Wrap Up

Mausam

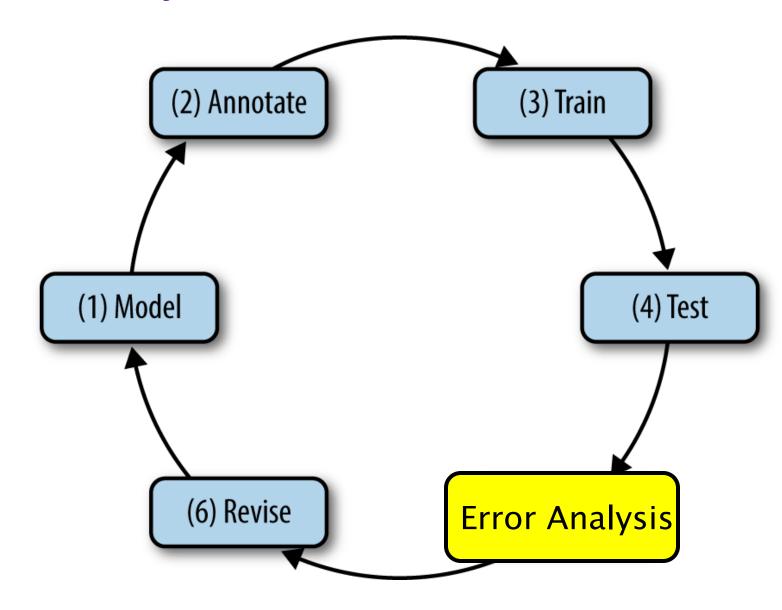
Grading

- 30% final exam
- 20% midterm
- 14% A1
- 14% A2
- 3% A3 (discussion)
- 19% A3

Key Points of the Course

Key Points: NLP

- Challenges
 - Ambiguity, Ambiguity, Sparsity
- Words: Morphology
- Sentences: Syntax
 - POS tagging, NP chunking, Parsing
- Sentences/Documents: Semantics
 - Words/Bigrams encode meanings, but are also sparse
 - Distributional Semantics, Shallow semantics
 - Patterns: bootstrapping
- Documents: Coreference, Discourse
- Applications
 - Information Extraction, Machine Translation, Summarization, Dialog


Key Points: Modeling

- Models
 - Logical vs. Probabilistic vs. Neural
 - Representation: Bag of Word-level, Linear, Tree
 - Generative vs. Discriminative
 - Smoothing / Regularization
 - Pipeline vs. Joint inference
- Training Data
 - A lot: Supervised
 - None: Unsupervised/Self-supervised
 - A little: Semi-supervised
 - Distantly supervised
 - Active
- Features, Features: local or global
- Learning Representations

Key Points: Data Insights

- Data annotation: be a linguist!
- Crowdsourced Data Curation
- Data harvesting
 - Example: bootstrapping
 - Example: Summarization
- Indirectly related data
 - Example: distant supervision

Key Points: ML Cycle

Neural Models

- Shallow NNs
 - Bag(words)
- Convolutional NNs
 - Handle bag (fixed length n-grams)
- Recurrent NNs
 - Handle small variable length histories
- LSTMs/GRUs
 - Handle larger variable length histories
- Bi-LSTMs
 - Handle larger variable length histories and futures
- Recursive NNs
 - Handle variable length partially ordered histories

Neural Models (contd)

- Neural language models
- Conditioned language models
 - Encoder-Decoder Models
- Attention models
 - attach non-uniform importance to histories based on evidence (question)
 - maybe even more important than recurrence?
- Transformer: all-word self attention + position embeddings
- Pre-trained language models
 - Fine-tuning
 - Light-weight finetuning: sidetuning, adapter
 - Prompt engineering

Low Data Setting

- Use GPTx zero-shot
- Use GPTx few-shot
- Use similar tasks; pretrain; then fine-tune few-shot
- Transfer learning; Multi-task learning
- Data augmentation
- Auxilliary loss
- Add human-features
- Add constraints
- Change architectures
- Research Questions: GPTx + Secondary model