
Advanced Pre-training for Language Models





Pre-Training Objectives
● Pre-training with abundantly available data

● Use Self-Supervised Learning

● GPT: Language Modeling

● Predict next word given left context

● Word2Vec, BERT, RoBERTa: Masked Language Modeling

● Predict missing word given a certain context



Next Sentence Prediction (NSP)

https://amitness.com/2020/02/albert-visual-summary/



Train the CLS and SEP tokens
Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] 
milk [SEP] 
Label = IsNext 

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight 
##less birds [SEP] 
Label = NotNext

Strategy used in BERT but shown to be ineffective in RoBERTa



Sentence Order Prediction (SOP)

● NSP primarily requires topic-prediction
● SOP can be used to focus on inter-sentence coherence (ALBERT)

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] 
milk [SEP] 
Label = CorrectOrder

Input = [CLS] he bought a gallon [MASK] milk [SEP] the man went to [MASK] 
store [SEP] 
Label = InCorrectOrder



Masking Strategy in BERT
● Mask 15% of the input tokens

● Problem 1: Assumes that the MASK tokens are independent of each other
● Problem 2: [MASK] tokens never appear during fine-tuning



Masking Strategy in BERT

● Mask 15% of the input tokens

● 80% of the time: Replace the word with the [MASK] token, e.g., my dog is 
hairy → my dog is [MASK]



Masking Strategy in BERT

● Mask 15% of the input tokens

● 80% of the time: Replace the word with the [MASK] token, e.g., my dog is 
hairy → my dog is [MASK]

● 10% of the time: Replace the word with a random word, e.g., my dog is 
hairy → my dog is apple 



Masking Strategy in BERT
● Mask 15% of the input tokens

● 80% of the time: Replace the word with the [MASK] token, e.g., my dog is 
hairy → my dog is [MASK]

● 10% of the time: Replace the word with a random word, e.g., my dog is 
hairy → my dog is apple 

● 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my 
dog is hairy. 



The boat was beached on the riverside



Permutation Modeling using XLNET

The boat was beached on the riverside



Approximate Computation Time



Granularity of Masking

● BERT chooses word-pieces but this is sub-optimal 

● Philammon → Phil ##am ##mon 

● Not much information to be gained by predicting at word piece level



Granularity of Masking

● BERT-wwm (whole word masking): Always mask entire word

● BERT: Phil ##am [MASK] was a great singer 

● BERT-wwm: [MASK] [MASK] [MASK] was a great singer



SpanBERT

● [MASK] Delhi, the Indian Capital is known for its rich heritage.

● Easier to predict “New”, given that we already know Delhi

● Instead of masking individual words, mask contiguous spans

● [MASK] [MASK], the Indian Capital is known for its rich heritage.



Knowledge Masking Strategies in ERNIE



ERNIE 2.0

● Word-Level Pre-training:
○ Capitalization Prediction Task
○ Token-Document Relation Prediction Task (Frequency)

● Sentence-Level Pre-training:
○ Sentence Reordering Task
○ Sentence Distance Task

● Semantic-Level Pre-training:
○ Discourse Relation Task
○ IR Relevance Task



Pre-Trained Encoder-Decoder Models



Pre-training Encoder-Decoder models

BERT GPT



BART from Facebook



T5 from Google



T5: Unsupervised Pre-training Objectives



Tokenization Strategies





Byte Pair Encoding (cs224n slides)



Byte Pair Encoding











Byte Pair Encoding



Wordpiece model

● Rather than char n-gram count, uses a greedy 
approximation to maximizing language model log 
likelihood to choose the pieces 

● Add n-gram that maximally reduces perplexity

● [link1] and [link2] contain further details

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/37842.pdf
https://arxiv.org/abs/1508.07909


Issues with Wordpiece tokenizers

● Handles “sub-words” but not “typos”
● Need to re-train for adding new languages
● Takes engineering effort to maintain

Character-level models



CANINE: Character-level Pre-trained Encoder

● Issues:
● Results in much longer sequence-lengths
● 143K unicode characters

● Down-sample input embeddings (Convolution)
● Hash functions to reduce embedding space



ByT5: Byte-level Seq2Seq

● Operate directly on byte-representations
○ Only 256 input embeddings!

● Embeddings occupy 66% of T5-base 

● “Unbalanced”-Seq2Seq
○ 6 layer encoder, 2 layer decoder (3:1)



Positional Embeddings





Absolute Positional Embeddings in BERT

● Transformer architecture suggested using sinusoidal embeddings

● BERT instead learnt absolute positional embeddings

● Fine tuned a randomly initialized embedding matrix

● Size: 512 * 768

● To reduce training time: 90% of the time trained with sequence size of 128



Relative Positional Embeddings

RPE(j-i,k)



Relative Positional Embeddings in T5

Only 32 embeddings, scaled logarithmically



Long Input Transformers



Attention in Transformers

● Every word attends over every other word

● O(n^2) complexity, compared to O(n) complexity of LSTM

● Inherently unscalable to long sequences



Transformer-XL: Recurrence in Transformers

● Chunk the text into segments

● Attend over current and previous segments

● Don’t pass gradient to previous segment

● Faster training and inference (1800x)



Transformer-XL



BigBird - Sparse Attention



BigBird - Sparse Attention



BigBird - Sparse Attention



BigBird - Sparse Attention (8x faster)



LongFormer


