
Statistical Natural Language Parsing

Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein,
Chris Manning, Ray Mooney, Luke Zettlemoyer)

Two views of linguistic structure:
1. Constituency (phrase structure)

• Phrase structure organizes words into nested constituents.

• How do we know what is a constituent? (Not that linguists don’t
argue about some cases.)
• Distribution: a constituent behaves as a unit that can appear in different

places:

• John talked [to the children] [about drugs].

• John talked [about drugs] [to the children].

• *John talked drugs to the children about

• Substitution/expansion/pro-forms:

• I sat [on the box/right on top of the box/there].

• Coordination, regular internal structure, no intrusion,
fragments, semantics, …

Two views of linguistic structure:
2. Dependency structure

• Dependency structure shows which words depend on (modify or
are arguments of) which other words.

The boy put the tortoise on the rug

rug

the

the

ontortoise

put

boy

The

Why Parse?

• Part of speech information

• Phrase information

• Useful relationships

8

The rise of annotated data:

The Penn Treebank

((S
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))
(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)

(NP (JJ other) (NNS lenders)))
(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)

(NP (DT that) (NN market)))))))
(. .)))

[Marcus et al. 1993, Computational Linguistics]

Penn Treebank Non-terminals

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP
applications:

• High precision question answering [Pasca and Harabagiu SIGIR 2001]

• Improving biological named entity finding [Finkel et al. JNLPBA 2004]

• Syntactically based sentence compression [Lin and Wilbur 2007]

• Extracting opinions about products [Bloom et al. NAACL 2007]

• Improved interaction in computer games [Gorniak and Roy 2005]

• Helping linguists find data [Resnik et al. BLS 2005]

• Source sentence analysis for machine translation [Xu et al. 2009]

• Relation extraction systems [Fundel et al. Bioinformatics 2006]

Example Application: Machine Translation

• The boy put the tortoise on the rug

• लड़के ने रखा कछुआ ऊपर कालीन

• SVO vs. SOV; preposition vs. post-position

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

Example Application: Machine Translation

• The boy put the tortoise on the rug

• लड़के ने रखा कछुआ ऊपर कालीन

• SVO vs. SOV; preposition vs. post-position

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

S

NP VPPP

DT NN V NPIN NP

DT NNDT NN
the

boy
put

tortoisethe
the rug

on

Example Application: Machine Translation

• The boy put the tortoise on the rug

• लड़के ने रखा कछुआ ऊपर कालीन

• SVO vs. SOV; preposition vs. post-position

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

S

NP VPPP

DT NN V NPINNP

DT NNDT NN
the

boy
put

tortoisethe
the rug

on

Example Application: Machine Translation

• The boy put the tortoise on the rug

• लड़के ने रखा कछुआ ऊपर कालीन

• SVO vs. SOV; preposition vs. post-position

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

S

NP VPPP

DT NN VNPINNP

DT NNDT NN
the

boy

put

tortoisethe
the rug

on

Example Application: Machine Translation

• The boy put the tortoise on the rug

• लड़के ने रखा कछुआ ऊपर कालीन

• SVO vs. SOV; preposition vs. post-position

S

NP VP PP

DT NN V NP IN NP

DT NN DT NNthe
boy

put

tortoisethe
the rug

on

S

NP VPPP

DT NN VNPINNP

DT NNDT NNलड़के ने
रखा

कछुआकालीन

ऊपर

Pre 1990 (“Classical”) NLP Parsing

• Goes back to Chomsky’s PhD thesis in 1950s

• Wrote symbolic grammar (CFG or often richer) and lexicon
S NP VP NN interest

NP (DT) NN NNS rates

NP NN NNS NNS raises

NP NNP VBP interest

VP V NP VBZ rates

• Used grammar/proof systems to prove parses from words

• This scaled very badly and didn’t give coverage. For sentence:

Fed raises interest rates 0.5% in effort to control inflation
• Minimal grammar: 36 parses

• Simple 10 rule grammar: 592 parses

• Real-size broad-coverage grammar: millions of parses

Classical NLP Parsing:
The problem and its solution

• Categorical constraints can be added to grammars to limit
unlikely/weird parses for sentences
• But the attempt make the grammars not robust

• In traditional systems, commonly 30% of sentences in even an edited
text would have no parse.

