
Evaluating Temporal Planning Domains

William Cushing
Subbarao Kambhampati

Kartik Talamadupula
Dept. of Comp. Sci. and Eng.

Arizona State University
Tempe, AZ 85281

Daniel S. Weld
Mausam

Dept. of Comp. Sci. and Eng.
University of Washington

Seattle, WA 98195

Abstract

The last eight years have seen dramatic progress in tempo-
ral planning as highlighted by the temporal track in the last
three International Planning Competitions (IPC). However,
our recent work, (Cushing et al. 2007), showed that most of
the competition winning planners are only complete for very
restricted forms of temporal planning languages that are in a
sense indistinguishable from STRIPS. In this paper we con-
sider the impact of those results on the design of benchmark
temporal planning domains, and by extension, the temporal
planning competition. We start by setting out to verify our
speculation that the competition domains are temporally sim-
ple. This turns out to be tricky, and we develop a set of
increasingly powerful analytic methods for domain analysis.
Our analysis establishes that the benchmark domains are in-
deed inherently sequential (i.e., do not require concurrency).
We suggest some real-world domains with required concur-
rency, and use a compilation argument to show that these are
harder in the sense that they correspond to longer sequential
plans. We conclude with the argument that temporal planners
should be evaluated on both inherently sequential domains as
well as those requiring concurrency.

1 Introduction
Since its inception in 1998 the bi-annual International Plan-
ning Competition (IPC) has led to dramatic improvements
in planner speed. Starting in 2002, the IPC has included
a track dedicated to temporal planning, whose language
(PDDL 2.1.3) was specifically designed to describe domains
with concurrent actions (c.f. the “Match” domain of (Fox &
Long 2003)). Much to general satisfaction, the performance
of temporal competition winners tracked improvements in
classical planner performance, suggesting that advances dis-
covered in the classical context were transferring smoothly
to more complex problem sets.

However our recent work, (Cushing et al. 2007), chal-
lenges this conclusion. In a nutshell, our works divides
temporal domain description languages into two categories,
“temporally simple” and “temporally expressive”, and show
that simple languages (e.g. TGP) can not even express prob-
lems whose solution plans require concurrency (though con-
currency may lead to a shorter makespan). In contrast, ex-
pressive languages (e.g., PDDL 2.1.3) can describe prob-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lems where concurrency is required by all solutions, but
not all domains written in an expressive language will have
problems whose solutions require concurrency. Further-
more, if a language is temporally simple (i.e. every prob-
lem always has sequential solutions), then the much stronger
property that the entire language is inherently sequential
holds — in the sense that optimal solutions of problems in
these languages always correspond to linear-time reschedul-
ing of sequential solutions. Approximately, temporally sim-
ple languages are isomorphic to STRIPS in the sense that one
could augment a classical planner with such a rescheduling
step at every search node. Indeed, it is now clear that SG-
PLAN (Chen, Hsu, & Wah 2006), which won the temporal
track in 2004 and 2006, uses this strategy.1

In our prior work, we also point out that most of the top
entrants of the planning competition, which are based on
decision epoch planning, are not complete for domains and
problems that require concurrency. Based on this, we specu-
lated that most IPC temporal track domains/problems prob-
ably do not require concurrency. If true, this would suggest
that the perceived progress in temporal planning may be il-
lusory — we are simply seeing the result of faster classical
planners on inherently sequential domains.

In this paper, we investigate the impact of our results on
the temporal planning domains, and by extension, the com-
petition itself. Specifically, we tackle the following ques-
tions:

• Are the IPC temporal domains inherently sequential?

• If so, then is this a sign that real world domains rarely
require concurrency?

And most importantly:

• Can one automatically analyze a PDDL 2.1.3 domain de-
scription to determine if it is inherently sequential or has
required concurrency?

In this paper we answer these questions, showing that the
IPC domains are, in fact, sequential; that required concur-
rency is both important and common in real-world domains,
and providing powerful analytic tools for determining the
nature of PDDL 2.1.3 domains. In addition, our analysis of

1related in a personal communication by Yixin Chen, an author
of SGPLAN.



the well-studied IPC domains reveals several modeling er-
rors which lead us to suggest better ways of describing tem-
poral domains.

The rest of the paper is organized as follows. In the next
section we provide a brief background on our prior results.
Section 3 focuses on developing tests to determine the in-
herent sequentiality of a domain. Section 4 explains how
these tools are used to analyze and establish the inherent se-
quentiality of the competition domains. Section 5 discusses
required concurrency in the real world. Section 6 argues
that required concurrency can not be easily compiled away.
Section 7 discusses the impact of all this on the temporal
planning competition. Section 8 presents our conclusions.

2. Preliminaries
The framework of (Cushing et al. 2007) was developed
to characterize the properties of planning algorithms in the
context of various domain modeling languages. This section
reformulates a set of those insights into a form where they
can more easily be used to analyze domain characteristics.

Definition 1 (Temporal Gap) An action has temporal gap
if

1. There is a condition or effect on a fluent x AT START

2. There is a condition or effect on a, possibly different, flu-
ent y AT END

A domain has temporal gap if any action in the domain
has temporal gap. A domain forbids temporal gap if none of
the domain’s actions has temporal gap.

