Statistical Natural Language Parsing

Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein,
Chris Manning, Ray Mooney, Luke Zettlemoyer)



Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.

 How do we know what is a constituent? (Not that linguists don’t
argue about some cases.)

 Distribution: a constituent behaves as a unit that can appear in different

places: S
* John talked [to the children] [about drugs]. /\
« John talked [about drugs] [to the children]. e e
 *John talked drugs to the children about 111 V/\Np
« Substitution/expansion/pro-forms: | | PN
* | sat [on the box/right on top of the box/there]. Fed raises T T
* Coordination, regular internal structure, no intrusion, interest rates

fragments, semantics, ...



_-—-—-—'_-_-_-_-__:__-_-E_
MP-SE] WP
A
Nf|~JS VED SEAR
,'—""/f\\\‘“--‘
Ana!\rsts sa‘|id -NOMNE- 5
/”"’A\\‘*\
[|] NP-SBJ-1

/\,/’“\\

MNMP NMP VEZ

LT T~

Mr. Stronach wants NPISEJ VP
A
—N[iNE— T|D VP
‘-—".//f‘_\\\\\—;
=1 to ‘l.l'|E! MP
‘-r",’—,’—,—,\\\\-‘
resume MP PP-LOC
ﬁ\\-\ ,-'//\
DT ADJP NN IN S-NOM
2N N
a RBR 1 role in NP-SEJ VP
| | | N
more influential -NONE- VBG NP

TN

running DT NN

the company



Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or
are arguments of) which other words.

put
/\
boy tortoise on
T Fug
The the
The boy put the tortoise on the rug —

the



Why Parse?

e Part of speech information
* Phrase information
» Useful relationships

S
NP VP
/\
DT N TN
| | V NP
the 1 | A

JHIEET vobbed DT N
| |

the apartment

= “the burglar” is the subject of “robbed”



The rise of annotated data:
The Penn Treebank

[Marcus et al. 1993, Computational Linguistics]
((S
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))
(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(I I)
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)
(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)
(NP (DT that) (NN market)))))))
(-)



Penn Treebank Non-terminals

1able 1.2. The Penn Treebank syntactic tagset

ADIJP Adjcctive phrasc

ADVP Adverb phrase

NP Noun phrasc

PP Prepositional phrasc

S Simple declarative clause

SBAR Subordinate clausc

SBARQ Direct question introduced by wh-clement
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-clement
VP Verb phrasc

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

“Understood” subject of infinitive or imperative
Zero variant of that in subordinate clauses
Trace of wh-Constituent

- o *




Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP
applications:

High precision question answering [Pasca and Harabagiu SIGIR 2001]
Improving biological named entity finding [Finkel et al. INLPBA 2004]
Syntactically based sentence compression [Lin and Wilbur 2007]
Extracting opinions about products [Bloom et al. NAACL 2007]
Improved interaction in computer games [Gorniak and Roy 2005]
Helping linguists find data [Resnik et al. BLS 2005]

Source sentence analysis for machine translation [Xu et al. 2009]
Relation extraction systems [Fundel et al. Bioinformatics 2006]



Example Application: Machine Translation

 The boy put the tortoise on the rug

N

. TSd d T HYIH SHWR HIaiH
* SVO vs. SOV; preposition vs. post-position

/SN /SN
A/ A A/ A
DT NN VNP IN DT NN VNP IN
[N LT AL A
Y put D,T NlN DT NN boy 5yt DT NN DT NN

| | | | |

the tortoise the tortoise

the rug the rug



Example Application: Machine Translation

 The boy put the tortoise on the rug

N

. TSd d T HYIH SHWR HIaiH
* SVO vs. SOV; preposition vs. post-position

S S
A NP PP VP
DT NN V. NP IN DT NN||\| V. NP

Ny A A

e boy pur DT NN DT NN the bov o OT NN pu DT NN

the rug the rug the tort0|se

the tortoise



Example Application: Machine Translation

 The boy put the tortoise on the rug

N

. TSd d T HYIH SHWR HIaiH
* SVO vs. SOV; preposition vs. post-position

S S
DT NN V NP II\\I DT NN NP V NP
///AonA [IAT A
the boy by o NlN DT NN e bovpr NN " put o NIN

l l | |

the rug the rug the tortoise

the tortoise



Example Application: Machine Translation

 The boy put the tortoise on the rug

N

. TSd d T HYIH SHWR HIaiH
* SVO vs. SOV; preposition vs. post-position

S S
A NP PP VP
DT NN V NP II\\I DT NN NP
Ry FAT AN
the l:)prut D,T N,N DT NN the bOYDT NN on T NN

T put
the tortoise the rug the rug the tort0|se



Example Application: Machine Translation

 The boy put the tortoise on the rug

N

. TSd d T HYIH SHWR HIaiH
* SVO vs. SOV; preposition vs. post-position

S S
/N P
A NP PP VP
DT NN V NP IN DT NN NP
[J] AL A AL A \
the boy put D,T N,N DT NN a@ﬁ?ﬁrDT NN T NN

| |

the tortoise the rug



Pre 1990 (“Classical”) NLP Parsing

e Goes back to Chomsky’s PhD thesis in 1950s
* Wrote symbolic grammar (CFG or often richer) and lexicon

S—> NP VP NN — interest
NP — (DT) NN NNS — rates
NP — NN NNS NNS — raises
NP — NNP VBP — interest
VP —> V NP VBZ — rates

e Used grammar/proof systems to prove parses from words

* This scaled very badly and didn’t give coverage. For sentence:

Fed raises interest rates 0.5% in effort to control inflation
 Minimal grammar: 36 parses
e Simple 10 rule grammar: 592 parses
* Real-size broad-coverage grammar: millions of parses



Classical NLP Parsing:
The problem and its solution

e (Categorical constraints can be added to grammars to limit
unlikely/weird parses for sentences
e But the attempt make the grammars not robust
 In traditional systems, commonly 30% of sentences in even an edited
text would have no parse.
* Aless constrained grammar can parse more sentences

e But simple sentences end up with ever more parses with no way to
choose between them

