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Abstract
A crucial component in the curation of KB for a
scientific domain (e.g., materials science, foods
& nutrition, fuels) is information extraction
from tables in the domain’s published research
articles. To facilitate research in this direction,
we define a novel NLP task of extracting com-
positions of materials (e.g., glasses) from tables
in materials science papers. The task involves
solving several challenges in concert, such as
tables that mention compositions have highly
varying structures; text in captions and full pa-
per needs to be incorporated along with data
in tables; and regular languages for numbers,
chemical compounds and composition expres-
sions must be integrated into the model.

We release a training dataset comprising 4,408
distantly supervised tables, along with 1,475
manually annotated dev and test tables. We
also present DISCOMAT, a strong baseline
that combines multiple graph neural networks
with several task-specific regular expressions,
features, and constraints. We show that DIS-
COMAT outperforms recent table processing
architectures by significant margins. We re-
lease our code and data for further research on
this challenging IE task from scientific tables.

1 Introduction

Advanced knowledge of a science or engineering
domain is typically found in domain-specific re-
search papers. Information extraction (IE) from
scientific articles develops ML methods to auto-
matically extract this knowledge for curating large-
scale domain-specific KBs (e.g., (Ernst et al., 2015;
Hope et al., 2021)). These KBs have a variety of
uses: they lead to ease of information access by do-
main researchers (Tsatsaronis et al., 2015; Hamon
et al., 2017), provide data for developing domain-
specific ML models (Nadkarni et al., 2021), and
potentially help in accelerating scientific discover-
ies (Jain et al., 2013; Venugopal et al., 2021).

Significant research exists on IE from text of re-
search papers (see Nasar et al. (2018) for a survey),

but less attention is given to IE (often, numeric)
from tables. Tables may report the performance
of algorithms on a dataset, quantitative results of
clinical trials, or other important information. Of
special interest to us are tables that mention the
composition and properties of an entity. Such ta-
bles are ubiquitous in various fields such as food
and nutrition (tables of food items with nutritional
values, see Tables 1-4 in de Holanda Cavalcanti
et al. (2021) and Table 2 in Stokvis et al. (2021)),
fuels (constituents and calorific values, see Table
2 in Kar et al. (2022) and Beliavskii et al. (2022)),
building construction (components and costs, see
Table 4 in Aggarwal and Saha (2022)), materi-
als (constituents and properties, see Table 1 and
2 in Kasimuthumaniyan et al. (2020) and Table
4 in Keshri et al. (2022)), medicine (compounds
with weights in drugs, see Table 1 in Kalegari et al.
(2014)), and more.

In materials science (MatSci) articles, the details
on synthesis and characterization are reported in
the text (Mysore et al., 2019), while material com-
positions are mostly reported in tables (Jensen et al.,
2019b). A preliminary analysis of MatSci papers
reveals that ∼85%1 of material compositions and
their associated properties (e.g., density, stiffness)
are reported in tables and not text. Thus, IE from ta-
bles is essential for a comprehensive understanding
of a given paper, and for increasing the coverage
of resulting KBs. To this extent, we define a novel
NLP task of extraction of materials (via IDs men-
tioned in the paper), constituents, and their relative
percentages. For instance, Fig.1a should output
four materials A1-A4, where ID A1 is associated
with three constituents (MoO3, Fe2O3, and P2O5)
and their respective percentages, 5, 38, and 57.
A model for this task necessitates solving several
challenges, which are discussed in detail in Sec. 3.
While many of these issues have been investigated

1estimated by randomly choosing 100 compositions from
a MatSci database and checking where they are reported
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separately, e.g., numerical IE (Madaan et al., 2016),
unit extraction (Sarawagi and Chakrabarti, 2014),
chemical compound identification (Weston et al.,
2019), NLP for tables (Jensen et al., 2019b; Swain
and Cole, 2016a), solving all these in concert cre-
ates a challenging testbed for the NLP community.

Here, we harvest a distantly supervised training
dataset of 4,408 tables and 38,799 composition-
constituent tuples by aligning a MatSci database
with tables in papers. We also label 1,475 tables
manually for dev and test sets. We build a base-
line system DISCOMAT, which uses a pipeline of
a domain-specific language model (Gupta et al.,
2022), and two graph neural networks (GNNs),
along with several hand-coded features and con-
straints. We evaluate our system on accuracy met-
rics for various subtasks, including material ID pre-
diction, tuple-level predictions, and material-level
complete predictions. We find that DISCOMAT’s
GNN architecture obtains a 7-15 points increase in
accuracy numbers, compared to table processors
(Herzig et al., 2020; Yin et al., 2020), which lin-
earize the table for IE. Subsequent analysis reveals
common sources of DISCOMAT errors, which will
inform future research. We release all our data and
code2 for further research on this challenging task.

2 Related work
Recent works have developed neural models for
various NLP tasks based on tabular data, viz, tab-
ular natural language inference (Orihuela et al.,
2021; Minhas et al., 2022), QA over one or a cor-
pus of tables (Herzig et al., 2020; Yin et al., 2020;
Arik and Pfister, 2021; Glass et al., 2021; Pan et al.,
2021; Chemmengath et al., 2021), table orientation
classification (Habibi et al., 2020; Nishida et al.,
2017), and relation extraction from tables (Govin-
daraju et al., 2013; Macdonald and Barbosa, 2020).
Several recent papers study QA models—they all
linearize a table and pass it to a pre-trained lan-
guage model. For example, TAPAS (Herzig et al.,
2020) does this for Wikipedia tables to answer nat-
ural language questions by selecting table cells
and aggregation operators. TABERT (Yin et al.,
2020) and RCI (Glass et al., 2021) also use similar
ideas alongside some architectural modifications
to handle rows and columns better. TABBIE (Iida
et al., 2021) consists of two transformers that en-
code rows and columns independently, whereas
TAPEX uses encoder-decoder architecture using

2https://github.com/M3RG-IITD/DiSCoMaT

BART. TABBIE and TAPEX also introduce pre-
training over tables to learn table representations
better. Similar to our work, tables have also been
modeled as graphs for sequential question answer-
ing over tables (Müller et al., 2019). However, all
these works generally assume a fixed and known
structure of tables with the same orientation, with
the top row being the header row in all cases – an
assumption violated in our setting.
Orientation and semantic structure classifi-
cation: DeepTable (Habibi et al., 2020) is a
permutation-invariant neural model, which clas-
sifies tables into three orientations, while TabNet
(Nishida et al., 2017) uses RNNs and CNNs in a
hybrid fashion to classify web tables into five dif-
ferent types of orientations. INFOTABS (Gupta
et al., 2020) studies natural language inference on
tabular data via linearization and language models,
which has been extended to the multilingual set-
ting (Minhas et al., 2022), and has been combined
with knowledge graphs (Varun et al., 2022). Some
earlier works also focused on annotating column
types, entity ID cells, and pair of columns with
binary relations, based on rule-based and other ML
approaches, given a catalog (Limaye et al., 2010).