Definition 2 (Required Concurrency) A problem has re-
quired concurrency if there exists a plan solving the problem
and every such solution has concurrently executing actions.

A domain has required concurrency if there exists any
problem which has required concurrency.

We exclude timed exogenous events and deadline goals
from domain definitions, since their presence gives required
concurrency to almost every domain.

Definition 3 (Causally Equivalent) Two plans, which
solve the same problem, are causally equivalent if they can
be shown to be correct using the same causal-link proof.2

A causal-link proof consists of a set of causal-links (one
for each goal and for all conditions of every action) and
an ordering relation on effects and conditions; a causal-link
matches each condition with a supporting effect. The order-
ing relation orders the supporting effect of a causal-link be-
fore its supported condition, orders action starts before their
ends, and orders every threatening effect to a causal link ei-
ther before the link’s supporting effect or after the supported
condition (Chapman 1987).

A plan can be shown to be correct using a causal-link
proof if the dispatch times of the plan’s actions induces the
ordering relation of the proof, and respects the action’s du-
rations.

2Space considerations demand of brief treatment of causal links
in temporal plans (Penberthy & Weld 1994; Younes & Simmons
2003) and their use in plan-reordering (Bäckström 1998).

Figure 1: Venn diagram of domain concurrency properties.

Definition 4 (Inherently Sequential) A plan, P , is inher-
ently sequential if there exists a sequential plan P ′ solving
the same problem, such that P and P ′ are causally equiva-
lent. A problem is inherently sequential if every solution is
inherently sequential. A domain is inherently sequential if
every possible problem is inherently sequential. A language
is inherently sequential if every expressible domain is inher-
ently sequential.

As illustrated by Figure 1, required concurrency and in-
herent sequentiality are not inverses of one another. There
also exist mixed domains in which every problem can be
solved by some sequential plan, but there may exist concur-
rent solutions with no sequential equivalent. For example,
suppose there are two ways to take a measurement: using a
self-contained portable instrument and using a larger instru-
ment which requires concurrent operation of a generator.

Interestingly, however, our survey suggests that mixed do-
mains are quite rare in practice — most alternative action
sets (e.g. the two ways of taking a measurement) have some
distinguishing side effects. For example, if the large instru-
ment produced a higher-quality reading, then there would
exist a goal (quality measurement) without a serial solution
and the domain would have required concurrency.

3. Determining Inherent Sequentiality
Finding sufficient conditions for which a problem, domain,
or language is inherently sequential is important; such con-
ditions allow one to determine whether or not planning and
scheduling separately is sufficient for the task. Unfortu-
nately, the definition of inherent sequentiality is not oper-
ational, since it quantifies over all plans for all problems in a
domain. Fortunately, we have an operational sufficient con-
dition:

Theorem 1 ((Cushing et al. 2007)) If a domain forbids
temporal gap, the domain is inherently sequential.

Proving this is relatively straightforward. Consider the
special case where all the actions have AT START effects.
Then delaying the dispatch of every action until all earlier
actions have finished executing sequentializes the plan with-
out changing the order in which effects occur — note that an
action which lacks temporal gap and has AT START effects
may not have AT END effects. Therefore, the plan retains
an identical state sequence, and so remains executable and
goal-achieving.

While the lack of temporal gap, indeed, suffices to show
inherent sequentiality, it is rarely applicable. For example,
every one of the IPC temporal domains has actions with tem-
poral gap. Clearly we need better tools. In this section we
develop two complementary extensions of the temporal gap
criteria, one based on analysis of sets of actions and one
based on analysis of the effects and conditions of actions.



3.1 Action Based Framework
In general, a necessary condition for required concurrency
yields a sufficient condition for inherent sequentiality. Tem-
poral Gap is the prime example: for languages, temporal gap
is necessary for required concurrency and forbidding tempo-
ral gap is sufficient for inherent sequentiality. We extend this
kind of analysis to domains by strengthening the notion of
temporal gap, that is, giving a broader necessary condition
for required concurrency.

Consider some (executable) plan P , with dispatch times
t. Let <P be the causal orderings of P on threats, support-
ers, and conditions, so that x <P y holds if x must occur
before y. Further let <∗

P denote its transitive closure, which
is acyclic since P is executable. Let <′

P be the ordering
induced by <∗

P on action instances of P , so that A <′
P B

holds if x <∗
P y holds for effects or conditions x and y be-

longing to A and B, respectively. <′
P may not be acyclic

— A <′
P B <′

P A could hold for some pair (A,B) — if
and only if the plan P requires concurrency. That is, if <′

P
is acyclic, we can sequentialize P by simply strengthening
<′

P to a total order (and picking new dispatch times). Oth-
erwise, we have a conflict:

Definition 5 (Conflicting Action Pairs) Let (A,B) be a
pair of action instances in a plan P . Let {x, z} be condi-
tions or effects of A, and {y} by a condition or effect of
B. (A,B) conflict with respect to P ’s causal orderings if
x <∗

P y and y <∗
P z both hold. I.e., if B is required to start

or end in the middle of A, then (A,B) is a conflict.