 We need mechanisms that allow us to find the most likely
parse(s) for a sentence

e Statistical parsing lets us work with very loose grammars that admit
millions of parses for sentences but still quickly find the best parse(s)



Context Free Grammars and Ambiguities

20



Context-Free Grammars

Hopcroft and Ullman, 1979

A context free grammar G = (N, X, R, S) where:

» N is a set of non-terminal symbols
» Y Is a set of terminal symbols

» 1} is a set of rules of the form X — Y;Y5 ..
forn >0, XeN, Y, e (NUX)

» S € N is a distinguished start symbol

Fa
-‘}/?1_



Context-Free Grammars in NLP

* A context free grammarGin NLP=(N,C, Z, S, L, R)
2 is a set of terminal symbols

Cis a set of preterminal symbols

N is a set of nonterminal symbols

S is the start symbol (S € N)

L is the lexicon, a set of items of the form X — x
e« XeCandx€ezZ

R is the grammar, a set of items of the form X — y
« XENandy€e (NUCQC)*

* By usual convention, S is the start symbol, but in statistical NLP,
we usually have an extra node at the top (ROOT, TOP)

 We usually write e for an empty sequence, rather than nothing
22



A Context Free Grammar of English

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S =5
>, = {sleeps, saw, man, woman, telescope, the, with, in}
S ~ NP VP Vi — sleeps
: Vit — saw
VP — Vi NN S
VP = Vi NP NN — S:c?:wan
It = VP — VP PP NN — telescope
NP — DT NN "
NP — NP PP N o~
PP — IN NP -
IN  — in

Note: S=sentence

, VP=verb phrase, NP=noun phrase,
PP=prepositional phrase, D T=determiner, Vi=intransitive verb,
Vt=transitive verb, NN=noun, IN=preposition




Left-Most Derivations

A left-most derivation is a sequence of strings s, ...s,,, where

» s; = 5, the start symbol
» s, € 2% i.e. s, is made up of terminal symbols only
» Each s; for i =2...n is derived from s;_; by picking the
left-most non-terminal X in s;,_; and replacing it by some /3
where X — Fisarulein R
For example: [S], [NP VP], [D N VP], [the N VP], [the man VP],

[the man Vi], [the man sleeps]

Representation of a derivation as a tree: S
/\
NP N
D Y |



Properties of CFGs

» A CFG defines a set of possible derivations

» A string s € 2* is in the language defined by the
CFG if there is at least one derivation that yields s

» Each string in the language generated by the CFG
may have more than one derivation (“ambiguity”)

25



A Fragment of a Noun Phrase Grammar

26

NN
NN
NN
NN
DT
DT

el

box

car
mechanic
pigeon
the

a

JJ
JJ
JJ
JJ

$ 4l

fast
metal
idealistic
clay




Extended Grammar with Prepositional Phrases

JJ = fast
N NN JJ = metal
_ = _ NN = box JJ = idealistic
N = NN N
_ _ NN = car JJ = clay
N = JJ N .
\ g _ NN = mechanic
N = N N NN . N .
NP — DT N = pigeon = in
IN = under
DT = the IN = of
DI = a IN = on
IN = with
IN = as
Generates:

in a box, under the box, the fast car mechanic under the pigeon in
the box, ...



Verbs, Verb Phrases and Sentences

» Basic Verb Types
Vi = Intransitive verb  e.g., sleeps, walks, laughs

Vt = Transitive verb e.g., sees, saw, likes
Vd = Ditransitive verb e.g., gave

» Basic VP Rules
VP — Vi

VP — Vit NP
VP — Vd NP NP

» Basic S Rule
S — NP VP

Examples of VP:
sleeps, walks, likes the mechanic, gave the mechanic the fast car

Examples of S:
the man sleeps, the dog walks, the dog gave the mechanic the fast car



PPs Modifying Verb Phrases

A new rule: VP — VP PP

New examples of VP:
sleeps in the car, walks like the mechanic, gave the mechanic the

fast car on Tuesday, ...

29



Complementizers and SBARs

» Complementizers
COMP = complementizer e.g., that

» SBAR
SBAR — COMP S

Examples:
that the man sleeps, that the mechanic saw the dog ..

30



More Verbs

» New Verb Types
V[5] e.g., said, reported
V[6] e.g., told, informed
V[7] e.g., bet

» New VP Rules
VP — V[5] SBAR

VP — V][] NP  SBAR
VP — V[7] NP NP  SBAR
Examples of New VPs:
said that the man sleeps
told the dog that the mechanic likes the pigeon

bet the pigeon $50 that the mechanic owns a fast car




Coordination

» A New Part-of-Speech:
CC = Coordinator e.g., and, or, but

» New Rules

NP — NP CC NP

N — N CC N

VP — VP cC VP

S — S CC S
SBAR — SBAR CC SBAR

32



Much more remains...

» Agreement

The dogs laugh vs. The dog laughs

» \Wh-movement
The dog that the cat liked ___

» Active vs. passive

The dog saw the cat vs.
The cat was seen by the dog

» |f you're interested in reading more:

Syntactic Theory: A Formal Introduction, 2nd

Edition. Ivan A. Sag, Thomas Wasow, and Emily
M. Bender.



Attachment ambiguities

* A key parsing decision is how we ‘attach’ various constituents
* PPs, adverbial or participial phrases, infinitives, coordinations, etc.

The board approved [its acquisition] [by Royal Trustco Ltd.]
fof Toronto)

[for $27 a share]

[at its monthly meeting].



Attachment ambiguities

* A key parsing decision is how we ‘attach’ various constituents
* PPs, adverbial or participial phrases, infinitives, coordinations, etc.

The board approved [its\acquisitionNby Royal Trustco Ltd.]
of Toronto]

[for $27 a share]

at its monthly meeting].

Catalan numbers: C, = (2n)!/[(n+1)!n!]

An exponentially growing series, which arises in many tree-like contexts:
« E.g., the number of possible triangulations of a polygon with n+2 sides
« Turns up in triangulation of probabilistic graphical models....