3 Challenges in composition extraction
from tables

We analyze numerous composition tables in
MatSci research papers (see Figures 1, 6 and 4 for
examples), and find that the task has several facets,
with many table styles for similar compositions.
We now describe the key challenges involved in
the task of composition extraction from tables.
• Distractor rows and columns: Additional
information such as material properties, molar
ratios, and std errors in the same table. E.g., in
Figure 1a, the last three rows are distractor rows.
• Orientation of tables: Table shown in Figure 4a
is a row oriented table—different compositions are
written in different rows. The table in Figure 1a is
a column-oriented table.
• Different units: Compositions can be in different
units such as mol%, weight%, mol fraction, weight
fraction. Some tables express composition in both
molar and mass units.
• Material IDs: Authors refer to different
materials in their publication by assigning them
unique IDs. These material IDs may not be
specified every time, (e.g., Fig. 1c).
• Single-cell compositions (SCC): In Fig. 1a, all
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Figure 1: Examples of composition tables (a) Multi-cell complete-info (Moguš-Milanković et al., 2003) (b) Multi-
cell partial-info with caption on top (Marmolejo et al., 1999) (c) Single-cell (Brehault et al., 2014)

compositions are present in multiple table cells.
Some authors report the entire composition in a
single table cell, as shown in Fig. 1c.
• Percentages exceeding 100: Sum of coefficients
may exceed 100, and re-normalization is needed.
A common case is when a dopant is used; its
amount is reported in excess.
• Percentages as variables: Contributions of
constituents may be expressed using variables like
x, y. In Fig. 6 (see App. A), x represents the mol%
of (GeBr4) and the 2nd row contains its value.
• Partial-information tables: It is also common
to have percentages of only some constituents
in the table; the remaining composition is to be
inferred based on paper text or table caption, e.g.,
Figure 1b. Another example: if the paper is on
silicate glasses, then SiO2 is assumed.
• Other corner cases: There are several other
corner cases like percentages missing from the
table, compounds with variables (e.g., R2O in the
header; the value of R to be inferred from material
ID), and highly unusual placement of information
(some examples in appendix).

4 Problem formulation

Our goal is automated extraction of material com-
positions from tables. Formally, given a table T ,
its caption, and the complete text of publication in
which T occurs, we aim to extract compositions ex-
pressed in T , in the form {(id, cidk , pidk , uidk )}K

id

k=1.
Here, id represents the material ID, as used in
the paper. Material IDs are defined by MatSci
researchers to succinctly refer to that composition
in text and other tables. cidk is a constituent ele-
ment or compound present in the material, Kid

is the total number of constituents in the material,
pidk > 0 denotes the percentage contribution of cidk
in its composition, and uidk is the unit of pidk (either
mole% or weight%). For instance, the desired out-
put tuples corresponding to ID A1 from Figure 1a
are (A1, MoO3, 5, mol%), (A1, Fe2O3, 38, mol%),

(A1, P2O5, 57, mol%).

5 Dataset construction

We match a MatSci DB of materials and compo-
sitions with tables from published papers, to au-
tomatically provide distantly-supervised labels for
extraction. We first use a commercial DB (NGF,
2019) of glass compositions with the respective
references. Then, we extract all tables from the
2,536 references in the DB using text-mining API
(els). We use a table parser (Jensen et al., 2019a)
for raw XML tables and captions. This results in
5,883 tables of which 2,355 express compositions
with 16,729 materials, and 58,481 (material ID,
constituent, composition percentage, unit) tuples.
We keep tables from 1,880 papers for training, and
the rest are split into dev and test (see Table 4b).

The DB does not contain information about the
location of a given composition in the paper – in
text, images, graphs, or tables. If present in a ta-
ble, it can appear in any column or row. Since we
do not know the exact location of a composition,
we use distantly supervised train set construction
(Mintz et al., 2009). First, we simply match the
chemical compounds and percentages (or equiva-
lent fractions) mentioned in the DB with the text in
a table from the associated paper. If all composi-
tion percentages are found in multiple cells of the
table, it is marked as MCC-CI (multi-cell composi-
tion with complete information). However, due to
several problems (see Appendix 3), it misses many
composition tables. To increase the coverage, we
additionally use a rule-based composition parser
(described below), but restricted to only those com-
pounds (CPD non-terminal in Figure 2) that appear
in the DB for this paper.

Our distant supervision approach obtains table-
level annotation (NC, SCC, MCC-PI, MCC-CI),
where a table is labeled as non-composition, sin-
gle/multi cell composition with partial/complete
information. It also obtains annotation for each
row or column into four labels: ID, composition,



constituent, and other. While training data is cre-
ated using distant supervision, dev and test sets
are hand annotated. We now explain the dataset
construction process in further detail.

Rule-based composition parser: The parser
helps find names of constituents from MCC ta-
bles, and also match full compositions mentioned
in SCC tables. Recall that in SCC tables, the full
composition expression is written in a single cell in
the row/column corresponding to each Material ID.
Such compositions are close to regular languages
and can be parsed via regular expressions.

CMP = PAT1 | PAT2 | PAT3

PATi = START CSTi (SEP CSTi)+ END

CST1 = NUM? W CPD
CSTt = CST1 (SEP CST1)∗

CST2 = (CSTt | OB CSTt CB) W NUM
CST3 = NUM W (CSTt | OB CSTt CB)

Figure 2: Regexes in parser

Figure 2
shows the reg-
ular expression
(simplified, for
understand-
ability) used
by the parser.
Here CMP

denotes the matched composition, PATs are the
three main patterns for it, CSTs are sub-patterns,
CPD is a compound, NUM is a number, and
OB and CB are, respectively, open and closed
parentheses (or square brackets). W is zero or
more whitespace characters, and SEP contains
explicit separators like ‘-’ or ‘+’. START and END
are indicators to separate a regular expression from
the rest of the text.