Lemma 1 If a given plan P has no conflicts, then that plan
is inherently sequential. If every executable plan in a domain
has no conflicts, then that domain is inherently sequential.

Note that if two actions, A and B, both lack temporal
gap then their effects and conditions can only induce one
order for the pair: either A will completely proceed B or
vice versa. However, in analyzing domains, we find that
most actions do have temporal gap. Nonetheless, the rest of
such domains lack actions which can exploit these tempo-
ral gaps to produce plans with non-sequential structure. We
strengthen the temporal gap condition for these situations,
by generalizing from a local condition on actions to pairs of
actions. The idea is to prevent cycles in the order induced
on actions by ensuring that each action with temporal gap
cannot, in fact, have a predecessor or a successor along such
a cycle.

Definition 6 (AT START-causally independent) An action
A is AT START-causally independent if there cannot be a
direct causal ordering between the beginning of A and some
concurrent action:

1. For all AT START conditions x, there is no possibly con-
current action B with an effect y threatening x

2. For all AT START effects x, there is no possibly concurrent
action B with either a condition y supported by x nor an
effect y conflicting with x.

If an action is AT START-causally independent then it may
still participate in causal orderings: the restriction is that in
any plan, if the beginning of such an action must precede
some condition or effect, then so too must the end of that

action. Vice versa, if an action is AT END-causally inde-
pendent, then the restriction is that if the end of that action
must succeed some condition or effect, then so too must the
beginning of that action:

Definition 7 (AT END-causally independent) An action A
is AT END-causally independent if there cannot be a direct
causal ordering between the ending of A and some concur-
rent action:

1. For all AT END conditions x, there is no possibly concur-
rent action B with an effect y supporting x

2. For all AT END effects x, there is no possibly concurrent
action B with an effect y conflicting with x.

Note that an action lacking temporal gap must either be AT
START- or AT END- causally independent in the trivial sense:
one of the two endpoints will lack effects and conditions to
quantify over. As long as we can show that every action
has at least one endpoint which is causally independent of
all concurrent activity, then it is a relatively simple matter to
sequentialize any plan — simply insert appropriate delays
so that the order of the other endpoints are preserved.

Theorem 2 If every action in the domain is AT START-
causally independent or AT END-causally independent then
the domain is inherently sequential.

Proof sketch: For any plan, the ordering induced by a
causal-link proof on a pair of action instances is cycle-
free. Suppose not: consider some pair (A,B). Without
loss of generality, suppose x and z are AT START and AT
END elements of A, respectively, and that y is an element
of B, and that the plan causally orders these elements as:
x <∗

P y <∗
P z. For such an ordering to hold there must be

a transitive chain of direct causal orderings from x to y and
from y to z. Let the element closest to x and z in these chains
be ws and we. A is either AT START-causally independent,
contradicting x <P ws, or AT END-causally independent,
contradicting we <P z.

These definitions are more powerful than the notion of
temporal gap: applying these concepts to the Satellite do-
main allows one to show that every action is AT START-
causally independent. The only problematic cases are
concurrently modifying the state of power (switch on and
switch off ), or the direction the satellite points in (turn to
with different parameters), for which one needs to employ
the global knowledge that the satellite only points at a single
target or only has a single state of power at a time. Employ-
ing such global knowledge about fluents is awkward in this
model, as it must be repeatedly stated within the analysis of
every possibly concurrent pair of actions. A key insight is
that deep properties about the causal structure of domains
are naturally stated with respect to fluents, not actions. This
insight motivates the finer-grained framework developed in
the next section, which ultimately allows a straightforward
analysis of the benchmarks.

3.2 Element Based Framework
In this section we aim to split up the property of inherent
sequentiality into a conjunction of smaller properties over
fluents and the effects and conditions upon them. Ideally



the result would be a necessary and sufficient condition, re-
alistically, for the purposes of domain analysis, a reason-
ably tight sufficient condition is a success. In pursuit of this
goal, we up-front fix the strategy for converting between
concurrent and sequential versions of a plan. Specifically,
the rescheduling maintains the ordering of action start times.
In terms of the action-based approach, this is equivalent to
showing that every action is AT END-causally independent:
in this section we split up the property of AT END-causal
independence over the effects and conditions on individual
fluents.

Let an element of an action be an effect or condition of
that action. Consider some plan P , with dispatch times t.
Extend the domain of t to map every element of each action
instance to the time at which it begins to occur. Let s map
such elements to the start times of their containing action
instances.

The technique of sequentializing by start times produces
new dispatch times, t′, so that t′(x) < t′(y) if, and only if,
s(x) < s(y). Two elements conflict, in terms of sequen-
tializing, if the order in the concurrent plan (t(x) < t(y))
is causally important (x <P y) and different from the new
order (t′(x) > t′(y) ⇔ s(x) > s(y)).