Attachments

* | cleaned the dishes from dinner

* | cleaned the dishes with detergent

* | cleaned the dishes in my pajamas

* | cleaned the dishes in the sink



Syntactic Ambiguities |

* Prepositional phrases:
They cooked the beans in the pot on the stove with
handles.

e Particle vs. preposition:
The lady dressed up the staircase.

e Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

* Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities Il

* Modifier scope within NPs
Impractical design requirements
plastic cup holder

* Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

e Coordination scope:
Small rats and mice can squeeze into holes or cracks in
the wall.



Non-Local Phenomena

 Dislocation / gapping
* Which book should Peter buy?
* A debate arose which continued until the election.

Sf}'
* Bindin
5 NP S
e Reference T T
e The IRS audits itself Which book  MD S
| T
* Control should NP VP
* |wanttogo N N
* | want you to go Peter VB NP

e

buy



40

Product Details (from Amazon)
Hardcover: 1779 pages

Publisher: Longman; 2nd Revised edition
Language: English

ISBN-10: 0582517346

ISBN-13: 978-0582517349

Product Dimensions: 8.4 x 2.4 x 10 inches
Shipping Weight: 4.6 pounds



Context-Free Grammars in NLP

* A context free grammarGin NLP=(N,C, Z, S, L, R)
2 is a set of terminal symbols

Cis a set of preterminal symbols

N is a set of nonterminal symbols

S is the start symbol (S € N)

L is the lexicon, a set of items of the form X — x
e« XeCandx€ezZ

R is the grammar, a set of items of the form X — y
« XENandy€e (NUCQC)*

* By usual convention, S is the start symbol, but in statistical NLP,
we usually have an extra node at the top (ROOT, TOP)

 We usually write e for an empty sequence, rather than nothing
42



S S
NP VP N e s
| — - — | - — - — o
N VP PP N v NP NP VP
| — —— | | - - o
cats v NP p NP cats  scratch NP PP N v NP
| | | | — ) I
scratch N with NP PP I*IJ II’ NP cats  scratch NP
| i —_— T e
people N P NP people  with NP bl NP PP
cats with N N P NIP N P NP
' cats  with N ' '
claws | people with N
claws
cats
S
B S
NP VP - —
[ _— NP VP
N VP PP | R
cats VP PP P NP | _
| cats V NP P
Vv NP P NP with N l
| | | | scratch NP PP with
scratch N with N claws |
| N P NP
| |
people cats people with N

Parsing: Two problems to solve:
1. Repeated work...

cats

pp

with

NP

claws

NP

claws



Parsing: Two problems to solve:
1. Repeated work...




Parsing: Two problems to solve:
2. Choosing the correct parse

How do we work out the correct attachment:

* She saw the man with a telescope

Is the problem ‘Al complete’? Yes, but ...

Words are good predictors of attachment
e Even absent full understanding

* Moscow sent more than 100,000 soldiers into Afghanistan ...

* Sydney Water breached an agreement with NSW Health ...

Our statistical parsers will try to exploit such statistics.



Probabilistic Context Free Grammar

46



Probabilistic — or stochastic — context-free
grammars (PCFGs)

* G=(3,N,5,R,P)

* Tis aset of terminal symbols

N is a set of nonterminal symbols
S is the start symbol (S € N)
R is a set of rules/productions of the form X — vy

P is a probability function
 P:R—[0,1]
- VX EN, EP(Xey)=1

X —=yER

e Agrammar G generates a language model L.

] P(p=1

yOT*



PCFG Fxamnle

S = NP VP 1.0
VP = Vi 0.4
VP = Vt NP 0.4
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0

* Probability of a tree t with rules

1S

a1 — B4,02 — Bo, .

Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = in 0.5
.., 0n — Bn

o(t) = [ alas — B)
=1

where g(a — [3) is the probability for rule a — 3.




Example of a PCFG

S — NP VP 0 Vi = sleeps 1.0

. Vi = saw 1.0
VP = Vi 0.4 NN = 07
VP = Vt NP |04 NN — man i
VP = VP PP 02 NN — ?"Tma” 0
NP = DT NN |03 5T tﬁesco':’e o
NP = NP PP |07 o z Wifh .
PP = P NP 1.0 N = in 05
» Probability of a tree ¢ with rules

oy — -}l , (Vo —> '}g s, —> '}ﬂ

is p(t) =]1—, ¢(ov; = 3;) where q(c — [3) is the probability

*  forrule a — 3.



Probability of a Parse

S = NP VP 1.0
VP => Vi 04
VP = Vt NP 04
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0
Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = 1n 0.5

S
/Q
_ NP VP

DION& |1O

The man sleeps
p(t)=1.070.3*1.0*0.770.4*1.0

S‘1.o
VP 0.2
_ /\
= VP PP
A AN
NFE)3 Vi NP IN NFE)3
VN 1.0 /\ 5 N\
DT NN DT NN DT NN
[1.0 0.7 ho 0.2 h.o 0.1

The man saw the woman with the telescope

p(t,)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1



PCFGs: Learning and Inference

Model

»= The probability of a tree t with nrules o, = B, i =1..n

p(t) = HC](% — B:)

Learning
= Read the rules off of labeled sentences, use ML estimates for

probabilities Count(ar — B)

Count(«)

qur(o— f) =

= and use all of our standard smoothing tricks!