The first pattern parses simple number-
compound expressions like 40Bi2O3 * 60B2O3.
Here each of the two constituents will match with
CST1. The other two patterns handle nested com-
positions, where simple expressions are mixed in
a given ratio. The main difference between the
second and third patterns is in the placement of
outer ratios – after or before the simple compo-
sition, respectively. Example match for PAT2 is
(40Bi2O3+60B2O3)30 - (AgI+AgCl)70, and for
PAT3 is 40Bi2O3,40B2O3,20(AgI:2AgCl).

To materialize the rules of the rule-based com-
position parser, we pre-label compounds. For our
dataset, we use a list-based extractor, though other
chemical data extractors (Swain and Cole, 2016b)
may also be used. After parsing, all coefficients are
normalized so that they sum to hundred. For nested
expressions, the outer ratio and the inner ones are
normalized separately and then multiplied.

The compositions parsed by rule-based composi-
tion parser are then matched with entries in the DB.
A successful matching leads to a high-quality anno-

tation of composition expressions in these papers.
If this matching happens: (i) in a single cell, the
table is deemed as SCC, (ii) on caption/paper text
that has an algebraic variable (or compound) found
in the table, it is marked as MCC-PI (see Figure
1(b)). In case of no matching, the table is marked
as NC. This automatic annotation is post-processed
into row, column and edge labels.

One further challenge is that material IDs men-
tioned in papers are not provided in the DB. So, we
manually annotate material IDs for all the identified
composition tables in the training set. This leads to
a train set of 11,207 materials with 38,799 tuples
from 4,408 tables. Since the train set is distantly su-
pervised and can be noisy, two authors (one of them
is a MatSci expert) of this paper manually anno-
tated the dev and test tables with row/column/edge
labels, units, tuples, compositions, and table type,
resulting in over 2,500 materials and over 9,500
tuples per set. We used Cohen’s Kappa measure for
identifying inter-annotator agreement, which was
86.76% for Glass ID, 98.47% for row and column
labels, and 94.34% for table types. Conflicts were
resolved through mutual discussions. Further statis-
tics and the description of the developed in-house
annotation tools used for manual annotations are
discussed in A.2.

6 DISCOMAT architecture

Figure 3: The design of DISCOMAT

Figure 3 illustrates the basic pipeline for extrac-
tion in DISCOMAT. We find that the simplest task
is to identify whether the table T is an SCC ta-
ble, owing to the distinctive presence of multiple
numbers, and compounds in single cells. DISCO-
MAT first runs a GNN-based SCC predictor, which
classifies T as an SCC table or not. For the SCC
table, it uses the rule-based composition parser
(described in Sec. 5). For the other category, DIS-
COMAT runs a second GNN (GNN2), and labels
rows and columns of T as compositions, material
IDs, constituents, and others. If no constituents
or composition predictions are found, then T is



deemed to be a non-composition (NC) table. Else,
it is an MCC table, for which DISCOMAT predicts
whether it has all information in T or some infor-
mation is missing (partial-information predictor).
If it is a complete information table, then GNN2’s
predictions are post-processed into compositions.
If not, the caption and text of the paper are also
processed, along with GNN2’s predictions leading
to final composition extraction. We note that our
system ignores statistically infrequent corner cases,
such as single-cell partial information tables – we
discuss this further in our error analysis. We now
describe each of these components, one by one.

6.1 GNN1 and GNN2 for table processing

At the core of DISCOMAT are two GNNs that learn
representations for each cell, row, column and the
whole table. Let table T has R rows, C columns,
and text at (i, j)th cell be tij , where 1 ≤ i ≤ R,
and 1 ≤ j ≤ C. We construct a directed graph
GT = (VT , ET ), where VT has a node for each
cell (i, j), one additional node for each row and
column, denoted by (i, 0) and (0, j), respectively,
and one node for the whole table represented by
(0, 0). There are bidirectional edges between two
nodes of the same row or column. All cell nodes
have directed edges to the table node and also their
corresponding row and column nodes. The table,
row, and column embeddings are randomly initial-
ized with a common vector, which gets trained
during learning. A node (i, j)’s embedding −→xij is
initialized by running a language model LM over
tij .

As constructed, GT is permutation-invariant,
i.e., if we permute rows or columns, we get the
same graph and embeddings. However, initial
rows/columns can be semantically different, since
they often represent headings for the subsequent
list. For instance, material IDs are generally men-
tioned in the first one or two rows/columns of the
table. So, we additionally define index embeddings
−→pi to represent a row/column numbered i. We use
the same index embeddings for rows and columns
so that our model stays transpose-invariant. We
also observe that while first few indices are dif-
ferent, the semantics is generally uniform for in-
dices higher than 3. Accordingly, to allow DIS-
COMAT to handle large tables, we simply use
−→pi = −→p3 ∀i > 3. Finally, any manually-defined
features added to each node are embedded as

−→
f

and concatenated to the cell embeddings. Com-

bining all ideas, a cell embedding is initialized as:

−→xij =
−→
fij || (LMCLS(⟨CLS tij SEP ⟩)+−→pi+−→pj )

Here, 1 ≤ i ≤ R, 1 ≤ j ≤ C. || is the concat oper-
ation and LMCLS gives the contextual embedding
of the CLS token after running a LM over the
sentence inside ⟨⟩. Message passing is run on the
graph GT using a GNN, which computes a learned
feature vector

−→
h for every node:

{
−→
hij}(R,C)

i,j=(0,0) = GNN
(
{−→xij}(R,C)

i,j=(0,0)

)
.

6.2 SCC Predictor

In its pipeline, DISCOMAT first classifies whether
T is an SCC table. For that, it runs a GNN (named
GNN1) on T with two manually defined features
(see below). It then implements a Multi-layer Per-
ceptron MLP1 over the table-level feature vector−→
h00 to make the prediction. Additionally, GNN1

also feeds row and column vectors
−→
hi0 and

−→
h0j

through another MLP (MLP2) to predict whether
they contain material IDs or not. If T is predicted as
an SCC table, then one with the highest MLP2 prob-
ability is deemed as material ID row/column (pro-
vided probability > α, where α is a hyper-parameter
tuned on dev set), and its contents are extracted as
potential material IDs. If all row and column prob-
abilities are less than α, then the table is predicted
to not have Material IDs, as in Figure 1c.

