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“I have an extremely large 

collection of clean labeled data”

- No one
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Learning from limited labeled data

● Transfer learning

○ Leverage data from a different-but-related task

● Few/zero-shot learning

○ Generalize to new tasks after seeing a few (or no) examples of that task

● Multitask learning

○ Use information learned on different tasks for mutual benefit

● Data augmentation

○ Modify labeled data to with class-preserving transformations

● Semi-supervised learning

○ Learn from labeled and unlabeled data
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Data Augmentation

● Token-level augmentation

○ Change individual words 

● Sentence-level augmentation

○ Change an entire sentence

● Adversarial augmentation:

○ Change the text to maximally fool the model

● Hidden space augmentation:

○ Change the representations inside the model
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Data Augmentation

1. Token-level augmentation:

○ Synonym replacement (Yang et al. 2015, Zhang et al. 2015, Miao et al. 2020)

○ Random insertion, deletion, swapping (Xie et al. 2019, Wei and Zou 2019)

○ Word replacement via LM (Wu et al. 2019, Zhu et al. 2019)
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Easy Data Augmentation Techniques (EDA) 

Operation Sentence

None A sad, superior human comedy played out on the back roads of life.

Synonym replacement A lamentable, superior human comedy played out on the backward roads of life.

Random insertion A sad, superior human comedy played out on funniness the back roads of life.

Random swap A sad, superior human comedy played out on roads back the of life.

Random deletion A sad, superior human out on the roads of life.

Wei, Jason, and Kai Zou. "EDA: Easy data augmentation techniques for boosting performance on text classification tasks." arXiv preprint arXiv:1901.11196 (2019).
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Word Replacement via Language Modeling

Contextual data augmentation:  

when a sentence “the actors are fantastic” is 

augmented by replacing only actors with words 

predicted based on the context (Kobayashi, 2018)

Soft contextual data augmentation
(Gao et al., 2019)
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Saliency based data augmentation where the 

least salient span from sent A is replaced with 

the most salient span from sent B (Yoon et al., 2021)

TreeMix: Compositional Constituency-based Data Augmentation for

Natural Language Understanding  (Zhang et al., 2022)
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Compositional Augmentation



Token Level Data Augmentation Summary

Topic Classification and News Classification results with 10 examples. We report the average results 

across 3 different random seeds with the 95% confidence interval and bold the best results.
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Token Level Data Augmentation Summary

Methods Level Diversity Tasks

Synonym replacement Token Low Text classification, Sequence labeling 

Random insertion, deletion, 
swapping

Token Medium Text classification, Sequence labeling , Machine 
translation, Dialogue generation

Word replacement via LM Token Low Text classification, Sequence labeling , Machine 
translation

Compositional 
augmentation

Token High Text classification, Sequence labeling , Semantic 
Parsing, Language Modeling, Text Generation
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Data Augmentation

1. Token-level augmentation:

○ Synonym replacement (Yang et al. 2015, Zhang et al. 2015, Miao et al. 2020)

○ Random insertion, deletion, swapping (Xie et al. 2019, Wei and Zou 2019)

○ Word replacement via LM (Wu et al. 2019, Zhu et al. 2019)

2. Sentence-level augmentation:

○ Paraphrasing (Xie et al. 2019, Chen et al. 2020)

○ Conditional generation (Zhang and Bansal 2019, Yang et al. 2020)
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Back-Translation for Data Augmentation (Edunov et al., 2018)

Image credit to https://github.com/vietai/dab
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Paraphrasing

syntactically controlled paraphrase generation (Iyyer et al., 2018) 22

Madnani, Nitin, and Bonnie J. Dorr. "Generating phrasal and sentential paraphrases: A 

survey of data-driven methods." Computational Linguistics 36, no. 3 (2010): 341-387.



Conditional Generation

Language model based data augmentation (LAMBADA) using GPT (Anaby-

Tavor et al., 2019)

Label + sentence, 

Label + sentence,

… 
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Sentence Level Augmentation Summary

Methods Diversity Tasks

Paraphrase High Text classification, Machine translation, Question answering, Generation

Conditional Generation High Text classification, Question answering
24



Data Augmentation

1. Token-level augmentation:

○ Synonym replacement (Yang et al. 2015, Zhang et al. 2015, Miao et al. 2020)

○ Random insertion, deletion, swapping (Xie et al. 2019, Wei and Zou 2019)

○ Word replacement via LM (Wu et al. 2019, Zhu et al. 2019)

2. Sentence-level augmentation:

○ Paraphrasing (Xie et al. 2019, Chen et al. 2020)

○ Conditional generation (Zhang and Bansal 2019, Yang et al. 2020)

3. Adversarial augmentation:

○ Whitebox methods (Miyato et al., 2017; Zhu et al., 2020; Jiang et al., 2019; Chen et al., 2020d)

○ Blackbox methods (Ren et al. 2019; Garg and Ramakrishnan, 2020)
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White-box Attack

HotFlip uses the model gradient to identify 

the most important letter in the text (Ebrahimi 

et al., 2018)
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Loss of the 

model on input 

x with label y

Flip vector: flip of 

the j-th character of the 

i-th word (a → b) 

Adversarial examples with a single character change, 

which will be misclassified by a neural classifier.