Inference

= Forinput sentence s, define T(s) to be the set of trees whose yield is s
(whole leaves, read left to right, match the words in s)

t*(s) = arg max p(t
(5) = arg max p(1)



Grammar Transforms

52



Chomsky Normal Form

e AllrulesareoftheformX—>YZorX—>w
e X,Y,ZENandwE2

* A transformation to this form doesn’t change the weak
generative capacity of a CFG

* Thatis, it recognizes the same language
e But maybe with different trees

 Empties and unaries are removed recursively
e n-ary rules are divided by introducing new nonterminals (n > 2)



A phrase structure grammar

S—> NP VP N — people
VP —> V NP N — fish
VP — V NP PP N — tanks
NP — NP NP N — rods
NP — NP PP V — people
NP —> N V — fish
NP —> e V — tanks

PP —> P NP P — with



Chomsky Normal Form steps

S—>NPVP N — people
>—> VP N — fish
VP — V NP

N — tanks
VP =V
VP —> V NP PP N — rods
VP — V PP V — people
NP —> NP NP V — fish
NP — NP V — tanks
NP —> NP PP ,

P — with
NP —> PP
NP — N
PP — P NP

PP P



Chomsky Normal Form steps

S —> NP VP N — people
VP — V NP ,

S >V NP N — fish

VP -V N — tanks
>V N — rods
VP —> V NP PP

S — V NP PP V — people
VP — V PP V—)fiSh

S -V PP

NP — NP NP V — tanks
NP —> NP P —> with
NP —> NP PP

NP —> PP

NP — N

PP —> P NP

PP P



Chomsky Normal Form steps

S— NP VP
VP —> V NP
S— VNP
VP -V

VP —> V/ NP PP
S— VNP PP
VP —> V PP
S— VPP

NP —> NP NP
NP —> NP

NP —> NP PP
NP —> PP
NP — N

PP — P NP
PP P

N — people
N — fish

N — tanks
N — rods

V — people
S — people
V — fish

S — fish

V — tanks
S — tanks
P — with



Chomsky Normal Form steps

S— NP VP
VP —> V NP
S— VNP
VP —> V/ NP PP
S— V NP PP
VP —> V PP
S— VPP

NP —> NP NP
NP —> NP

NP —> NP PP
NP —> PP
NP — N

PP — P NP
PP P

N — people
N — fish

N — tanks
N — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks
S — tanks
VP — tanks
P — with



Chomsky Normal Form steps

S— NP VP
VP — V NP
S—> VNP

VP —> V NP PP

S — VNP PP
VP — V PP
S—> VPP
NP — NP NP
NP — NP PP
NP — P NP
PP — P NP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with



Chomsky Normal Form steps

S— NP VP
VP — V NP
S—> VNP

VP -V @VP_V
@VP_V —> NP PP

S—> V@SV

@S_V — NP PP

VP — V PP
S—> VPP
NP — NP NP
NP — NP PP
NP — P NP
PP — P NP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with



A phrase structure grammar

S—> NP VP N — people
VP —> V NP N — fish
VP — V NP PP N — tanks
NP — NP NP N — rods
NP — NP PP V — people
NP —> N V — fish
NP —> e V — tanks

PP —> P NP P — with



Chomsky Normal Form steps

S— NP VP
VP — V NP
S—> VNP

VP -V @VP_V
@VP_V —> NP PP

S—> V@SV

@S_V — NP PP

VP — V PP
S—> VPP
NP — NP NP
NP — NP PP
NP — P NP
PP — P NP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with



Chomsky Normal Form

* You should think of this as a transformation for efficient parsing

* With some extra book-keeping in symbol names, you can even
reconstruct the same trees with a detransform

* In practice full Chomsky Normal Form is a pain
* Reconstructing n-aries is easy
* Reconstructing unaries/empties is trickier

* Binarization is crucial for cubic time CFG parsing

 The restisn’t necessary; it just makes the algorithms cleaner and
a bit quicker



An example: before binarization...

ROOT
S
NP VP
\ V NP PP
T~
P NP
I
N \ \
I

people fish tanks  with rods



After binarization...

ROOT

|
S

N

NP VP
/E’ -
N Vv NP P

P
N P NP
|

N
l

people fish tanks  with rods




Parsing

67



Constituency Parsing

/\Vp

NP NP

N

N N Vv N

|
fish people fish tanks

PCFG
Rule Prob 6;
S — NP VP 0,
NP—>NPNP 6,
N — fish 0,,
N — people 0,5
V — fish 0,4




Cocke-Kasami-Younger (CKY)
Constituency Parsing (Parse Triangle/Chart)

fish people fish tanks



Viterbi (Max) Scores

people

fish

S —> NP VP 0.9
S —> VP 0.1
VP — V NP 0.5
VP >V 0.1
VP >V @VP V 0.3
VP —> V PP 0.1

@VP_V — NP PP 1.0
NP — NP NP 0.1
NP — NP PP 0.2
NP — N 0.7
PP — P NP 1.0



Extended CKY parsing

* Unaries can be incorporated into the algorithm
* Messy, but doesn’t increase algorithmic complexity

 Empties can be incorporated
* Use fenceposts

* Doesn’t increase complexity; essentially like unaries




Extended CKY parsing

e Unaries can be incorporated into the algorithm
* Messy, but doesn’t increase algorithmic complexity

 Empties can be incorporated

* Use fenceposts
* Doesn’t increase complexity; essentially like unaries

e Binarization is vital
« Without binarization, you don’t get parsing cubic in the length of the
sentence and in the number of nonterminals in the grammar

* Binarization may be an explicit transformation or implicit in how the parser
works (Earley-style dotted rules), but it’s always there.



A Recursive Parser

bestScore (X,1,3,s)
if (j == 1)
return g(X->s[i])
else
return max q(X->YZ) *
k,X->YZ
bestScore(Y,1i,k,s) *

bestScore(Z,k+1, 3, s)



The CKY algorithm (1960/1965)
... extended to unaries

function CKY(words, grammar) returns [most_probable_parse,prob]
score new double[#(words)+1][#(words)+1][#(nonterms) ]
back = new Pair[#(words)+1] [#(words)+1] [#nonterms]]
//LEXICON
for 1=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[1][1+1][A] = P(A -> words[i])
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][i+1][B] > O && A->B in grammar
prob = P(A->B)*score[1][1+1] [B]
if prob > score[i][i+1][A]
score[1][1+1][A] = prob
back[i][i+1][A] = B
added = true



The CKY algorithm (1960/1965)
... extended to unaries

//build higher order cells
for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+l to end-1
for A,B,C in nonterms
prob=score[begin] [split] [B]*score[split][end] [C]*P(A->BC)
1f prob > score[begin][end] [A]
score[begin]end] [A] = prob
back[begin] [end][A] = new Triple(split,B,C)
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
prob = P(A->B)*score[begin][end][B];
if prob > score[begin][end] [A]
score[begin] [end] [A] = prob
back[begin][end][A] = B
added = true
return buildTree(score, back)