• A less constrained grammar can parse more sentences
• But simple sentences end up with ever more parses with no way to

choose between them

• We need mechanisms that allow us to find the most likely
parse(s) for a sentence
• Statistical parsing lets us work with very loose grammars that admit

millions of parses for sentences but still quickly find the best parse(s)

Context Free Grammars and Ambiguities

20

Context-Free Grammars

21

Context-Free Grammars in NLP

• A context free grammar G in NLP = (N, C, Σ, S, L, R)
• Σ is a set of terminal symbols

• C is a set of preterminal symbols

• N is a set of nonterminal symbols

• S is the start symbol (S ∈ N)

• L is the lexicon, a set of items of the form X x

• X ∈ C and x ∈ Σ

• R is the grammar, a set of items of the form X

• X ∈ N and ∈ (N ∪ C)*

• By usual convention, S is the start symbol, but in statistical NLP,
we usually have an extra node at the top (ROOT, TOP)

• We usually write e for an empty sequence, rather than nothing
22

A Context Free Grammar of English

23

Left-Most Derivations

24

Properties of CFGs

25

A Fragment of a Noun Phrase Grammar

26

Extended Grammar with Prepositional Phrases

27

Verbs, Verb Phrases and Sentences

28

PPs Modifying Verb Phrases

29

Complementizers and SBARs

30

More Verbs

31

Coordination

32

Much more remains…

33

Attachment ambiguities

• A key parsing decision is how we ‘attach’ various constituents
• PPs, adverbial or participial phrases, infinitives, coordinations, etc.

Attachment ambiguities

• A key parsing decision is how we ‘attach’ various constituents
• PPs, adverbial or participial phrases, infinitives, coordinations, etc.

• Catalan numbers: C
n

= (2n)!/[(n+1)!n!]

• An exponentially growing series, which arises in many tree-like contexts:

• E.g., the number of possible triangulations of a polygon with n+2 sides

• Turns up in triangulation of probabilistic graphical models….

Attachments

• I cleaned the dishes from dinner

• I cleaned the dishes with detergent

• I cleaned the dishes in my pajamas

• I cleaned the dishes in the sink

Syntactic Ambiguities I

• Prepositional phrases:
They cooked the beans in the pot on the stove with
handles.

• Particle vs. preposition:
The lady dressed up the staircase.

• Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

• Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II

• Modifier scope within NPs
impractical design requirements
plastic cup holder

• Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

• Coordination scope:
Small rats and mice can squeeze into holes or cracks in
the wall.

Non-Local Phenomena

• Dislocation / gapping
• Which book should Peter buy?

• A debate arose which continued until the election.

• Binding
• Reference

• The IRS audits itself

• Control
• I want to go

• I want you to go

40

Context-Free Grammars in NLP

• A context free grammar G in NLP = (N, C, Σ, S, L, R)
• Σ is a set of terminal symbols

• C is a set of preterminal symbols

• N is a set of nonterminal symbols

• S is the start symbol (S ∈ N)

• L is the lexicon, a set of items of the form X x

• X ∈ C and x ∈ Σ

• R is the grammar, a set of items of the form X

• X ∈ N and ∈ (N ∪ C)*

• By usual convention, S is the start symbol, but in statistical NLP,
we usually have an extra node at the top (ROOT, TOP)

• We usually write e for an empty sequence, rather than nothing
42

Parsing: Two problems to solve:
1. Repeated work…

Parsing: Two problems to solve:
1. Repeated work…

Parsing: Two problems to solve:
2. Choosing the correct parse

• How do we work out the correct attachment:

• She saw the man with a telescope

• Is the problem ‘AI complete’? Yes, but …

• Words are good predictors of attachment
• Even absent full understanding

• Moscow sent more than 100,000 soldiers into Afghanistan …

• Sydney Water breached an agreement with NSW Health …

• Our statistical parsers will try to exploit such statistics.