For an SCC table, DISCOMAT must parse the
full composition expression written in a single cell
in the row/column corresponding to each Material
ID, for which it makes use of the rule-based compo-
sition parser (as described in Section 5). The only
difference is that at test time there is no DB avail-
able and hence extracted compositions cannot be
matched with further. Consequently, DISCOMAT
retains all extracted composition expresssions from
the parser for further processing.

For units, DISCOMAT searches for common
unit keywords such as mol, mass, weight, and their
abbreviations like wt.%, and at.%. The search is
done iteratively with increasing distance from the
cell containing the composition. If not found in
the table, then the caption is searched. If still not
found, mole% is used as default.

Manual Features: GNN1 uses two hand-coded
features. The first feature is set to true if that cell
contains a composition that matches our rule-based
composition parser. Each value, true or false, is
embedded as −→o . The second feature named max



frequency feature adds the bias that material IDs
are generally unique in a table. We compute qri and
qcj , which denote the maximum frequency of any
non-empty string occurring in the cells of row i and
column j, respectively. If these numbers are on the
lower side, then that row/column has more unique
strings, which should increase the probability that
it contains material IDs. The computed q values are
embedded in a vector as −→q . The embedded feature−→
fij for cell (i, j) is initialized as −→oij || (

−→
qrij +

−→
qcij).

6.3 MCC-CI and MCC-PI Extractors

If T is predicted to not be an SCC table, DISCO-
MAT runs it through another GNN (GNN2). The
graph structure is very similar to GT from Sec-
tion 6.1, but with two major changes. First, a new
caption node is created with initial embedding as
given by LM processing the caption text. Edges
are added from the caption node to all row and col-
umn nodes. To propagate the information further
to cells, edges are added from row/column nodes
to corresponding cell nodes. The caption node es-
pecially helps in identifying non-composition (NC)
tables. Second, the max frequency feature from
Section 6.2 is also included in this GNN.

We use tables in Figure 4 as our running exam-
ples. While Figure 4a is a complete-information ta-
ble, Figure 4b is not, and can only be understood in
the context of its caption, which describes the com-
position as [(Na2O)x(Rb2O)1−x]y(B2O3)1−y.
Here x and y are variables, which also need to
be extracted and matched with the caption. DIS-
COMAT first decodes the row and column feature
vectors

−→
hi0 and

−→
h0j , as computed by GNN2, via an

MLP3 into four classes: composition, constituent,
ID, and other (label IDs 1, 2, 3, 0, respectively).
The figures illustrate this labelling for our running
example. The cell at the intersection of composi-
tion row/column and constituent column/row repre-
sents the percentage contribution of that constituent
in that composition.

Further, to associate the identified percentage
contribution with the corresponding constituent
(like P2O5 in Figure 4a) or variables x and y in Fig-
ure 4b), we perform classification at the edge level.
For ease of exposition, we describe our method in
this Section 6.3 for the setting that the table has
been predicted by GNN2 to have row-wise orienta-
tion, i.e., rows are compositions and columns are
constituents. A transposed computation is done
in the reverse case. Since the constituent/variable

Figure 4: Multi-cell composition tables (a) Complete
information (Koudelka et al., 2014) (b) Partial informa-
tion (Epping et al., 2005)

will likely occur in the same column or row as
the cell containing percentage contribution, our
method computes an edge feature vector: for edge
e = (i, j) → (i′, j′), s.t. i = i′∨j = j′, the feature
vector

−→
he =

−→
hij ||

−−→
hi′j′ . It then takes all such edges

e from cell (i, j), if row i is labeled composition
and column j is labeled constituent. Each edge e
is classified through an MLP4, and the edge with
the maximum logit value is picked to identify the
constituent/variable. This helps connect 36 to P2O5

and 0.8 to x in our running examples. GNN2 also
helps in predicting NC tables. In case none of the
rows/columns are predicted as 1 or 2, then the table
is deemed as NC and discarded.

Partial information table predictor: Next,
DISCOMAT distinguishes between complete-
information (CI) and partial-information (PI) MCC
tables. It uses a logistic regression model with
custom input features for this prediction task. Let
P and Q be the sets of all row indices with label
1 (composition) and column indices with label 2
(constituent), respectively. Also, assume nij is the
number present in table cell (i, j) or 0 if no number
is present. To create the features, we first extract
all the constituents (compounds) and variables pre-
dicted by MLP4. We now construct five table-level
features (F1-F5). F1 and F2 count the number
of unique variables and chemical compounds ex-
tracted by MLP4. The intuition is that if F1 is high,
then it is more likely an MCC-PI, and vice-versa if
F2 is high. F3 computes the number of rows and
columns labeled as 2 (constituent) by MLP3. The
more the value of F3, the more likely it is that the
table is MCC-CI. Features F4 (and F5) compute
the maximum (average) of the sum of all extracted
compositions. The intuition of F4 and F5 is that the



higher these feature values, the higher the chance
of the table being an MCC-CI. Formally,

F4 = (max
i∈P

∑
j∈Q

nij) F5 = (
1

|P |
∑
i∈P

∑
j∈Q

nij).

MCC table extractor: For MCC-CI, MLP3 and
MLP4 outputs are post-processed, and units are
added (similar to SCC tables), to construct final
extracted tuples. For MCC-PI, on the other hand,
information in the text needs to be combined with
the MLP outputs for final extraction. The first step
here is to search for the composition expression,
which may be present in the table caption, table
footer, and if not there, somewhere in the rest of
the research paper. Here, DISCOMAT resorts to us-
ing our rule-based composition parser from Figure
2, but with one key difference. Now, the compo-
sition may contain variables (x, y) and even math-
ematical expressions like 100− x. So the regular
grammar is enhanced to replace the non-terminal
NUM with a non-terminal EXPR, which represents,
numbers, variables, and simple mathematical ex-
pressions over them. An added constraint is that
if there are variables in set Q, then those variables
must be present in the matched composition expres-
sion. DISCOMAT completes the composition by
substituting the variable values from every compo-
sition row into the matched composition. There
may be other types of MCC-PI tables where only
compounds are identified in tables, such as Figure
1b. For these, DISCOMAT first computes the con-
stituent contributions in terms of variables from
the composition expression, and then equates it
with the numbers present in rows/columns labeled
1 (composition). In our example, DISCOMAT
matches x with the numbers 10, 20, 30, and 40,
and the rest of the composition is extracted by pro-
cessing the composition expression in the caption
with these values of x. Units and material IDs are
added to the tuples, similar to other tables.

