the Neural-ILP settings.

Extending our current work for Neural-ILP-Neural architectures is an important direction of future
work. One plausible approach could be to train an auxiliary inverse network that converts a given
output of Neural-ILP-Neural architecture to a predicted symbolic target of Neural-ILP component.
This predicted target can be used as a proxy to the ground truth solution of the Neural-ILP part.
Similar ideas of using an inverse network have been explored in [Agarwal et al., 2021], albeit under
the setting where ILP is known and only the neural encoder and decoder needs to be learnt.

18

	1 Introduction
	2 Related Work
	3 Differentiable ILP Loss
	3.1 Background and Task Description
	3.2 A Solver-free Framework
	3.3 Negative Sampling

	4 Experiments
	4.1 Symbolic and Visual Sudoku
	4.2 Random constraints
	4.3 Knapsack from Sentence Descriptions
	4.4 Keypoint Matching

	5 Conclusion and Future Work