Probabilistic Context Free Grammar

46

Probabilistic – or stochastic – context-free
grammars (PCFGs)

• G = (Σ, N, S, R, P)
• T is a set of terminal symbols

• N is a set of nonterminal symbols

• S is the start symbol (S ∈ N)

• R is a set of rules/productions of the form X

• P is a probability function

• P: R [0,1]

•

• A grammar G generates a language model L.

P(g) =1
g ÎT*

å

PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0

VP ⇒ Vi 0.4

VP ⇒ Vt NP 0.4

VP ⇒ VP PP 0.2

NP ⇒ DT NN 0.3

NP ⇒ NP PP 0.7

PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0

Vt ⇒ saw 1.0

NN ⇒ man 0.7

NN ⇒ woman 0.2

NN ⇒ telescope 0.1

DT ⇒ the 1.0

IN ⇒ with 0.5

IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is

p(t) =
n

i = 1

q(α i → βi)

where q(α → β) is the probability for rule α → β.

44

Example of a PCFG

49

Probability of a Parse
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0

VP ⇒ Vi 0.4

VP ⇒ Vt NP 0.4

VP ⇒ VP PP 0.2

NP ⇒ DT NN 0.3

NP ⇒ NP PP 0.7

PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0

Vt ⇒ saw 1.0

NN ⇒ man 0.7

NN ⇒ woman 0.2

NN ⇒ telescope 0.1

DT ⇒ the 1.0

IN ⇒ with 0.5

IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is

p(t) =
n

i = 1

q(α i → βi)

where q(α → β) is the probability for rule α → β.

44

A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0

VP ⇒ Vi 0.4

VP ⇒ Vt NP 0.4

VP ⇒ VP PP 0.2

NP ⇒ DT NN 0.3

NP ⇒ NP PP 0.7

PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0

Vt ⇒ saw 1.0

NN ⇒ man 0.7

NN ⇒ woman 0.2

NN ⇒ telescope 0.1

DT ⇒ the 1.0

IN ⇒ with 0.5

IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is

p(t) =
n

i = 1

q(α i → βi)

where q(α → β) is the probability for rule α → β.

44

The man sleeps

The man saw the woman with the telescope

NNDT Vi

VPNP

NNDT

NP

NNDT

NP

NNDT

NPVt

VP

IN

PP

VP

S

S

t1=

p(t1)=1.0*0.3*1.0*0.7*0.4*1.0

1.0

0.40.3

1.0 0.7 1.0

t2=

p(ts)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1

1.0

0.3 0.3 0.3

0.2

0.4 0.4

0.51.0

1.0 1.0 1.00.7 0.2 0.1

PCFGs: Learning and Inference

 Model
 The probability of a tree t with n rules αi βi, i = 1..n

 Learning
 Read the rules off of labeled sentences, use ML estimates for

probabilities

 and use all of our standard smoothing tricks!

 Inference
 For input sentence s, define T(s) to be the set of trees whose yield is s

(whole leaves, read left to right, match the words in s)

Grammar Transforms

52

Chomsky Normal Form

• All rules are of the form X Y Z or X w
• X, Y, Z ∈ N and w ∈ Σ

• A transformation to this form doesn’t change the weak
generative capacity of a CFG
• That is, it recognizes the same language