6.4 Constraint-aware loss functions
DISCOMAT needs to train the two GNNs and the
PI table predictor. Our data construction provides
gold labels for each prediction task (discussed in
the next section), so we train them component-
wise. The PI table predictor is trained on stan-
dard logistic regression loss. GNN1 is trained on
a weighted sum of binary cross entropy loss for
SCC table classification and row/column classifica-
tion for material IDs – weight is a hyper-parameter.

Similarly, the GNN2 loss function consists of the
sum of row/column cross-entropy and edge binary
cross-entropy losses.

GNN2 has a more complex prediction problem
since it has to perform four-way labeling for each
row and column. In initial experiments, we find
that the model sometimes makes structural errors
like labeling one row as a constituent and another
row as a composition in the same table – highly
unlikely as per the semantics of composition tables.
To encourage GNN2 to make structurally consis-
tent predictions, we express a set of constraints on
the complete labelings, as follows. (1) A row and
a column cannot both have compositions or con-
stituents. (2) Composition and material ID must be
orthogonally predicted (i.e, if a row has a compo-
sition then ID must be predicted in some column,
and vice versa). (3) Constituents and material IDs
must never be orthogonally predicted (if rows have
constituents then another row must have the ID).
And, (4) material ID must occur at most once for
the entire table. As an example, constraint (1) can
be expressed as a hard constraint as:

ri = l ⇒ cj ̸= l ∀i ∈ {1, . . . , R}, j ∈
{1, . . . , C}, l ∈ {1, 2}.

Here, ri and cj are predicted labels of row i and
column j. We wish to impose these structural con-
straints at training time so that the model is trained
to honor them. We follow prior work by Nandwani
et al. (Nandwani et al., 2019), to first convert these
hard constraints into a probabilistic statement. For
example, constraint (1) gets expressed as:

P (ri = l; θ) + P (cj = l; θ)− 1 ≤ 0
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}, l ∈ {1, 2}.

θ represents GNN2’s parameters. Following
the same work, each such constraint gets con-
verted to an auxiliary penalty term, which gets
added to the loss function for constraint-aware
training. The first constraint gets converted
to: λ

∑R
i=1

∑C
j=1

∑2
l=1max(0, P (ri = l; θ) +

P (cj = l; θ)− 1).
This and similar auxiliary losses for other con-
straints (App. A.1) get added to the GNN2’s loss
function for better training. λ is a hyper-parameter.
We also use constraint (4) for GNN1 training.

7 Experiments

Baseline models: We implement DISCOMAT
with LM as MATSCIBERT (Gupta et al., 2022),
and the GNNs as Graph Attention Networks



(Veličković et al., 2018). We compare DISCO-
MAT with six non-GNN baseline models. Our first
baseline is TAPAS (Herzig et al., 2020), a state-
of-the-art table QA system, which flattens the ta-
ble, adds row and column index embeddings, and
passes as input to a language model. To use TaPas
for our task, we use table caption as a proxy for
the input question. All the model parameters in
this setting are initialized randomly. Next, we use
TABERT (Yin et al., 2020), which is a pretrained
LM that jointly learns representations for natural
(NL) sentences and tables by using pretraining ob-
jectives of masked column prediction (MCP) and
cell value recovery (CVR). It finds table cell embed-
dings by passing row linearizations concatenated
with the NL sentence into a language model and
then applying vertical attention across columns for
information propagation. Finally, we use TABBIE,
which is pretrained by corrupt cell detection and
learns exclusively from tabular data without any
associated text, unlike the previous baselines. Ad-
ditionally, we replace the LM of all models with
MATSCIBERT to provide domain-specific embed-
dings to obtain the respective ADAPTED versions.
We also implement a simple rule-based baseline
for MCC-CI and NC tables. The baseline identi-
fies constituent names using regex matching and
a pre-defined list of compounds, extracts numbers
from cells and finds the units using simple heuris-
tics to generate the required tuples. Further details
on baselines is provided in App. A.3.

Evaluation metrics: We compute several met-
rics in our evaluation. (1) Table-type (TT) predic-
tion accuracy – it computes table-level accuracy on
the 4-way table classification as NC, SCC, MCC-
CI and MCC-PI. (2) ID F1 score computes F1 score
for Material ID extraction. (3) Tuple-level (TL) F1

score evaluates performance on the extraction of
composition tuples. A gold is considered match-
ing with a predicted 4-tuple if all arguments match
exactly. (4) Material-level (MatL) F1 score is the
strongest metric. It evaluates whether all predicted
information related to a material (including its ID,
all constituents and their percentages) match ex-
actly with the gold. Finally, (5) constraint viola-
tions (CV) counts the number of violations of hard
constraints in the prediction. We consider all four
types of constraints, as discussed in Section 6.4.
Implementation details are mentioned in App. A.4.

7.1 Results

How does table linearization compare with a graph-
based model for our task? To answer this question,
we compare DISCOMAT with four models that use
linearization: TAPAS, TABERT, and their adapted
versions. TAPAS and TABERT do table level and
row level linearizations respectively. Since the
baselines do not have the benefit of regular expres-
sions, features, and constraints, we implement a
version of our model without these, which we call
V-DISCOMAT. We do this comparison, trained and
tested only on the subset of MCC-CI and NC tables
since other table types require regular expressions
for processing. As shown in Table 1 V-DISCOMAT
obtain 6-7 pt higher F1 on TL and MatL scores.
Moreover, compared to the RULE BASED SYSTEM,
DISCOMAT obtains upto 17 points improvement
in the MatL F1 score. This experiment suggests
that a graph-based extractor is a better fit for our
problem – this led to us choosing a GNN-based
approach for DISCOMAT.

How does DISCOMAT perform on the complete
task? Table 2, reports DISCOMAT performance on
the full test set with all table types. Its ID and tuple
F1-scores are 82 and 70, respectively. Since these
errors get multiplied, unsurprisingly, its material-
level F1-score is lower (63.5). Table 3 reports DIS-
COMAT performance for different table types. In
this experiment, we assume that the table type is
already known and run only the relevant part of
DISCOMAT for extraction. We find that MCC-PI
is the hardest table type since it requires combin-
ing information from text and tables for accurate
extraction. A larger standard deviation in ID F1 for
MCC-PI is attributed to the fact that material IDs
occur relatively rarely for this table type – the test
set for MCC-PI consists of merely 20 material ID
rows and columns.