Definition 8 (Conflict) Let x and y be elements of actions
instances in a plan which are causally ordered: x <P y.
I.e., x is either an effect supporting y, or y is an effect sup-
porting another condition and x was a threat which was de-
moted, or x is a condition and y was a threat which was
promoted (Chapman 1987).

We say that (x, y) is a conflict if s(x) > s(y).

If there are no conflicts, then sequentializing P by start
times succeeds. However, reasoning about potential con-
flicts in terms of pairs is awkward; thus, we rewrite the defi-
nition to assign blame to the later element.

Definition 9 (Conflict-free) An element y is conflict-free,
with respect to a plan, if for every x, (x, y) is not a conflict.

Definition 10 (Safe) An element is safe, if it is conflict-free
in every executable plan.

An action is safe if every element of that action is safe.

Observation 1 If every action in a domain is safe, then the
domain is inherently sequential.

The reverse direction is not true because we have fixed the
strategy for sequentializing plans.

Note that if an element is AT START or OVER ALL it is
trivially safe; an element is safe if it cannot possibly switch
places with something it is causally ordered after. If y is
causally ordered after x, then the actual and starting times of
y (which are the same) succeed both the actual and starting
times of x (since s(x) ≤ t(x)). Preserving start times then
preserves that causal ordering.

So we have succeeded in reducing the problem of prov-
ing a domain to be inherently sequential to the problem of
certifying that AT END elements of actions are safe. This
is still clearly not operational. However, with a little extra
knowledge about the domain one can avoid explicitly enu-
merating executable plans. It is helpful to split up the notion
of conflict-free over kinds of causal orderings:

Definition 11 (Threat-free) An effect y is threat-free, with
respect to plan P , when, for every conflicting effect x, if
s(y) ≤ t(x) < t(y) then s(x) < s(y)

Definition 12 (Interaction-free) An effect y is interaction-
free, with respect to plan P , when, for every threatened con-
dition x, if s(y) ≤ t(x) < t(y) then s(x) < s(y)

Definition 13 (Link-free) A condition y is link-free, with
respect to plan P , when, for every supporting effect x, if
s(y) ≤ t(x) < t(y) then s(x) < s(y)

We can now write a powerful tool for benchmark analysis:

Lemma 2 An effect y is safe if, and only if, it is threat-free
and interaction-free in every plan.

A condition y is conflict-free if, and only if, it is link-free
in every plan.

Proof Sketch: Note that if shrinking all the durations of
actions to 0 preserves the orderings of a causal-link proof,
then so does sequentializing by start times (and vice versa).
The orderings that must be preserved can then be split up
by quantifying over demoted threats (threat-free), promoted
threats (interaction-free), and causal links (link-free). In all
cases, if t(x) < s(y), then s(x) < s(y) holds, and if t(x) >
t(y) then it would be x that receives blame, not y. So the
search for conflicts with y can be restricted to the interval
[s(y), t(y)). 2

This lemma can be used to directly verify that many el-
ements of actions in the benchmarks are safe. As a trivial
case, consider:

Observation 2 In any of the benchmarks, the effect (at end
(increase (total-cost) <value>)) is safe.

Proof Sketch: Such an effect (in any plan) is interaction-
free, and threat-free, because the benchmarks never assert
conditions of any kind on “(total-cost)”, nor do the bench-
marks contain any effects which conflict with such increase
effects (i.e., decrease or assignment effects). By Lemma 2,
the result follows.2

Of course, Lemma 2 can also be applied in more complex
situations:

Observation 3 The effect “(at end (calibrated ?c ?r))” of
“(calibrate ?r ?c ?o ?w)” in Rovers is safe.

Proof Sketch: This effect is interaction-free in any plan be-
cause there are no negative preconditions in Rovers. There
is only one conflicting effect in the domain, “(at end (not
(calibrated ?c ?r)))”, and it belongs to the action take-image.
Suppose a take-image terminates in the middle of a cali-
brate. Then take-image starts earlier, since calibrate has a
duration of 5 and take-image has a duration of 7. So the ef-
fect “(at end (calibrated ?c ?r))” is threat-free. By Lemma 2
the result follows.2

4. Analyzing the Competition Domains
Theorem 3 Every temporal domain in IPC 2002, 2004,
2006 is inherently sequential.

A caveat: Theorem 3 only holds once several mod-
eling errors are repaired in the IPC domains (as ex-
plained below). Space precludes the presentation of the



proof, which consists of documenting that each element
of each action of 13 domains is safe (full details at
http://rakaposhi.eas.asu.edu/is-benchmarks.html). Instead
we discuss the sufficient conditions which allow us to
rapidly verify that each element is safe.

Lemma 2 easily supports simple useful knowledge about
the fluents in a domain, for example static and monotonic
(Observation 2) fluents are safe. In the following we de-
sign two language constructs to simplify the application of
more powerful knowledge concerning fluents: multi-valued
fluents and resources. For the benchmarks, the decompila-
tion process produces only OVER ALL elements (which are
trivially safe). In fact, if one applies a strong interpretation
of the intended physical systems behind each of the bench-
marks one can transform every element into an OVER ALL
element. Instead we leave the few oddities as-is and em-
ploy Lemma 2 to demonstrate that they are anyways safe.
E.g., Observation 3 demonstrates that the strange AT END
effect of calibrate is safe, but it would also be quite reason-
able to alter this effect into an OVER ALL effect. Of course,
PDDL 2.1.3 does not allow OVER ALL effects; below, we
define the meaning of OVER ALL effects on multi-valued flu-
ents and resources.