The grammar:
Binary, no epsilons,

S —> NP VP 0.9
S —> VP 0.1
VP — V NP 0.5
VP >V 0.1
VP >V @VP V 0.3
VP — V PP 0.1

@VP_V — NP PP 1.0
NP — NP NP 0.1
NP — NP PP 0.2
NP — N 0.7
PP — P NP 1.0

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

0.5
0.2
0.2
0.1
0.1
0.6
0.3
1.0



fish 1 people 2 fish 3 tanks 4
score[0][1] score[0][2] score[0][3] score[0][4]
score[1][2] score[1][3] score[1][4]
score[2][3] score[2][4]

score[3][4]




S— NP VP
S—> VP
VP — V NP
VP >V

VP -V @VP_V

VP — V PP

@VP_V — NP PP

NP — NP NP
NP — NP PP
NP — N

PP —> P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

fish 1  people

2

fish

3

tanks

4

3

for i=0; i<#(words); i++
for Ain nonterms
if A -> wordsJi] in grammar
score[i][i+1][A] = P(A -> words]i));




S— NP VP
S—> VP
VP — V NP
VP >V

VP -V @VP_V

VP — V PP

@VP_V — NP PP

NP — NP NP
NP — NP PP
NP — N

PP —> P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

fish

people

2 fish

tanks

4

N — fish 0.2
V — fish 0.6

// handle unaries

boolean added = true

while added
added = false

for A, B in nonterms

N — people 0.5

V — people 0.1

if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[i][i+1][B]
if(prob > score[i][i+1][A])
scoreli][i+1][A] = prob

back[i][i+1][A] = B

added = true

N — fish 0.2
V — fish 0.6

N — tanks 0.2
V — tanks 0.1




S— NP VP
S—> VP
VP — V NP
VP >V

VP -V @VP_V

VP — V PP

@VP_V — NP PP

NP — NP NP
NP — NP PP
NP — N

PP —> P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

0 fish people 2 fish tanks 4
N — fish 0.2
V — fish 0.6
NP —> NO0.14
VP — V 0.06
1 S — VP 0.006
N — people 0.5
V — people 0.1
NP — N 0.35
VP -V 0.01
2 S —> VP 0.001
N — fish 0.2
V — fish 0.6
NP —-> NO.14
VP — V 0.06
3 S — VP 0.006
N — tanks 0.2
prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
if (prob > score[begin][end][A]) V —tanks 0.1
score[begin]end][A] = prob NP — N 0.14
back[begin][end][A] = new Triple(split,B,C) VP -V 0.03
S — VP 0.003

4




S— NP VP
S—>VP

VP — V NP

VP -V

VP -V @VP_V
VP — V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP
NP — N
PP — P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

fish people 2 fish tanks 4
N — fish 0.2 NP — NP NP
V — fish 0.6 0.0049
NP—>NO.14 |VP7 VONl"os
VP —> V 0.06 S_5 NP VP
S — VP 0.006 0.00126
N — people 0.5 |NP — NP NP
V — people 0.1 0.0049
NP—>NO035 |VP— VONgm
VP —>V0.01 S5 NP VP
S —> VP 0.001 0.0189
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP—>NO.14 |VP7 VONCF)’42
/lhandle unaries VP -V 0.06 S NP V.p
boolean added = true S — VP 0.006
while added DILCE
added = false N — tanks 0.2
for A, B in nonterms
prob = P(A->B)*score[begin][end][B]; W= s O
if prob > score[begin][end][A] NP — N 0.14
score[begin][end][A] = prob VP -V 0.03
back[begin][end][A] = B S — VP 0.003

added = true




S— NP VP
S—>VP

VP — V NP

VP -V

VP -V @VP_V
VP — V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP
NP — N
PP — P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

IS eople IS anks
0 fish I 2 fish tank
N — fish 0.2 NP — NP NP
V — fish 0.6 0.0049
NP —>NO.14 |VP7 VONl"OS
VP - V 0.06 S s VP
N — people 0.5 |NP — NP NP
V — people 0.1 0.00439
NP—>NO035 |VP2 VONgm
VP >V 0.01 S NP VP
2 S —> VP 0.001 0.0189
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP—>NO.14 |VP7 VONCF)’42
VP —> V 0.06 S s \p
3 S — VP 0.006 0.0042
N — tanks 0.2
for split = be_gin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
prob=score[begin][split][B]*score[split][end][C]*P(A->BC) NP — N 0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003
4 back[begin][end][A] = new Triple(split,B,C)




S— NP VP
S—>VP

VP — V NP

VP -V

VP -V @VP_V
VP — V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP
NP — N
PP — P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

0 fish people 2 fish 3 tanks
N — fish 0.2 NP — NP NP NP — NP NP
V s fish 0.6 0.0049 0.0000686
NP —> N 0.14 VP — V NP VP — V NP
' 0.105 0.00147
Wl = e S —> VP S— NP VP
1|S — VP 0.006 0.0105 0.000882
N — people 0.5 |NP — NP NP
V — people 0.1 0.00439
NP—>NO035 |VP7 VONgm
VP -V 0.01 S NP VP
2 S —> VP 0.001 0.0189
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP—>NO014 |YP— VONCF)’42
VP - V 0.06 S —s VP
3 S — VP 0.006 0.0042
N — tanks 0.2
for split = be_gin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
prob=score[begin][split][B]*score[split][end][C]*P(A->BC) NP — N 0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003
4 back[begin][end][A] = new Triple(split,B,C)




S— NP VP
S—>VP

VP — V NP

VP -V

VP -V @VP_V
VP — V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP
NP — N
PP — P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

