Deep Learning With Constraints

Slides by Yatin Nandwani

Learning with Constraints: Motivation

→ Modern day AI == Deep Learning (DL) [Learn from Data]

Learning with Constraints: Motivation

- → Modern day AI == Deep Learning (DL) [Learn from Data]
- → Can we inject symbolic knowledge in Deep Learning? E.g.
 Person => Noun [Learn from Data Knowledge](credit: Vivek S Kumar)

Learning with Constraints: Motivation

- → Modern day AI == Deep Learning (DL) [Learn from Data]
- → Can we inject symbolic knowledge in Deep Learning? E.g. Person => Noun [Learn from Data Knowledge]
- → Constraints: One of the ways of representing symbolic knowledge. $1{y_{PER.} = 1} \implies 1{y_{Noun.} = 1}$

• Task: Fine Grained Entity Typing

Input:

Bag of Mentions

Sample Mention: *the United States*"

Sample Mention: *"Barack Obama is the President of*

Output: *president, leader, politician...*

Input:

Bag of Mentions

 Sample Mention:
 "Barack Obama is the President of

 the United States"
 Mention 1

 Output:
 Mention 2

 president, leader
 Mention N

 Neural
 politician

 Mention N
 Mention N

• **Constraints:** Hierarchy on Output label space

• Constraints: Hierarchy on Output label space

→ Using Soft Logic

$$\mathbb{1}\left\{y_{ARTIST}=1\right\} \implies \mathbb{1}\left\{y_{PERSON}=1\right\}$$

→ Using Soft Logic

$$\mathbb{1}\left\{y_{ARTIST}=1\right\} \implies \mathbb{1}\left\{y_{PERSON}=1\right\}$$

$$(\neg \mathbb{1} \{ y_{ARTIST} = 1 \}) \lor (\mathbb{1} \{ y_{PERSON} = 1 \})$$

→ Using Soft Logic

$$\mathbb{1}\left\{y_{ARTIST}=1\right\} \implies \mathbb{1}\left\{y_{PERSON}=1\right\}$$

$$(\neg \mathbb{1} \{ y_{ARTIST} = 1 \}) \lor (\mathbb{1} \{ y_{PERSON} = 1 \})$$

$$(1 - p(y_{ARTIST})) + p(y_{PERSON})$$

	Boolean Expression	T-norm: Choice 1	T-norm: Choice 2
Le	v	p(v=1)	
Сс	$\neg v$	1 - p(v = 1)	
	$v_1 \lor v_2$	$\min(p(v_1 = 1) + p(v_2 = 1), 1)$	$\max(p(v_1 = 1), p(v_2 = 1))$
\rightarrow I	$v_1 \wedge v_2$	$\max(p(v_1 = 1) + p(v_2 = 1) - 1, 0)$	$\min(p(v_1 = 1), p(v_2 = 1))$

$$\mathbb{1}\left\{y_{ARTIST}=1\right\} \implies \mathbb{1}\left\{y_{PERSON}=1\right\}$$

$$(\neg \mathbb{1} \{ y_{ARTIST} = 1 \}) \lor (\mathbb{1} \{ y_{PERSON} = 1 \})$$

$$(1 - p(y_{ARTIST})) + p(y_{PERSON})$$

 $1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) \ge 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) \ge 1$$

Equivalently:

$$p(y_{ARTIST}) - p(y_{PERSON}) \leq 0$$

Define:

$$f_k^i = p(y_{ARTIST}) - p(y_{PERSON})$$

kth Constraint

ith Data point

Inequality Constraint:

$$f_k^i \leq 0$$

Unconstrained Problem

 $\min_w L(w)$

L(w) : Any standard loss function, say Cross Entropy

Unconstrained Problem

 $\min_w L(w)$

L(w): Any standard loss function, say Cross Entropy

Constrained Problem

 $\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \quad \forall 1 \le i \le m; \quad \forall 1 \le k \le K$

Constrained Problem

 $\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \ \forall 1 \le i \le m; \ \forall 1 \le k \le K$

Where:

m: Size of training data

K: Number of Constraints

Constrained Problem

 $\mathbf{m}^{i} \leftarrow \mathbf{T}^{(i-1)} \quad \text{and} \quad \mathbf{f}^{i}^{(i-1)} \neq \mathbf{0}, \quad \forall \mathbf{1} \neq \mathbf{i} \neq \mathbf{0}, \quad \forall \mathbf{1} \neq \mathbf{1} \neq \mathbf{0}, \quad \forall \mathbf{1} \neq \mathbf{0} \neq \mathbf{0}, \quad \forall \mathbf{1} \neq \mathbf{1} \neq \mathbf{0} \neq \mathbf{0}, \quad \forall \mathbf{1} \neq \mathbf{1} \neq$

$$\mathcal{L}(w,\Lambda) = L(w) + \sum_{i=1}^m \sum_{k=1}^K \lambda_k^i f_k^i(w)$$

Constrained Problem

 $\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \ \forall 1 \le i \le m; \ \forall 1 \le k \le K$

Where:

m: Size of training data

K: Number of Constraints

Issue:

O(mK) #constraints

i.e. *mK* Lagrange Multipliers!