4.1 Multi-Valued Fluents
A fluent is a time-varying variable which takes values from
a domain. Boolean and numeric fluents are special cases,
and the only kind allowed within the syntax of PDDL 2.1.3.
Our analysis of the IPC domains shows that the concept
of a multi-valued fluent is abundant, in compiled form.
To support multi-valued fluents directly we write “==” to
check equality, “:=” to give assignments, and “–>” to give
changes, i.e., one row of a partial transition function. For
example:

(== (at ?rover) ?location)
is a condition on a fluent encoding the position of a rover,
verifying that the rover is at a particular location. The effect:

(:= (at ?rover) ?destination)
unilaterally assigns the location of the rover to a particu-
lar destination. Typically one cannot just teleport objects
around; instead, it is natural to write:

(–> (at ?rover) ?source ?destination)
This encodes one row of a partial transition function, that
is, when the effect is applied, the rover’s location transitions
from the source location to the destination location. If, how-
ever, the rover is not in fact at the source, then the whole ac-
tion is not executable. We will have no need of the obvious
generalization to partial transition functions with more than
one tuple in their domain, but for the sake of completeness,
one could model a toggle effect using some syntax such as:

(–> (status ?light-switch) (on off) (off on))
Whenever effects on multi-valued fluents are given OVER

ALL, then the meaning is that the effect is mutually exclusive
with any concurrent effect or condition upon the same fluent.
So we have:

Lemma 3 (OVER ALL effects on multi-valued fluents)
“(over all (–> f x y))” and “(over all (:= f y)” are safe.

Proof: “(over all (–> f x y))” is simultaneously a condition
and an effect; as a condition, it is trivially link-free since any

supporting effect precedes the beginning of the action. As an
effect, it is mutually exclusive with any effect or condition
occurring in the interval of the effect, which is the same as
the interval of the entire action, and so it is trivially threat-
free and interaction-free. Likewise, “(over all (:= f y)” is
trivially threat-free and interaction-free. By Lemma 2 the
result follows.2

(De-)Compiling Multi-valued Fluents Of course, the en-
tire reason PDDL 2.1.3 does not support multi-valued fluents
directly is that the method for compiling them out is more or
less obvious and certainly straightforward, especially in the
non-temporal case:

1. Represent a multi-valued f with domain D using a set of
boolean propositions {fv | v ∈ D}.

2. Represent a condition “(== f v)” as “fv”.

3. Represent an effect “(:= f v)” as “(and fv (forall x - D
(not fx)))”.

4. Represent a change “(–> f x y)” as the condition “fx”
and the effects “(and fy (not fx))”.

The temporal case requires more care. Of course, in-
stantaneous effects and conditions can be handled as in the
non-temporal case by simply transferring the appropriate
temporal annotation. PDDL 2.1.3 also supports OVER ALL
conditions, so the only difficulty lies in OVER ALL effects.
The typical solution to simulating the mutual exclusion is
to slightly modify the invariant of the compilation; instead
of exactly one boolean proposition from the set encoding f
holding at a time, the relaxation is that at most one holds.
This is achieved by labeling all deletes AT START and all
adds AT END:

1. “(over all (:= f v))” becomes “(and (at start (forall x - D
(not fx)) (at end fv)))”.

2. “(over all (–> f x y))” becomes a condition “(at start fx)”
and two effects “(and (at start (not fx)) (at end fy))”.

During the times when no value holds, f is said to be
undefined; careful inspection shows that no action which ac-
cesses or alters f can start or end in any period where f is
undefined. That is, the approach correctly simulates the mu-
tual exclusion. So, to analyze the benchmarks, one finds and
reverses the results of such compilations. For example:

Compiled
(:durative-action navigate
:parameters (?r - rover ?s ?d - waypoint)
:duration (= ?duration 5)
:conditions (and (at start (at ?r ?s)) . . . )
:effects (and (at start (not (at ?r ?s))) (at end (at ?r ?d)) . . . ))

Decompiled
(:durative-action navigate
:parameters (?r - rover ?s ?d - waypoint)
:duration (= ?duration 5)
:conditions (and . . . )
:effects (and (over all (–> (at ?r) ?s ?d)) . . . ))

In the decompiled form, it is easy to show that navigate is
safe (by Lemma 3). One could try to show that the AT END
effects of the compiled form are threat-free and interaction-
free — they are — but showing this requires no less than



Correct Benchmark
(:durative-action drop
:parameters (?r - rover ?s - store)
:duration (= ?duration 1)
:conditions (at start (store of ?s ?r))
:effects (over all (–> (amount ?s) full empty)))

(:durative-action drop
:parameters (?r - rover ?s - store)
:duration (= ?duration 1)
:conditions (and (at start (store of ?s ?r)) (at start (full ?s)))
:effects (and (at end (not (full ?s))) (at end (empty ?s))))

Figure 2: Models of emptying the storage of a planetary rover

inferring the invariant that at most one proposition in the
set encoding the multi-valued fluent can ever hold at a time,
which amounts to the same thing as decompiling the repre-
sentation.