What is the incremental contribution of task-
specific features and constraints? Table 2 also
presents the ablation experiments. DISCOMAT
scores much higher than V-DISCOMAT, which
does not have these features and constraints. We
also perform additional ablations removing one
component at a time. Unsurprisingly constrained
training helps with reducing constraint violations.
Both constraints and features help with ID pre-
diction, due to constraints (2), (3), (4) and max
frequency feature. Removal of caption nodes sig-
nificantly hurts performance on MCC-PI tables, as
these tables require combining caption with table



Model ID F1 TL F1 MatL F1 CV

TAPAS 80.37 (± 4.78) 71.23 (± 0.77) 49.88 (± 0.10) 543.67
TAPAS-ADAPTED 89.65 (± 0.46) 70.91 (± 3.79) 57.88 (± 2.73) 490.33
TABERT 79.61 (± 8.25) 58.20 (± 1.79) 47.05 (± 1.50) 1729.67
TABERT-ADAPTED 85.07 (± 6.28) 59.31 (± 0.67) 50.10 (± 2.86) 1195.67
TABBIE 80.99 (± 2.41) 50.90 (± 3.34) 47.03 (± 2.14) 388.00
TABBIE-ADAPTED 80.18 (± 5.38) 53.20 (± 5.57) 48.89 (± 2.73) 728.67
RULE BASED SYSTEM 72.64 54.44 47.38 0
V-DISCOMAT 77.38 (± 12.21) 76.52 (± 2.37) 64.71 (± 3.45) 626.33

Table 1: Performance of V-DISCOMAT vs baseline models on the subset of data containing only MCC-CI and NC
table types.

Model TT Acc. ID F1 TL F1 MatL F1 CV

DISCOMAT 88.35 (± 1.20) 84.57 (± 2.16) 70.04 (± 0.69) 63.53 (± 1.45) 75.22

DISCOMAT w/o features 88.84 (± 1.00) 84.15 (± 1.61) 68.31 (± 1.45) 62.47 (± 1.98) 83.11
DISCOMAT w/o constraints 88.47 (± 0.31) 84.07 (± 0.83) 69.68 (± 1.21) 61.44 (± 1.00) 434.44
DISCOMAT w/o captions 87.35 (± 0.71) 84.76 (± 0.68) 66.82 (± 1.90) 62.68 (± 3.33) 17.89
V-DISCOMAT 88.59 (± 0.33) 76.61 (± 6.16) 66.15 (± 2.00) 59.52 (± 3.33) 380.11

Table 2: Contribution of task-specific features and constraints in DISCOMAT on the complete dataset.

Table Type ID F1 TL F1 MatL F1

SCC 88.81 (± 1.54) 79.89 (± 0.18) 78.21 (± 0.14)
MCC-CI 93.91 (± 1.46) 77.62 (± 1.07) 65.41 (± 4.35)
MCC-PI 70.67 (± 11.58) 50.60 (± 2.59) 51.66 (± 2.21)

Table 3: DISCOMAT performance on the table-types.

cells. Although the ablation study done by remov-
ing features, constraints, and captions individually
does not show much of a difference on the tuple-
level and material-level scores, we observe that
on removing all the three factors, the performance
of V-DISCOMAT drops significantly. Therefore,
we can conclude that even though each compo-
nent is improving the performance of DISCOMAT
marginally, collectively, they help us to achieve
significant gains.

What are the typical errors in DISCOMAT?
The confusion matrix in Figure 5 suggests that
most table-type errors are between MCC-PI and
NC tables. This could be attributed to the fol-
lowing reasons. (i) DISCOMAT has difficulty
identifying rare compounds like Yb2O3, ErS3/2,
Co3O4 found in MCC-PI—these aren’t present
frequently in the training set. (ii) MCC-PI ta-
bles specify dopant percentages found in small
quantities. (iii) Completion of composition in
MCC-PI tables may require other tables from the
same paper. (iv) Finally, MCC-PI composition
may contain additional information such as prop-
erties that may bias the model to classify it as
NC. Some corner cases are given in App. A.6.

Figure 5: Confusion matrix
for all table types

8 Conclusions
We define the novel
and challenging task
of extracting ma-
terial compositions
from tables in sci-
entific papers. This
task has importance
beyond material sci-
ence, since many
other scientific disciplines use tables to express
compositions in their domains. We harvest a
dataset using distant supervision, combining infor-
mation from a MatSci DB with tables in respective
papers. We present a strong baseline system DIS-
COMAT, for this task. It encodes tables as graphs
and trains GNNs for table-type classification. Fur-
ther, to handle incomplete information in PI tables,
it includes the text associated with the tables from
respective papers. To handle domain-specific reg-
ular languages, a rule-based composition parser
helps the model by extracting chemical compounds,
numbers, units, and composition expressions. We
find that our DISCOMAT baseline outperforms
other architectures that linearize the tables by huge
margins. In the future, our work can be extended to
extract material properties that are also often found
in tables. The code and data are made available in
the GitHub repository of this work.

https://github.com/M3RG-IITD/DiSCoMaT


Acknowledgements

N. M. Anoop Krishnan acknowledges the funding
support received from SERB (ECR/2018/002228),
DST (DST/INSPIRE/04/2016/002774), BRNS
YSRA (53/20/01/2021-BRNS), ISRO RESPOND
as part of the STC at IIT Delhi. Mohd Zaki ac-
knowledges the funding received from the PMRF
award by Government of India. Mausam acknowl-
edges grants by Google, IBM, Verisk, and a Jai
Gupta chair fellowship. He also acknowledges
travel support from Google and Yardi School of AI
travel grants. The authors thank the High Perfor-
mance Computing (HPC) facility at IIT Delhi for
computational and storage resources.