Learning with Constraints: *Reduce # Constraints*

Learning with Constraints: *Reduce # Constraints*

Learning with Constraints: *Reduce # Constraints*

$$H(c) = c \text{ for } c \ge 0, \text{ and } 0 \text{ for } c < 0 \qquad H(c)$$

$$f_k^i(w) \le 0 \qquad \equiv \qquad H(f_k^i(w)) = 0 \qquad = \qquad \sum_i H(f_k^i(w)) = 0 \qquad = \qquad \sum_i H(f_k^i(w)) = 0 \qquad = \qquad \sum_{i=10}^{10} H(f_k$$

Learning with Constraints: *Reduce # Constraints* Originally:

$\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \quad \forall 1 \le i \le m; \quad \forall 1 \le k \le K$

Learning with Constraints: *Reduce # Constraints* Originally:

 $\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \quad \forall 1 \le i \le m; \quad \forall 1 \le k \le K$

Now:

Define:
$$h_k(w) = \sum_i H(f_k^i(w))$$

$\min_{w} L(w) \text{ subject to } h_k(w) = 0; \forall 1 \le k \le K$

Learning with Constraints: *Reduce # Constraints* Originally:

 $\min_{w} L(w) \text{ subject to } f_k^i(w) \le 0; \quad \forall 1 \le i \le m; \quad \forall 1 \le k \le K$

Now:

Define:
$$h_k(w) = \sum_i H(f_k^i(w))$$
 O(K) #constraints

 $\min_{w} L(w) \text{ subject to } h_k(w) = 0; \forall 1 \le k \le K$

Learning with Constraints

$\min_{w} L(w) \text{ subject to } h_k(w) = 0; \forall 1 \le k \le K$

$$\mathcal{L}(w;\Lambda) = L(w) + \sum_{k=1}^{K} \lambda_k h_k(w)$$

Learning with Constraints: *Experiments* **Typenet**

	MAP Scores			Constraint Violations		
	5%	10%	100%	5%	10%	100%
Scenario	Data	Data	Data	Data	Data	Data
В	68.6			22,715		
B+H	68.71			22,928		
B+C						
B+S						

Learning with Constraints: *Experiments* **Typenet**

	MAP Scores			Constraint Violations		
	5%	10%	100%	5% 10% 1		100%
Scenario	Data	Data	Data	Data	Data	Data
В	68.6			22,715		
B+H	68.71			22,928		
B+C	80.13			25		
B+S	82.22			41		

Learning with Constraints: *Experiments* **Typenet**

	MAP Scores			Constraint Violations		
	5%	10%	100%	5% 10%		100%
Scenario	Data	Data	Data	Data	Data	Data
В	68.6	69.2	70.5	22,715	21,451	22,359
B+H	68.71	69.31	71.77	22,928	21,157	24,650
B+C	80.13	81.36	82.80	25	45	12
B+S	82.22	83.81		41	26	

Semi-Supervised Learning

• Supervised Data

$$\mathcal{L}(w;\Lambda) = L(w) + \sum_{k=1}^{K} \lambda_k h_k(w)$$

Unsupervised Data

$$\mathcal{L}(w;\Lambda) = \sum_{k=1}^{K} \lambda_k h_k(w)$$

Results (Multi Task NER-POS)

[Nandwani et al, NeurIPS 2019]

Test Time

	Test Time
Constraints in Training	115 sec
Constraints in Inference	2,895 sec

More Results

[Nandwani et al, NeurIPS 2019]

• Fine-Grained Entity Typing

% Data	5%	10%	100%	5%	10%	100%
Baseline	68.6	69.2	70.5	22,715	21,451	22,359
Const. L	78.4	80.6	83.5	186	95	97

• Semantic Role Labeling

% Data	1%	5%	10%	1%	5%	10%
Baseline	62.7	72.6	75.3	19,317	11,718	10,570
Const. L	66.0	73.7	76.0	9,231	6,436	6,140

More Results

[Kolluru et al, EMNLP 2020, Gupta et al, ArXiv 2022]

• Open Information Extraction

Algos	AUC	F1
Baseline	33.7	52.4
Constrained Learning	35.7	54

• Info. Extraction from Tables in Research Papers

Algos	ID F1	Tuple F1	Mat. F1
GNN	78.7	69.3	60.9
Constrained Learning of GNN	82.4	70.1	63.5