• But maybe with different trees

• Empties and unaries are removed recursively

• n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

S NP VP

VP V NP

VP V NP PP

NP NP NP

NP NP PP

NP N

NP e

PP P NP

N people

N fish

N tanks

N rods

V people

V fish

V tanks

P with

Chomsky Normal Form steps

S NP VP

S VP

VP V NP

VP V

VP V NP PP

VP V PP

NP NP NP

NP NP

NP NP PP

NP PP

NP N

PP P NP

PP P

N people

N fish

N tanks

N rods

V people

V fish

V tanks

P with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V

S V

VP V NP PP

S V NP PP

VP V PP

S V PP

NP NP NP

NP NP

NP NP PP

NP PP

NP N

PP P NP

PP P

N people

N fish

N tanks

N rods

V people

V fish

V tanks

P with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V

VP V NP PP

S V NP PP

VP V PP

S V PP

NP NP NP

NP NP

NP NP PP

NP PP

NP N

PP P NP

PP P

N people

N fish

N tanks

N rods

V people

S people

V fish

S fish

V tanks

S tanks

P with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V NP PP

S V NP PP

VP V PP

S V PP

NP NP NP

NP NP

NP NP PP

NP PP

NP N

PP P NP

PP P

N people

N fish

N tanks

N rods

V people

S people

VP people

V fish

S fish

VP fish

V tanks

S tanks

VP tanks

P with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V NP PP

S V NP PP

VP V PP

S V PP

NP NP NP

NP NP PP

NP P NP

PP P NP

NP people

NP fish

NP tanks

NP rods

V people

S people

VP people

V fish

S fish

VP fish

V tanks

S tanks

VP tanks

P with

PP with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V @VP_V

@VP_V NP PP

S V @S_V

@S_V NP PP

VP V PP

S V PP

NP NP NP

NP NP PP

NP P NP

PP P NP

NP people

NP fish

NP tanks

NP rods

V people

S people

VP people

V fish

S fish

VP fish

V tanks

S tanks

VP tanks

P with

PP with

A phrase structure grammar

S NP VP

VP V NP

VP V NP PP

NP NP NP

NP NP PP

NP N

NP e

PP P NP

N people

N fish

N tanks

N rods

V people

V fish

V tanks

P with

Chomsky Normal Form steps

S NP VP

VP V NP

S V NP

VP V @VP_V

@VP_V NP PP

S V @S_V

@S_V NP PP

VP V PP

S V PP

NP NP NP

NP NP PP

NP P NP

PP P NP

NP people

NP fish

NP tanks

NP rods

V people

S people

VP people

V fish

S fish

VP fish

V tanks

S tanks

VP tanks

P with

PP with

Chomsky Normal Form

• You should think of this as a transformation for efficient parsing

• With some extra book-keeping in symbol names, you can even
reconstruct the same trees with a detransform

• In practice full Chomsky Normal Form is a pain
• Reconstructing n-aries is easy

• Reconstructing unaries/empties is trickier

• Binarization is crucial for cubic time CFG parsing

• The rest isn’t necessary; it just makes the algorithms cleaner and
a bit quicker

ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N
N

An example: before binarization…

P NP

rods

N

with

NP

N

people tanksfish

N

VP

V NP PP

@VP_V

ROOT

S

After binarization…

Parsing

67

Constituency Parsing

fish people fish tanks

Rule Prob θi

S NP VP θ0

NP NP NP θ1

…

N fish θ42

N people θ43

V fish θ44

…

PCFG

N N V N

VP

NPNP

S

Cocke-Kasami-Younger (CKY)
Constituency Parsing (Parse Triangle/Chart)

fish people fish tanks

Viterbi (Max) Scores

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

Extended CKY parsing

• Unaries can be incorporated into the algorithm
• Messy, but doesn’t increase algorithmic complexity

• Empties can be incorporated
• Use fenceposts

• Doesn’t increase complexity; essentially like unaries

Extended CKY parsing

• Unaries can be incorporated into the algorithm
• Messy, but doesn’t increase algorithmic complexity

• Empties can be incorporated
• Use fenceposts

• Doesn’t increase complexity; essentially like unaries

• Binarization is vital
• Without binarization, you don’t get parsing cubic in the length of the

sentence and in the number of nonterminals in the grammar

• Binarization may be an explicit transformation or implicit in how the parser
works (Earley-style dotted rules), but it’s always there.