0 fish people 2 fish 3 tanks 4
N — fish 0.2 NP — NP NP NP — NP NP
V — fish 0.6 0.0049 0.0000686
NP —> N 0.14 VP — V NP VP — V NP
' 0.105 0.00147
VP —V0.06 S —> VP S —> NP VP
1|5 — VP 0.006 0.0105 0.000882
N — people 0.5 |NP —> NP NP NP —> NP NP
V — people 0.1 0.0049 0.0000686
NP => N B2k re VoNcF;07 we VoNgooogs
VP —Vv0.01 S — NP VP S—> NP VP
2 S — VP 0.001 0.0189 0.01323
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP — N 0.14 VP > VONCF)’42
VP —- V 0.06 S 5 \p
3 S — VP 0.006 0.0042
N — tanks 0.2
for split = be_gin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
prob=score[begin][split][B]*score[split][end][C]*P(A->BC) NP — N 0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003
4 back[begin][end][A] = new Triple(split,B,C)




S— NP VP
S—>VP

VP — V NP

VP -V

VP -V @VP_V
VP — V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP
NP — N
PP — P NP

N — people
N — fish

N — tanks
0.2

N — rods

V — people
V — fish

V — tanks

P — with

0.1
0.5
0.1
0.3
0.1
1.0
0.1
0.2
0.7
1.0

0.5
0.2

0.1
0.1
0.6

0.3
10

fish people 2 fish tanks
N —> fish 0.2 NP —> NP NP NP —> NP NP NP —> NP NP
V —s fish 0.6 0.0049 0.0000686 | 0.0000009604
NP — N 0.14 VP —> V NP VP —> V/ NP VP —> V NP
0.105 0.00147 0.00002058
VP —V0.06 S VP S—> NP VP S—> NP VP
S — VP 0.006 0.0105 0.000882 0.00018522
N — people 0.5 |NP —> NP NP NP —> NP NP
NP — NI0.35 VP —> V NP VP —> V NP
' 0.007 0.000098
VP — V0.0l S—> NP VP S—> NP VP
S — VP 0.001 0.0189 0.01323
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP — N 0.14 VP — VONCF)’42
VP — V 0.06 S 5 VP
S —> VP 0.006 0.0042
N — tanks 0.2
V — tanks 0.1
NP —- NO0.14
VP >V O0.03
S— VP 0.003

Call buildTree(score, back) to get the best parse




Evaluating constituency parsing

Gold standard brackets:  S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
|

S
—_—
NP VP NP .
NNS NNS VBD VP NN .11
| | | — 7 |
o Sales 1 executives » were  VBG NP PP yesterday 19
3 examining DT NNS IN NP

| | | —
4 the 5 figuresg with ]J] NN
| |
7 great g careqg

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)
|
S
p———
NP VP .
NNS NNS VBD VP .11
I | I -
o Sales | executives » were  VBG NP PP
3 examining DT NNS IN NP
| | | —7

4 the s figuresg with J] NN NN
| I |
7 great g care g yesterday 1



Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
Candidate brackets:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Labeled Precision 3/7=42.9%
Labeled Recall 3/8=37.5%
LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%



How good are PCFGs?

- Penn WSJ parsing accuracy: about 73.7% LP/LR F1

- Robust
« Usually admit everything, but with low probability
 Partial solution for grammar ambiguity

« A PCFG gives some idea of the plausibility of a parse

e But not so good because the independence assumptions are
too strong

« Give a probabilistic language model
« But in the simple case it performs worse than a trigram model

« The problem seems to be that PCFGs lack the
lexicalization of a trigram model



Weaknesses of PCFGs

89



Weaknesses

e Lack of sensitivity to structural frequencies
* Lack of sensitivity to lexical information

(A word is independent of the rest of the tree given its POS!)

90



A Case of PP Attachment Ambiguity

(a) S

NP VP
|
NS /\
VP PP
'lNOI'LEI'S /\
VBD NP IN NP
| | T
dumped NlLlS into DT NN
|
sacks :|; biln
(b) 5
NP VP
NS /\
| VBD NP
workers | /\
dumped
NP PP
|
NNS NP

| T
sacks ;46 DT NN
| |

a bin



Rules Rules
S — NP VP S — NP VP
NP — NNS NP — NNS
VP — VP PP NP — NP PP
VP — VBD NP VP — VBD NP
NP — NNS NP — NNS
(a) PP — IN NP (b) PP — IN NP
NP — DT NN NP — DT NN

NNS — workers
VBD — dumped

NNS — workers
VBD — dumped

NNS — sacks NNS — sacks
IN — into IN — into
DT — a DT — a

NN — bin NN — bin

If q(NP — NP PP) > ¢(VP — VP PP) then (b) is more
probable, else (a) is more probable.

Attachment decision is completely independent of the
words



A Case of Coordination Ambiguity

(a) NP

NP cc NP
| |
Nfr’fth“jap and NNS
| |
NNS Imp cats

| |
dogs in NILIS
|

houses

(b) NP
NP PP
|
NNS
| IN NP

dogs |
in /‘\
NP CcC NP

| | |
NNS and NNS

houses cats



Rules

NP — NP CC NP
NP — NP PP
NP — NNS
PP — IN NP
NP — NNS
NP — NNS
NNS — dogs
IN — in

NNS — houses
CC — and
NNS — cats

Rules

NP — NP CC NP
NP — NP PP
NP — NNS
PP — IN NP
NP — NNS
NP — NNS
NNS — dogs
IN — in

NNS — houses
CC — and
NNS — cats

Here the two parses have identical rules, and
therefore have identical probability under any
assignment of PCFG rule probabilities

94




Structural Preferences: Close Attachment

(a) NP (b) NP

NP/\PP /\
NP PP
| T
T
NN NP v pp N WP
NP PP NN I NP NN
NN IN NP NN

» Example: president of a company in Africa

» Both parses have the same rules, therefore receive same

probability under a PCFG

» “Close attachment” (structure (a)) is twice as likely in Wall
Street Journal text.