Limitations and outlook

DISCOMAT is a pipelined solution trained
component-wise. This raises a research question:
can we train one end-to-end trained ML model that
not only analyzes a wide variety of table structures
but also combines the understanding of regular ex-
pressions, extraction of chemical compounds and
scientific units, textual understanding and some
mathematical processing? This defines a challeng-
ing ML research question and one that can have a
direct impact on the scientific MatSci community.
Indeed, automating parts of scientific discovery
through such NLP-based approaches has the po-
tential for biases and errors. Note that wrong and
biased results can lead to erroneous information
about materials. To a great extent, this issue is
addressed as we rely only on published literature.
The issue could be further addressed by considering
larger datasets covering a wider range of materials.
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A Appendix

Figure 6: Percentages as variables (Uemura et al., 2001)

A.1 Constraint-aware training

As discussed in Section 6.4, to encourage GNN2

to make structurally consistent predictions, we ex-
press a set of constraints on the complete labeling
as follows. (1) A row and a column cannot both
have compositions or constituents. (2) Composi-
tion and material ID must be orthogonally predicted
(i.e., if a row has a composition, then the ID must
be predicted in some column, and vice versa). (3)
Constituents and material IDs must never be orthog-
onally predicted (that is, if rows have constituents,
then another row in the table must have the ID).
And, (4) material ID must occur at most once for
the entire table. Let ri and cj be the predicted la-
bels of row i and column j. Further, let θ represent
GNN2’s parameters.

Constraint (1) is expressed as a hard constraint
by:

ri = l ⇒ cj ̸= l
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}, l ∈ {1, 2}.

The equivalent probabilistic statement is:

P (ri = l; θ) + P (cj = l; θ)− 1 ≤ 0
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}, l ∈ {1, 2}.
Constraint (2) can be written in the form of hard

constraints as:

ri1 = 1 ⇒ ri2 ̸= 3 ∀i1, i2 ∈ {1, . . . , R}, i1 ̸= i2.

cj1 = 1 ⇒ cj2 ̸= 3 ∀j1, j2 ∈ {1, . . . , C}, j1 ̸= j2.

Equivalent probabilistic statements are:

P (ri1 = 1; θ) + P (ri2 = 3; θ)− 1 ≤ 0
∀i1, i2 ∈ {1, . . . , R}, i1 ̸= i2.

P (cj1 = 1; θ) + P (cj2 = 3; θ)− 1 ≤ 0
∀j1, j2 ∈ {1, . . . , C}, j1 ̸= j2.

We write constraint (3) in a hard constraint form
as:

ri = l ⇒ cj ̸= 5− l
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}, l ∈ {2, 3}.

The equivalent probabilistic statement is:

P (ri = l; θ) + P (cj = 5− l; θ)− 1 ≤ 0
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}, l ∈ {2, 3}.
Finally, hard versions of constraint (4) can be

stated as:

ri1 = 3 ⇒ ri2 ̸= 3 1 ≤ i1 < i2 ≤ R.

cj1 = 3 ⇒ cj2 ̸= 3 1 ≤ j1 < j2 ≤ C.

ri = 3 ⇒ cj ̸= 3 ∀i ∈ {1, . . . , R}, j ∈
{1, . . . , C}.

Equivalent probabilistic statements are:

P (ri1 = 3; θ) + P (ri2 = 3; θ)− 1 ≤ 0
1 ≤ i1 < i2 ≤ R.

P (cj1 = 3; θ) + P (cj2 = 3; θ)− 1 ≤ 0
1 ≤ j1 < j2 ≤ C.

P (ri = 3; θ) + P (cj = 3; θ)− 1 ≤ 0
∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}.

As explained in Section 6.4, we convert all these
probabilistic statements to an auxiliary penalty
term, which gets added to the loss function.

A.2 Dataset details
We use the INTERGLAD V7.0 (Interglad) database
(NGF, 2019) for annotating our training set as de-
scribed in Section 7. Since the Interglad database
is not publicly available, we use SciGlass (Epam)
database (released under Open Database License)
as a proxy for Interglad in the shared code. Inter-
glad contains 12634 compositions corresponding
to the publications in our training set. However,
SciGlass contains only 2347 compositions of these
publications. Hence, the code provided by us can
annotate a subset of the training data only. How-
ever, we do provide training data annotated using
the Interglad database for reproducing the results
of DISCOMAT for training and evaluation. Also,
anyone with Elsevier and Interglad subscriptions
can replicate our training set (by replacing SciGlass
database files with Interglad database files).

We have manually annotated the val and test set,
due to the fact that distantly supervised annotations
can have noise and are not always 100% accurate.
The inter-annotator agreement has already been dis-
cussed in 5. Along with the provision of manual
annotation, the in-house annotation tools also con-
tained several checks on conditions that shouldn’t
arise such as: whether the annotator has missed an-
notating any table, or the annotator has annotated
with out-of-range labels or a row/column having
both composition and constituent or vice-versa i.e.
composition/constituent present in both row and



Figure 7: Schematic of TAPAS-ADAPTED baseline model

Splits

Table Type Train Dev Test

SCC 704 110 113
MCC-CI 626 132 132
MCC-PI 317 109 112
NC 2761 387 380

Total 4408 738 737

(a)

Splits

Train Dev Test

Publications 1880 330 326
Materials 11207 2873 2649
Tuples 38799 10168 9514

(b)

Table 4: Number of (a) each of the table types and (b)
journals from which the tables are obtained, materials
in the tables, and the tuples for the three splits.

column of a table. With the help of these self-
checks and mutual discussions on disagreements,
we annotated our val and test dataset.

Table 4 presents some statistics about our dataset.
Table 4a shows the number of tables in our dataset
belonging to different table types. Further, Table 4b
shows the total number of publications, materials,
and tuples in all three splits. We release our code
and data under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 (CC BY-NC-SA
4.0) International Public License.