The task of decompilation is greatly aided by hav-
ing a separate understanding of the physical domains be-
ing modeled; however, inferring multi-valued fluents from
propositional domains can be automatically performed as
well (Helmert 2006; Backstrom & Nebel 1995). An inter-
esting situation arises when there is a discrepancy between a
mechanical decompilation and the result of remodeling the
domain based on a separate understanding. For example,
consider Figure 2.

The benchmark version is not a result of compiling the
correct version of drop we give. The important distinction
is that the benchmark version allows a different rover with
access to the same store to concurrently empty it, because
over the duration of drop, the state of the storage remains
defined.3 In turn, this allows a sample action to start just
before the end of the second such drop to start, with the final
result being that the storage is simultaneously full and empty.
The mistake is that “(at end (not (full ?s)))” should have been
given AT START.

4.2 Resources
We follow prior work in extending PDDL 2.1.3 to represent
resources, borrowing the constructs of produce, consume,
and use (Bedrax-Weiss, McGann, & Ramakrishnan 2003).
A use effect is a temporary consumption of a resource: the
specified quantity is removed during the duration of the ef-
fect, but returned by the end. The opposite effect is to tem-
porarily produce a resource: the specified quantity is tem-
porarily available, but is removed by the end. We use lend
to denote this kind of resource effect. For example, the effect
of lighting a match can be modeled as:

(over all (lend (light)))
alternatively, “(light)” could count light sources:

(over all (lend (light) 1))
Within PDDL 2.1.3, resource effects must be compiled

out into increase and decrease effects at the appropriate
times. When the resource model is pessimistic, so that all
consumption happens as soon as possible, all production
happens as late as possible, all resource effects are overall,
and there are no lend effects, then the key observation is that
resources only serve to bound the amount of concurrency
possible: there is never an advantage to starting an action in

3For that matter, the very same rover could initiate the very
same drop action concurrently with itself. This is a “feature” of
PDDL 2.1.3.

the middle of another action. This can be formally stated in
the compiled form:

Observation 4 (AT START resource elements) An AT
START lower-bound on a resource, “(at start (≥ r v))”,
is trivially safe. So too is “(at start (decrease r v))”
(i.e., “(over all (consume r v))”), or any other AT START
resource element.

Lemma 4 (AT END increase) The effect “(over all (pro-
duce r v))”, that is, the effect “(at end (increase r v))” is
safe if:

1. Every condition on the resource r is a lower-bound
2. Every possibly concurrent effect is commutative

Corollary 1 (OVER ALL use) “(over all (use r v))” is safe
— it is equivalent to “(and (over all (produce r v)) (over all
(consume r v)))”, i.e., “(and (at start (decrease r v)) (at end
(increase r v)))”.

Proof Sketch: The concept of a causal-link proof is more
complicated in the presence of numeric fluents and com-
mutative effects. In particular, even though decrease and
increase conflict, if they are commutative and the increase
is helping to support a later lower-bound condition, then
switching the order of the increase and the decrease does
not alter the satisfaction of the condition. So the effect is
threat-free by commutativity. The effect is interaction-free
by assumption: there are no upper-bound conditions. By
Lemma 2, the result follows. 2

Upper-bounds on resources, i.e. capacity constraints, in-
troduce some difficulties, but can be converted into lower-
bounds by modeling the dual resource: the amount of avail-
able space (Fox & Long 2003, page 77). If both the re-
source and its dual are modeled pessimistically (decreases
and lower-bounds AT START, increases AT END), then all
of the elements on both will be safe, by the above argu-
ments. Boolean propositions may be resources as well when
the STRIPS bias holds: purely positive preconditions. How-
ever, while adds and deletes can be thought of increases and
decreases (in a clamping arithmetic), they are not commuta-
tive. When a dual resource is employed, c.f. “(full ?s)” and
“(empty ?s)” in Figure 2, then there are no possibly concur-
rent effects, so commutativity is moot. In these cases the flu-
ents can be shown to be safe using either an argument based
on multi-valued fluents or an argument based on resources.
For example, a (correct) resource encoding of drop is:

(:durative-action drop
:parameters (?r - rover ?s - store)
:duration (= ?duration 1)
:conditions (at start (store of ?s ?r))
:effects (and (over all (consume (amount ?s) 1))

(over all (produce (space ?s) 1))))



which becomes unit-capacity, and can be encoded with
booleans “(full ?s)” and “(empty ?s)” instead of “(amount
?s)” and “(space ?s)” (respectively), if the initial state al-
ways satisfies “(== (+ (amount ?s) (space ?s)) 1)”. From
this perspective the mistake in the benchmark is in putting
the wrong temporal annotation on the consume effect.