A Recursive Parser

bestScore(X,i,j,s)

if (j == i)

return q(X->s[i])

else

return max q(X->YZ) *

bestScore(Y,i,k,s) *

bestScore(Z,k+1,j,s)

k,X->YZ

function CKY(words, grammar) returns [most_probable_parse,prob]

score = new double[#(words)+1][#(words)+1][#(nonterms)]

back = new Pair[#(words)+1][#(words)+1][#nonterms]]

//LEXICON

for i=0; i<#(words); i++

for A in nonterms

if A -> words[i] in grammar

score[i][i+1][A] = P(A -> words[i])

//handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

if score[i][i+1][B] > 0 && A->B in grammar

prob = P(A->B)*score[i][i+1][B]

if prob > score[i][i+1][A]

score[i][i+1][A] = prob

back[i][i+1][A] = B

added = true

The CKY algorithm (1960/1965)
… extended to unaries

//build higher order cells

for span = 2 to #(words)

for begin = 0 to #(words)- span

end = begin + span

for split = begin+1 to end-1

for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)

if prob > score[begin][end][A]

score[begin]end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

//handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

prob = P(A->B)*score[begin][end][B];

if prob > score[begin][end][A]

score[begin][end][A] = prob

back[begin][end][A] = B

added = true

return buildTree(score, back)

The CKY algorithm (1960/1965)
… extended to unaries

The grammar:
Binary, no epsilons,

S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks 0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

score[0][1]

score[1][2]

score[2][3]

score[3][4]

score[0][2]

score[1][3]

score[2][4]

score[0][3]

score[1][4]

score[0][4]

0

1

2

3

4

1 2 3 4fish people fish tanks

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

for i=0; i<#(words); i++

for A in nonterms

if A -> words[i] in grammar

score[i][i+1][A] = P(A -> words[i]);

N fish 0.2
V fish 0.6

N people 0.5
V people 0.1

N fish 0.2
V fish 0.6

N tanks 0.2
V tanks 0.1

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

// handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

if score[i][i+1][B] > 0 && A->B in grammar

prob = P(A->B)*score[i][i+1][B]

if(prob > score[i][i+1][A])

score[i][i+1][A] = prob

back[i][i+1][A] = B

added = true

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)

if (prob > score[begin][end][A])

score[begin]end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

NP NP NP
0.0049

VP V NP
0.105

S NP VP
0.00126

NP NP NP
0.0049

VP V NP
0.007

S NP VP
0.0189

NP NP NP
0.00196

VP V NP
0.042

S NP VP
0.00378

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

//handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

prob = P(A->B)*score[begin][end][B];

if prob > score[begin][end][A]

score[begin][end][A] = prob

back[begin][end][A] = B

added = true

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

NP NP NP
0.0049

VP V NP
0.105

S VP
0.0105

NP NP NP
0.0049

VP V NP
0.007

S NP VP
0.0189

NP NP NP
0.00196

VP V NP
0.042

S VP
0.0042

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

for split = begin+1 to end-1

for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)

if prob > score[begin][end][A]

score[begin]end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

NP NP NP
0.0049

VP V NP
0.105

S VP
0.0105

NP NP NP
0.0049

VP V NP
0.007

S NP VP
0.0189

NP NP NP
0.00196

VP V NP
0.042

S VP
0.0042

NP NP NP
0.0000686

VP V NP
0.00147

S NP VP
0.000882

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

for split = begin+1 to end-1

for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)

if prob > score[begin][end][A]

score[begin]end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

NP NP NP
0.0049

VP V NP
0.105

S VP
0.0105

NP NP NP
0.0049

VP V NP
0.007

S NP VP
0.0189

NP NP NP
0.00196

VP V NP
0.042

S VP
0.0042

NP NP NP
0.0000686

VP V NP
0.00147

S NP VP
0.000882

NP NP NP
0.0000686

VP V NP
0.000098

S NP VP
0.01323

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

for split = begin+1 to end-1

for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)

if prob > score[begin][end][A]

score[begin]end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N people 0.5
V people 0.1
NP N 0.35
VP V 0.01
S VP 0.001