A.3 Baseline models

In this section, we describe the details of our base-
line models: TAPAS, TAPAS-ADAPTED, TABERT
and TABERT-ADAPTED. Since, the TAPAS

(Herzig et al., 2020) architecture has been used
for QA over tables and we do not have any ques-
tions in the composition extraction task, we use
table caption as a proxy for the question. We re-
place the empty table cells with a special [EMPTY]
token. The table caption and text in table cells are
converted to word-pieces using the LM tokenizer.
Then, we concatenate the word-pieces of the cap-
tion and row-wise flattened table. Note that it is
possible to obtain more than one word-piece for
some table cells. Since the input length after to-
kenization can be greater than 512, we truncate
the minimum possible rows from the end so that
the length becomes less than or equal to 512. To
avoid a large number of rows getting truncated
due to long captions, we truncate the caption so
that it only contributes ≤ 100 word-pieces. To
differentiate between the table cells belonging to
different rows and/or columns, row and column
index embeddings are added to the word-piece em-
beddings in the TAPAS architecture. Position and
Segment embeddings are the same as in BERT (De-
vlin et al., 2019), except that position indexes are
incremented when the table cell changes. Original
TAPAS architecture also involves adding different
Rank embeddings to the input in order to answer
rank-based questions. We use the same rank em-
beddings for every table cell since there is no rank
relation among the table cells for our case.
All these different types of embeddings are added
together and passed through the LM . We take the
contextual embedding of the first word-piece of
every table cell to be representative of it. Since we
do not have row and column nodes here, row and
column embeddings are computed by taking the



(a) (b) (c)

Figure 8: Examples of corner case composition tables (a) (Murata et al., 2005) (b) (Duclère et al., 2009) (c) (Shin
et al., 2002)

(a) (b) (c)

Figure 9: Some more examples of corner case composition tables (a) (Kaur et al., 2015) (b) (McKeown et al., 2003)
(c) (Omrani et al., 2014)

average of the first word-piece contextual embed-
dings of cells occurring in that row/column, which
are then fed to an MLP for row/column classifica-
tion. Edge embeddings are computed by concate-
nating the first workpiece contextual embeddings
of source and destination cells.
Figure 7 shows the schematic of TAPAS-ADAPTED

model. Here, we initialize LM weights with that
of MATSCIBERT (Gupta et al., 2022). All other
details are the same as in the TAPAS model, except
that here we add row and column index embed-
dings to MATSCIBERT output, instead of input.
For TABERT also, we use the table caption as
the proxy for the NL sentence, concatenate it with
linearized rows and feed into the TABERT model
which generates cell embedding by passing through
BERT and applying vertical attention to propagate
information across columns. Following the kind of
linearization used by TABERT, we linearize each
cell as a concatenation of cell type and cell value
for each cell, where cell type is divided into nu-
meric, alphanumeric or text. Since DISCOMAT
does not use pretraining, we do not use TABERT’S

pretrained weights but instead train from initial
weights on our row, column and edge-level predic-
tion tasks. We also implement another baseline
called TABERT-ADAPTED, which replaces the
BERT encoder in TABERT with MATSCIBERT
(Gupta et al., 2022) to provide materials science
domain’s information to the model.
In TABBIE, as opposed to TAPAS and TABERT,
table cells are passed independently into the LM, in-
stead of being linearized/flattened into a single long
sequence. Similar to TABERT, we don’t initialize

TABBIE’s architecture with its pretrained weights
for a fair comparison. TABBIE-ADAPTED again
replaces the BERT encoder in TABERT with
MATSCIBERT (Gupta et al., 2022).
The complete code and data is available at
https://github.com/M3RG-IITD/DiSCoMaT.

A.4 Implementation details

For Graph Attention Networks (GATs) (Veličković
et al., 2018), we use the GAT implementation of
Deep Graph Library (Wang et al., 2019). For LMs,
TAPAS, we use the implementation by Transform-
ers library (Wolf et al., 2020). We use TABERT’s
source code from their GitHub repository. We im-
plement and train all models using PyTorch (Paszke
et al., 2019) and AllenNLP (Gardner et al., 2017).
We optimize the model parameters using Adam
(Kingma and Ba, 2015) and a triangular learning
rate (Smith, 2017). We further use different learn-
ing rates for LM and non-LM parameters (GNNs,
MLPs) (App. A.5). To deal with imbalanced labels,
we scale loss for all labels by weights inversely
proportional to their frequency in the training set.
All experiments were run on a machine with one
32 GB V100 GPU. Each model is run with three
seeds and the mean and std. deviation is reported.

A.5 Hyper-parameter details

Now, we describe the hyper-parameters of DISCO-
MAT. Both GNN1 and GNN2 can have multiple
hidden layers with different numbers of attention
heads. We experiment with hidden layer sizes of
256, 128, and 64 and the number of attention heads
as 6, 4, and 2. We include residual connections in

https://github.com/M3RG-IITD/DiSCoMaT


GAT, exponential linear unit (ELU) non-linearity
after hidden layers, and LeakyRELU non-linearity
(with slope α = 0.2) to compute attention weights
as done in (Veličković et al., 2018). Training is per-
formed using 8 tables in a batch and we select the
checkpoint with the maximum dev MatL F1 score.
We use a triangular learning rate and choose the
peak learning rate for LM to be among 1e-5, 2e-5,
and 3e-5 and the peak learning rate for non-LM
parameters to be among 3e-4 and 1e-3. A warmup
ratio of 0.1 is used for all parameters. We further
use batch normalization (Ioffe and Szegedy, 2015)
and dropout (Srivastava et al., 2014) probability of
0.2 in all MLPs. We use the same λ for every con-
straint penalty term. Embedding sizes for features
are chosen from 128 and 256 and edge loss weight
is selected among 0.3 and 1.0.

Hyper-parameter GNN1 GNN2

GAT Hidden Layer Sizes [256, 128, 64] [128, 128, 64]
GAT Attention Heads [4, 4, 4] [6, 4, 4]
Peak LR for LM 1e-5 2e-5
Peak LR for non-LM 3e-4 3e-4
RegEx feature emb size 256 NA
Max-frequency feature emb size 256 128
Constraint penalty (λ) 50.0 30.0
Edge loss weight NA 1.0

Table 5: Hyper-parameters for DISCOMAT.

A.6 Corner cases

Figure 8 shows examples of some corner case ta-
bles. In Figure 8a, elements are being used as
variables. Moreover, the values that variables can
take are present in a single cell only. Figure 8b
shows a table where units occur within the compo-
sition itself. Also, mixed units are being used to
express the composition. Figure 8c comprises com-
positions having both elements and compounds.
Whereas, we made different REs for element com-
positions and different REs for compound compo-
sitions. Hence our REs are unable to match these.

Figure 9 shows some more examples of corner
cases. In Figure 9a, the first compound has to be
inferred using the Material IDs. For example, W
corresponds to WO3 and Nb corresponds to Nb2O5.
DISCOMAT makes the assumption that composi-
tion is present in a single row/column. Figure 9b
refutes this assumption as compositions are present
in multiple rows. Sometimes researchers report
both theoretical (nominal) and experimental (an-
alyzed) compositions for the same material. The
table in Figure 9c lists both types of compositions

in the same cell and hence can’t be extracted using
DISCOMAT.
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