Structural Preferences: Close Attachment

 Example: John was believed to have been shot by Bill

e Low attachment analysis (Bill does the shooting) contains same
rules as high attachment analysis (Bill does the believing)
* Two analyses receive the same probability

96



PCFGs and Independence

 The symbols in a PCFG define independence assumptions:
S l

NP
NP VP

AL B

* At any node, the material inside that node is independent of the
material outside that node, given the label of that node

* Any information that statistically connects behavior inside and
outside a node must flow through that node’s label

S —> NP VP
NP — DT NN




Non-Independence |

 The independence assumptions of a PCFG are often too strong

All NPs NPs under S NPs under VP
21% 237
1% 9% 9% 9%
l . o 7%
6% 4%
NP PP DTNN NP PP DT NN NP PP DT NN

* Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects)



Non-Independence i NP

/\
NP I NN
e Symptoms of overly strong assumptions: U

i : NNP POS n d
* Rewrites get used where they don’t belong | | new

Fidelity s
,/’}P‘R 2
NENE W e ) T
T N P N

Big  Board composite trading — NNP NNP composite  trading

Big  Board

N




Refining the Grammar Symbols

 We can relax independence assumptions by encoding
dependencies into the PCFG symbols, by state splitting:

Parent annotation Marking
[Johnson 98] possessive NPs
STROOT NP
/’/’!\ A
NP’S VP'S . NP-POS J] NN
PRP VBD ADVP'VP . NNP POS wnew ad
AN 0
He was right Fidelity 5

e Too much state-splitting =» sparseness (no smoothing used!)
 What are the most useful features to encode?



Linguistics in Unlexicalized Parsing

101



Horizontal Markovization

- Horizontal Markovization: Merges States

NNMP o W NNP Nw:\\‘%o,
NNP NP—NNP NNPe NNP NP— . NNTPe
bp o
74% 12000

73%

9000
72% 6000
71% ] I 3000 I I
70% - ‘ ‘ | | o . l | | ‘
0 1 2v 2 inf 0 2oV 2 inf

1

Horizontal Markov Order Horizontal Markov Order

Symbols




Vertical Markovization

e Vertical Markov order: Order 1 Order 2
rewrites depend on past S SROOT
k ancestor nodes. T e e
. _ NP VP , NP’S VP’'S .
(i.e., parent annotation) | N | | N |
PRP VBD ADJP . PRP VBD ADVPVP .
VAN | | N\
He  was righf He was righf
79% 25000
78% 20000
77% 0
76% - _8 15000
;i";o ] € 10000 -
% - (/)]
739 | 5000 -
72% - 0 -
1 2v 2 3v 3 1 2v 2 3v 3 :
Vertical Markov Order Vertical Markov Order MOdeI F] SIZG

v=h=2v | 77.8 | 7.5K




Unary Splits

Problem: unary
rewrites are used to
transmute
categories so a high-
probability rule can
be used.

Solution: Mark
unary rewrite sites
with -U

ROOT
|
S
T
NP VP .
NN VBD NP .
| | _—/ T
Revenue was NP , PP
| | TN
QP ., VBG NP
$ 444.9 million including  net interest
Annotation |FI1 Size
Base /7.8 |7.5K
UNARY /8.3 | 8.0K




Tag Splits

Problem: Treebank tags are
too coarse.

Example: SBAR sentential
complementizers (that,
whether, if), subordinating
conjunctions (while, after),
and true prepositions (in, of,
to) are all tagged IN.

Partial Solution:
e Subdivide the IN tag.

VP

N

TO VP

| /\

to VB SBAR

| T T~

see IN'SNT S

I N

if NP VP

NN VBZ

advertisi ng works

Annotation F1 Size

Previous /8.3 | 8.0K

SPLIT-IN 80.3 |8.1K




Other Tag Splits

F1 Size
. ) - . A ‘“
UNARY-DT: mark demonstratives as DT"U (“the 304 |81K
X" vs. those")
° - . A
UNARY-RB: mark phrasal adverbs as RBAU 805 |8 1K

(“quickly” vs. “very”)

 TAG-PA: mark tags with non-canonical parents

e SPLIT-AUX: mark auxiliary verbs with —AUX [cf.
Charniak 97] 81.6 [9.0K

e SPLIT-CC: separate “but” and “&" from other 817 191K
conjunctions | |

* SPLIT-%: “%" gets its own tag. 81.8 |9.3K




Yield Splits

_ _ ROOT
 Problem: sometimes the behavior |

of a category depends on S

something inside its future yield. m

* NP VP-VBF

P\ ||
“ DT VBZ NP I
* Examples: 2N
e Possessive NPs This is NN NN
* Finite vs. infinite VPs Pﬂln,c buy!ing
* Lexical heads!
 Solution: annotate future Annotation  TF1 Size

elements into nodes.
tag splits 82.3 |9.7K

POSS-NP 83.1 |9.8K

SPLIT-VP 85.7 | 10.5K




Distance / Recursion Splits

» Problem: vanilla PCFGs cannot NP -v

distinguish attachment 7\
heights. VP
=
NP
e Solution: mark a property of ‘ '1
PP
v

higher or lower sites:

 Contains a verb.

* |s (non)-recursive.

| Annotation F1 Size
. Bja\se NPs [cf: Collins 99] Previous 85.7 |110.5K
» Right-recursive NPs

BASE-NP 86.0 |11.7K

DOMINATES-V 86.9 |14.1K

RIGHT-REC-NP 87.0 |15.2K




A Fully Annotated Tree

ROOT
S“RC!C’-IT—V
“5 NP'S-B VP'S-VBE-v
/\
’l’ DT-U'NP VBZBEVP NP*VP-B
This ils NN@‘T\TP

panic  buying



Final Test Set Results

Parser LP LR F1

Magerman 95 34.9 34.6 84.7
Collins 96 86.3 85.8 86.0
Klein & Manning 03 | 86.9 85.7 86.3
Charniak 97 87.4 87.5 87.4
Collins 99 88.7 88.6 88.6

Beats “first generation” lexicalized parsers




Lexicalised PCFGs

111



Heads in Context Free Rules

Add annotations specifying the “head” of each rule:

112

S = NP VP
VP = V|

VP = Vt NP
VP = VP PP
NP = DT NN
NP = NP PP
PP = IN NP

Vi = sleeps
Vt = saw

NN = man

NN = woman
NN = telescope
DT = the

N = with

N = in




Heads

» Each context-free rule has one “special” child that is the
head of the rule. e.g.,

S = NP VP (VP is the head)
VP = Vit NP (Vt is the head)
NP = DT NN NN (NN is the head)

» A core idea in syntax
(e.g., see X-bar Theory, Head-Driven Phrase Structure
Grammar)

» Some intuitions:

» [ he central sub-constituent of each rule.
» [he semantic predicate in each rule.