N fish 0.2
V fish 0.6
NP N 0.14
VP V 0.06
S VP 0.006

N tanks 0.2
V tanks 0.1
NP N 0.14
VP V 0.03
S VP 0.003

NP NP NP
0.0049

VP V NP
0.105

S VP
0.0105

NP NP NP
0.0049

VP V NP
0.007

S NP VP
0.0189

NP NP NP
0.00196

VP V NP
0.042

S VP
0.0042

NP NP NP
0.0000686

VP V NP
0.00147

S NP VP
0.000882

NP NP NP
0.0000686

VP V NP
0.000098

S NP VP
0.01323

NP NP NP
0.0000009604

VP V NP
0.00002058

S NP VP
0.00018522

0

1

2

3

4

1 2 3 4fish people fish tanks
S NP VP 0.9

S VP 0.1

VP V NP 0.5

VP V 0.1

VP V @VP_V 0.3

VP V PP 0.1

@VP_V NP PP 1.0

NP NP NP 0.1

NP NP PP 0.2

NP N 0.7

PP P NP 1.0

N people 0.5

N fish 0.2

N tanks
0.2

N rods 0.1

V people 0.1

V fish 0.6

V tanks 0.3

P with 1.0

Call buildTree(score, back) to get the best parse

Evaluating constituency parsing

Evaluating constituency parsing

Gold standard brackets:
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

How good are PCFGs?

• Penn WSJ parsing accuracy: about 73.7% LP/LR F1

• Robust

• Usually admit everything, but with low probability

• Partial solution for grammar ambiguity

• A PCFG gives some idea of the plausibility of a parse

• But not so good because the independence assumptions are

too strong

• Give a probabilistic language model

• But in the simple case it performs worse than a trigram model

• The problem seems to be that PCFGs lack the

lexicalization of a trigram model

Weaknesses of PCFGs

89

Weaknesses

• Lack of sensitivity to structural frequencies

• Lack of sensitivity to lexical information

• (A word is independent of the rest of the tree given its POS!)

90

A Case of PP Attachment Ambiguity

91

92

A Case of Coordination Ambiguity

93

94

Structural Preferences: Close Attachment

95

Structural Preferences: Close Attachment

• Example: John was believed to have been shot by Bill

• Low attachment analysis (Bill does the shooting) contains same
rules as high attachment analysis (Bill does the believing)
• Two analyses receive the same probability

96

PCFGs and Independence

• The symbols in a PCFG define independence assumptions:

• At any node, the material inside that node is independent of the
material outside that node, given the label of that node

• Any information that statistically connects behavior inside and
outside a node must flow through that node’s label

NP

S

VP

S NP VP

NP DT NN

NP

Non-Independence I

• The independence assumptions of a PCFG are often too strong

• Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects)

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Non-Independence II

• Symptoms of overly strong assumptions:
• Rewrites get used where they don’t belong

In the PTB, this

construction is

for possessives

Refining the Grammar Symbols

• We can relax independence assumptions by encoding
dependencies into the PCFG symbols, by state splitting:

• Too much state-splitting sparseness (no smoothing used!)

• What are the most useful features to encode?

Parent annotation

[Johnson 98]
Marking

possessive NPs

Linguistics in Unlexicalized Parsing

101

Horizontal Markovization

• Horizontal Markovization: Merges States

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

S
y
m

b
o

ls

Vertical Markovization

• Vertical Markov order:
rewrites depend on past
k ancestor nodes.

(i.e., parent annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0

5000

10000

15000

20000

25000

1 2v 2 3v 3

Vertical Markov Order

S
y
m

b
o

ls

Model F1 Size

v=h=2v 77.8 7.5K

Unary Splits

• Problem: unary
rewrites are used to
transmute
categories so a high-
probability rule can
be used.