White-box Attack

HotFlip uses the model gradient to identify 

the most important letter in the text (Ebrahimi 

et al., 2018)

Adversarial examples with a single character change, 

which will be misclassified by a neural classifier.

Find the flip vector with biggest increase in loss
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Black-box Attack

Use BERT-MLM to predict masked tokens in the text for generating adversarial examples. 

(Garg and Ramakrishnan, 2020)
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40-80% accuracy drop!



Adversarial Attack Augmentation Summary

Methods Level Diversity Tasks

White-box attack Token or 
Sentence

Medium Text classification, Sequence labeling, Machine 
translation

Black-box attack Token or 
Sentence

Medium Text classification, Sequence labeling, Machine 
translation, Textual entailment, Dialogue 
generation, Text Summarization
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Data Augmentation

1. Token-level augmentation:

○ Synonym replacement (Yang et al. 2015, Zhang et al. 2015, Miao et al. 2020)

○ Random insertion, deletion, swapping (Xie et al. 2019, Wei and Zou 2019)

○ Word replacement via LM (Wu et al. 2019, Zhu et al. 2019)

2. Sentence-level augmentation:

○ Paraphrasing (Xie et al. 2019, Chen et al. 2020)

○ Conditional generation (Zhang and Bansal 2019, Yang et al. 2020)

3. Adversarial augmentation:

○ Whitebox methods (Miyato et al., 2017; Zhu et al., 2020; Jiang et al., 2019; Chen et al., 2020d)

○ Blackbox methods (Ren et al. 2019; Garg and Ramakrishnan, 2020)

4. Hidden space augmentation:

○ Mixup (Zhang et al., 2019, Chen et al. 2020)
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Hidden-space Augmentation via Perturbation

Manipulating the hidden representations 

● Through perturbations such as adding noises 

● Or performing interpolations with other data points

31



Interpolation: mixup for text data
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Interpolation: mixup for text data
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Interpolation: mixup in textual hidden space

Chen, Jiaao, Zichao Yang, and Diyi Yang. "MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification." ACL 2020. 34



Cutoff

Shen, Dinghan, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. "A simple but tough-to-beat data augmentation approach for natural language 

understanding and generation." arXiv preprint arXiv:2009.13818 (2020).
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Cutoff

Closely related to multi-view learning

Can be apply to both text classification and generation 
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Hidden Space Augmentation Summary

Methods Level Diversity Tasks

Hidden-space perturbation Token or 
Sentence

High Text classification, Sequence labeling, Speech 
recognition

Interpolation Token or 
Sentence

High Text classification, Sequence labeling, Machine 
translation
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Hidden Space Augmentation Summary
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Hidden Space Augmentation Summary
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● No single augmentation works the best for every task.

● Augmentation does not always improve performance, 

and can sometimes hurt performances. 

● Token-level augmentations work well in general for 

supervised learning, especially with limited labeled data



Consistency regularization

Model

Model

Augmented

Label Guess

Prediction

Unlabeled example

The cat sat on the mat.

A cat sat ____ the rug.
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“Unsupervised Data Augmentation” (UDA)

53
Xie, Qizhe, et al. "Unsupervised data augmentation for consistency training." NeurIPS 2020.



“Unsupervised Data Augmentation” (UDA)
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“Unsupervised Data Augmentation” (UDA)
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Xie, Qizhe, et al. "Unsupervised data augmentation for consistency training." NeurIPS 2020.



SSL or just augmentation?
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Chen, Jiaao, et al. "An empirical survey of data augmentation for limited data learning in NLP." arXiv preprint arXiv:2106.07499 (2021).



SSL or just augmentation?

No “best”

augmentation
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Chen, Jiaao, et al. "An empirical survey of data augmentation for limited data learning in NLP." arXiv preprint arXiv:2106.07499 (2021).



The problem with unlabeled data…

● Some problems (e.g. machine translation) are meant to be applied to 

any text; unlabeled data is abundant

● Some problems (e.g. sentiment analysis) only apply to certain kinds of 

text (e.g. all product reviews but not all tweets)

● For some problems (e.g. natural language inference), it is 

unreasonable to expect that a large amount of unlabeled data is 

available – it’s nearly as hard to collect data as it is to label it.
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SentAugment
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Du, Jingfei, et al. "Self-training Improves Pre-training for Natural Language Understanding." NAACL 2021.



SentAugment
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Du, Jingfei, et al. "Self-training Improves Pre-training for Natural Language Understanding." NAACL 2021.