Rules to Recover Heads: An Example for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP = DT NNP NN
NP = DT NN NNP
NP = NP PP
NP = DT JJ

114 NP = DT



Rules to Recover Heads: An Example for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt
Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

e.g.,
VP = Vt NP

VP = VP PP

115



Adding Headwords to Trees

116

S

NP VP
pT NN T
| | Vi NP
the lawyer | T T
questioned DT MNMN

the witness



Adding Headwords to Trees

S

T

NP VP

D(\NN /\

| | Vt NP

the lawyer | T T
questioned DT MNMN

the witness

4

S(questioned)

NP{(lawyer) VP(questioned)

DT(the) NN(lawyer)
| | V1i(questioned) NP (witness)
the lawyer
questioned

DT(the) NN(witness)
| |

the witness

117



Adding Headwords to Trees

S(questioned)

NP (lawyer) VP (questioned)

DT(the) NN(lawyer)
| | Vi(questioned) NP (witness)

the lawyer ‘
questioned DT(the) NN(witness)
| |

the witness

» A constituent receives its headword from its head child.

S = NP VP (S receives headword from VP)
VP = Vit NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)



Lexicalized CFGs in Chomsky Normal Form

» N is a set of non-terminal symbols
» > is a set of terminal symbols

» 7 is a set of rules which take one of three forms:

» X(h) — Yi(h) Yo(w) for X € N, and Y7.Y5 € N, and
h,w € X

» X(h) —o Yi(w) Ys(h) for X € N, and Y7.Y5 € N, and
h,w € X

» X(h) = hfor X € N,and h € X

» S € N is a distinguished start symbol

119



Example

S(saw) —o  NP(man) VP(saw)
VP(saw) —; Vt(saw) NP(dog)
NP(man) —5 DT(the) NN(man)
NP(dog) — DT(the) NN(dog)
Vt(saw) —  saw
DT(the) — the
NN(man) —  man
NN(dog) — dog

120



Lexicalized CKY

(VP->VBD. . .NP) [saw]

—— X[h]

(VP-> VBD [ saw] NP [her])

bestScore(X,i,j,h)
if (J = 1)
return score(X,s[i])

else
return
k;mif score (X[h]->Y[h]Z[w]) *
- bestScore(Y,i,k,h) *

bestScore (Z,k+1,j,w)
. max score (X[h]->Y[w]Z[h]) *
4 Iw
bestScore(Y,i,k,w) *
X->YZ
bestScore(Z,k+1,j,h)



Parsing with Lexicalized CFGs

» [he new form of grammar looks just like a Chomsky normal
form CFG, but with potentially O(|3|? x |N|?) possible rules.

» Naively, parsing an n word sentence using the dynamic
programming algorithm will take O(n?|X|?|N'|?) time. But
22| can be huge!!

» Crucial observation: at most O(n? x |N|?) rules can be
applicable to a given sentence wy, wo. ... w, of length n.
This is because any rules which contain a lexical item that is
not one of w; ... w,, can be safely discarded.

» The result: we can parse in O(n”|N|?) time.



Pruning with Beams

X[h]

* The Collins parser prunes with
per-cell beams [Collins 99]

* Essentially, run the O(n>) CKY

« Remember only a few hypotheses for
each span <i,j>.

* If we keep K hypotheses at each
span, then we do at most O(nK?)
work per span (why?)

» Keeps things more or less cubic

e Also: certain spans are forbidden
entirely on the basis of
punctuation (crucial for speed)



Parameter Estimation

S(saw)

P(man) VP(saw)

T(the) NN(man) /\
| |
the man P(saw) P(with)
Vt(saw) NP(dog) IN(with) P(telescope)

| |

| | T(the) NN(telescope)

|
the dog the telescope

p(t) = ¢(S(saw) —2 NP(man) VP(saw))
xq(NP(man) —5 DT(the) NN(man))
xq(VP(saw) —1 VP(saw) PP(with))

/(VP(saw) —; Vit(saw) NP(dog))

(PP(with) —1 IN(with) NP(telescope))

X
S

X (

X



A Model from Charniak (1997)

» An example parameter in a Lexicalized PCFG:

q(S(saw) —9 NP(man) VP(saw))

» First step: decompose this parameter into a product of two
parameters

q(S(saw) —2 NP(man) VP(saw))
= (S —9 NP VP|S, saw) x ¢g(man|S —5 NP VP, saw)

125



A Model from Charniak (1997)

q(S(saw) —9 NP(man) VP(saw))
= q(S —2 NP VP|S, saw) x g(man|S —5 NP VP, saw)

» Second step: use smoothed estimation for the two parameter
estimates

q(S —2 NP VP|S, saw)
= )\1 X qML(S —29 NP VPlS, saw) + )\Q X (LML(S —9 NP VPlS)

g(man|S —5 NP VP, saw)
= )\‘3 X qML(man|S —>9 NP VP, saw) + )\4 X qML(man|S —9 NP VP)
+)\5 X qML(man|NP)

126



Final Test Set Results

Parser LP LR F1

Magerman 95 34.9 34.6 84.7
Collins 96 86.3 85.8 86.0
Klein & Manning 03 | 86.9 85.7 86.3
Charniak 97 87.4 87.5 87.4
Collins 99 88.7 88.6 88.6




Strengths and Weaknesses of PCFG Parsers

(Numbers taken from Collins (2003))

131

>

>

>

>

>

Subject-verb pairs: over 95% recall and precision
Object-verb pairs: over 92% recall and precision

Other arguments to verbs: =~ 93% recall and precision
Non-recursive NP boundaries: =~ 93% recall and precision
PP attachments: ~ 82% recall and precision

Coordination ambiguities: =~ 61% recall and precision