Annotation F1 Size

Base 77.8 7.5K

UNARY 78.3 8.0K

 Solution: Mark
unary rewrite sites
with -U

Tag Splits

• Problem: Treebank tags are
too coarse.

• Example: SBAR sentential
complementizers (that,
whether, if), subordinating
conjunctions (while, after),
and true prepositions (in, of,
to) are all tagged IN.

• Partial Solution:
• Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K

Other Tag Splits

• UNARY-DT: mark demonstratives as DT^U (“the
X” vs. “those”)

• UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

• TAG-PA: mark tags with non-canonical parents
(“not” is an RB^VP)

• SPLIT-AUX: mark auxiliary verbs with –AUX [cf.
Charniak 97]

• SPLIT-CC: separate “but” and “&” from other
conjunctions

• SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

Yield Splits

• Problem: sometimes the behavior
of a category depends on
something inside its future yield.

• Examples:
• Possessive NPs

• Finite vs. infinite VPs

• Lexical heads!

• Solution: annotate future
elements into nodes.

Annotation F1 Size

tag splits 82.3 9.7K

POSS-NP 83.1 9.8K

SPLIT-VP 85.7 10.5K

Distance / Recursion Splits

• Problem: vanilla PCFGs cannot
distinguish attachment
heights.

• Solution: mark a property of
higher or lower sites:
• Contains a verb.

• Is (non)-recursive.

• Base NPs [cf. Collins 99]

• Right-recursive NPs

Annotation F1 Size

Previous 85.7 10.5K

BASE-NP 86.0 11.7K

DOMINATES-V 86.9 14.1K

RIGHT-REC-NP 87.0 15.2K

NP

VP

PP

NP

v

-v

A Fully Annotated Tree

Final Test Set Results

• Beats “first generation” lexicalized parsers

Parser LP LR F1

Magerman 95 84.9 84.6 84.7

Collins 96 86.3 85.8 86.0

Klein & Manning 03 86.9 85.7 86.3

Charniak 97 87.4 87.5 87.4

Collins 99 88.7 88.6 88.6

Lexicalised PCFGs

111

Heads in Context Free Rules

112

Heads

113

Rules to Recover Heads: An Example for NPs

114

Rules to Recover Heads: An Example for VPs

115

Adding Headwords to Trees

116

Adding Headwords to Trees

117

Adding Headwords to Trees

118

Lexicalized CFGs in Chomsky Normal Form

119

Example

120

Lexicalized CKY

Y[h] Z[h’]

X[h]

i h k h’ j

(VP-> VBD[saw] NP[her])

(VP->VBD...NP)[saw]

bestScore(X,i,j,h)

if (j = i)

return score(X,s[i])

else

return

max score(X[h]->Y[h]Z[w]) *

bestScore(Y,i,k,h) *

bestScore(Z,k+1,j,w)

max score(X[h]->Y[w]Z[h]) *

bestScore(Y,i,k,w) *

bestScore(Z,k+1,j,h)

k,h,w

X->YZ

k,h,w

X->YZ

Parsing with Lexicalized CFGs

122

Pruning with Beams

• The Collins parser prunes with
per-cell beams [Collins 99]
• Essentially, run the O(n5) CKY

• Remember only a few hypotheses for
each span <i,j>.

• If we keep K hypotheses at each
span, then we do at most O(nK2)
work per span (why?)

• Keeps things more or less cubic

• Also: certain spans are forbidden
entirely on the basis of
punctuation (crucial for speed)

Y[h] Z[h’]

X[h]

i h k h’ j

Parameter Estimation

124

A Model from Charniak (1997)

125

A Model from Charniak (1997)

126

Final Test Set Results

Parser LP LR F1

Magerman 95 84.9 84.6 84.7

Collins 96 86.3 85.8 86.0

Klein & Manning 03 86.9 85.7 86.3

Charniak 97 87.4 87.5 87.4

Collins 99 88.7 88.6 88.6

Strengths and Weaknesses of PCFG Parsers

131