In fact, Rovers contains a separate resource modeling bug
in the recharge action. In particular, there is supposed to be
a capacity of 80 units on battery energy, however, one can in
fact achieve any arbitrary amount of energy. The mistake is
that the modeler forgot to model the dual resource of battery
energy: the available space for storing charge. This is very
easy to do, consider Figure 8 and the text of page 77 in the
JAIR article on PDDL 2.1.3 (Fox & Long 2003).

5. Required Concurrency in Real-World
Domains

Having shown that all domains (as opposed to problems) in
the previous competitions were temporally simple, we now
make an attempt to understand why that is so: is it the case
that required concurrency is merely a theoretical construct to
illustrate the power of the domain description language and
that the real world planning problems rarely exhibit required
concurrency? Or is it the case that while required concur-
rency merits to be part of competitive domains, its absence
was unintentional and was observed predominantly due to
historical/legacy reasons?

We argue that the latter is a more accurate description;
there exist many real world scenarios that require concur-
rency to solve. In our prior work we exhaustively identify
the mechanisms by which required concurrency may appear:
various patterns of temporal gap. These patterns include re-
quired concurrency introduced by compiling away interme-
diate effects, deadline goals, and exogenous events, as well
as all naturally occurring required concurrency. In the fol-
lowing we sketch some examples of real world scenarios re-
quiring concurrency — confirming that such domains exist,
i.e., the theory of requiring concurrency does more than just
draw a line in the sand.

5.1 Temporal Machine Shop : A New Benchmark
Recall that a Machine Shop domain involves several ma-
chines and different pieces that need to be worked upon.
Different machines are capable of performing different jobs
(e.g., painting, rolling, shaping, etc.). We add the following
actions to the domain.

Baking a ceramic Let us suppose we can make pottery:
the machine shop contains a kiln and machines for working
clay. To keep things simple, suppose the kiln can fire for 20
minutes at a time (and then it must be made ready again),
and that baking ceramic takes, in general, less time (and can
be put into and retrieved from the kiln while firing). In such
a scenario we need to be performing bake-ceramic concur-
rently with fire-kiln. If we have multiple pieces of pottery to
produce, then we can save costs by baking them altogether
— a subtlety which is lost by only modeling a combined
fire-kiln-and-bake-ceramic action. Using the notation devel-
oped in this paper for OVER ALL effects and resources, we
can model these actions as:

(:durative-action fire-kiln
:parameters (?k - kiln)
:duration (= ?duration 20)
:effect (and (over all (lend (firing ?k)))

(over all (–> (ready ?k) true false))

(:durative-action bake-ceramic
:parameters (?p - piece ?k - kiln)
:duration (= ?duration (bake-time ?p))
:condition (and (over all (firing ?k)) (over all (shaped ?p)))
:effect (over all (–> (baked ?p) false true)))

Ventilation In a similar vein if the task is to join two
pieces using epoxy, it can be important to concurrently ven-
tilate the area; both for the sake of the drying process as well
to mitigate the danger of inhaling toxic fumes. It is impor-
tant to ventilate an area while painting, as well, for exactly
the same reason.
Etc. There are many similar scenarios in the Temporal
Machine Shop domain requiring concurrency, and in sim-
ilar real world domains. For instance, heating a beaker
while adding chemical titrant (so the chemical reaction hap-
pens successfully), spraying cutting oil while milling, firing
a strobe in conjunction with a high speed camera, and so
forth.4

6. Compiling away Required Concurrency

We have seen several real-world problems demonstrating
required concurrency. However, we haven’t yet addressed
a fundamental question: “Does required concurrency make
planning for a domain any harder?” Whether the domain is
inherently sequential or has required concurrency, it is still
likely in the PSPACE complexity class, but that is a coarse
notion of difficulty.

Inherently sequential domains can be solved by: 1)
searching the space of sequential plans, 2) performing a
linear-time rescheduling step at each search node (to ac-
curately assess quality) (Cushing et al. 2007). One can
highly optimize this approach (Chen, Hsu, & Wah 2006;
Edelkamp 2003). One of the key optimizations is to per-
form this rescheduling incrementally. In fact, one can more
or less force a STRIPS planner to perform such incremental
rescheduling itself, by tracking the time at which proposi-
tions are added and deleted as part of the state information.
In Nebel’s notation this is a linear-time compilation scheme
that preserves plan-size exactly (Nebel 2000).

On the other hand, a 1-1 compilation from PDDL 2.1.3
into STRIPS is out of the question. At the very least one
needs a 1-2 compilation, that is, to split each durative ac-
tion into two pieces. Note that the planner suggested in our
prior work TEMPO performs a search in such a 1-2 space, but
that it must also employ additional complicated scheduling
inferences. In fact, the only accurate compilations we can
construct require actions to advance by “unit time”, i.e., an
exponential blowup in plan-size.

4We thank the anonymous reviewers for their input on required
concurrency in the real-world.



7. Lessons for the Planning Competition
In our prior work we showed that the planners winning
temporal planning competition, which are based on de-
cision epoch planning, are incomplete for any subset of
PDDL 2.1.3 that is able to model domains and problems
whose solutions require concurrency. Our results show that
the domains used in the temporal planning, while nominally
expressed in a syntactically rich language, are nevertheless
incapable of admitting problems that require concurrency.
Taken in combination, these paint a disappointing picture of
the current temporal planning competition. There are some
clear challenges being avoided by the current competition
and its contenders.

The divide in the temporal planning community between
the designers of PDDL 2.1.3 and the benchmark designers
and competition winners is rather stark. The designers of
PDDL 2.1.3 cite required concurrency as a motivation for
the features of the language, and indeed, the only domain ap-
pearing in the specification (light-match) does require con-
currency. As we showed, there is not a single benchmark
that requires concurrency. This has lead to the ironic sit-
uation that the winner of temporal planning competition,
SGPlan, outputs “no solution” when given the light-match
problem used in the PDDL 2.1.3 specification!

Why is it that competition benchmarks are temporally
simple? The best explanations we can come up with are: (a)
most of the domains were existing classical domains sim-
ply annotated with temporal information, and thus retained
the limitations of classical planning, i.e., inherent sequen-
tiality (b) the domains were developed by researchers who
were themselves working on specific temporal planners and
thus had a bias towards the ones that were solvable by their
own systems, and (c) all domains were written directly in
PDDL 2.1.3 (as opposed to written in complex languages
and compiled down) and PDDL 2.1.3 has its own limitations
in directly modeling many naturally occurring phenomena
(e.g., intermediate effects, actions whose durations can be
controlled).

There is not a dearth of planners capable of solving prob-
lems requiring concurrency: these planners search a much
larger space than their competitors, and so are easily de-
feated in the current competition. If the temporal planning
competition actually were to use benchmarks that model
problems requiring concurrency, the community would be
encouraged to recognize and improve upon the efficiency of
the expressive planners. In Section 5, we suggested a sim-
ple benchmark requiring concurrency; we hope the commu-
nity and the competition organizers will develop additional
benchmarks.

8. Conclusions
We set out to establish our speculation that the domains used
in the temporal tracks of the last three International Planning
Competitions did not require concurrency and hence were
equivalent to STRIPS domains. When we attempted to verify
these claims, we discovered that the domain models were
too complex for easy analysis. This led us to the following
contributions:

• Using an “action-based” framework, we derive a stronger

sufficient condition than temporal gap (Theorem 2) which
may be used to prove a domain inherently sequential.

• We refine this framework into an “element-based”
methodology which proves more useful.

• Using the element-based approach, we prove that all com-
petition domains are inherently sequential.

• We observe several design patterns in the existing do-
mains that are error-prone. We suggest extensions to the
PDDL 2.1.3 language to reduce the occurrence of such
bugs and ease the verification of domains.

• We argue that required concurrency is a necessary domain
construct that needs serious investigation. As a starting-
point we extend the Machine Shop benchmark with new
actions that yield required concurrency. We also list sev-
eral other real world scenarios where required concur-
rency plays an important role in domain modeling.

We conclude with recommendations for the next com-
petition, suggesting that it should incorporate a specific
required-concurrency subtrack to motivate researchers to
build systems which are powerful enough to handle this
complex class of planning problems.

Acknowledgments
We thank J. Benton, Minh B. Do, Maria Fox, David Smith, and
Menkes van den Briel for helpful discussions and feedback. We
also appreciate the useful comments of the anonymous reviewers.
Kambhampati’s research is supported in part by the NSF grant IIS–
308139, the ONR grant N000140610058 and by a Lockheed Mar-
tin subcontract TT0687680 to ASU as part of the DARPA Inte-
grated Learning program. Weld’s research is supported in part by
NSF grant IIS-0307906, ONR grants N00014-02-1-0932, N00014-
06-1-0147 and the WRF / TJ Cable Professorship.

References
Backstrom, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Bäckström, C. 1998. Computational aspects of reordering plans.
JAIR 9:99–137.
Bedrax-Weiss, T.; McGann, C.; and Ramakrishnan, S. 2003. For-
malizing resources for planning. In Workshop on PDDL, ICAPS.
Chapman, D. 1987. Planning for conjunctive goals. Artificial
Intelligence 32(3):333–377.
Chen, Y.; Hsu, C.; and Wah, B. 2006. Temporal planning using
subgoal partitioning and resolution in SGPlan. JAIR to appear.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. 2007.
When is temporal planning really temporal? In IJCAI.
Edelkamp, S. 2003. Taming numbers and duration in the model
checking integrated planning system. JAIR 20:195–238.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR 20:61–124.
Helmert, M. 2006. The fast downward planning system. JAIR
26:191–246.
Nebel, B. 2000. On the compilability and expressive power of
propositional planning formalisms. JAIR 12:271–315.
Penberthy, S., and Weld, D. 1994. Temporal planning with con-
tinuous change. In AAAI.
Younes, H., and Simmons, R. G. 2003. VHPOP: Versatile heuris-
tic partial order planner. JAIR 20:405–430.


