Advanced Pre-training for Language Models

Pre-Training Objectives

- Pre-training with abundantly available data
- Use Self-Supervised Learning
- GPT: Language Modeling
 - Predict next word given left context
- Word2Vec, BERT, RoBERTa: Masked Language Modeling
 - Predict missing word given a certain context

Next Sentence Prediction (NSP)

https://amitness.com/2020/02/albert-visual-summary/

Train the CLS and SEP tokens

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK]
milk [SEP]
Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight
##less birds [SEP]
Label = NotNext

Strategy used in BERT but shown to be ineffective in RoBERTa

Sentence Order Prediction (SOP)

- NSP primarily requires topic-prediction
- SOP can be used to focus on inter-sentence coherence (ALBERT)

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label = CorrectOrder

Input = [CLS] he bought a gallon [MASK] milk [SEP] the man went to [MASK] store [SEP] Label = InCorrectOrder

• Mask 15% of the input tokens

- **Problem 1:** Assumes that the MASK tokens are independent of each other
- **Problem 2**: [MASK] tokens never appear during fine-tuning

- Mask 15% of the input tokens
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]

- Mask 15% of the input tokens
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple

- Mask 15% of the input tokens
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy.

The boat was beached on the riverside

Permutation Modeling using XLNET

The boat was beached on the riverside

Approximate Computation Time

ULMFit	1 GPU day
ELMo	40 GPU days
BERT	450 GPU days
XLNet	2000 GPU days

Granularity of Masking

- BERT chooses word-pieces but this is sub-optimal
- Philammon \rightarrow Phil ##am ##mon
- Not much information to be gained by predicting at word piece level

Granularity of Masking

- BERT-wwm (whole word masking): Always mask entire word
- BERT: Phil ##am [MASK] was a great singer
- BERT-wwm: [MASK] [MASK] [MASK] was a great singer

SpanBERT

- [MASK] Delhi, the Indian Capital is known for its rich heritage.
- Easier to predict "New", given that we already know Delhi
- Instead of masking individual words, mask contiguous spans
- [MASK] [MASK], the Indian Capital is known for its rich heritage.

Knowledge Masking Strategies in ERNIE

ERNIE 2.0

- Word-Level Pre-training:
 - Capitalization Prediction Task
 - Token-Document Relation Prediction Task (Frequency)
- Sentence-Level Pre-training:
 - Sentence Reordering Task
 - Sentence Distance Task
- Semantic-Level Pre-training:
 - Discourse Relation Task
 - IR Relevance Task

Pre-Trained Encoder-Decoder Models

BART from Facebook

T5 from Google

T5: Unsupervised Pre-training Objectives

Objective	Inputs	Targets
Prefix language modeling	Thank you for inviting	me to your party last week .
BERT-style Devlin et al. (2018)	Thank you <m> <m> me to your party apple week .</m></m>	(original text)
Deshuffling	party me for your to . last fun you inviting week Thank	(original text)
MASS-style Song et al. (2019)	Thank you <m> <m> me to your party <m> week .</m></m></m>	(original text)
I.i.d. noise, replace spans	Thank you <x> me to your party <y> week .</y></x>	<x> for inviting <y> last <z></z></y></x>
I.i.d. noise, drop tokens	Thank you me to your party week .	for inviting last
Random spans	Thank you <x> to <y> week .</y></x>	<x> for inviting me <y> your party last <z></z></y></x>

Tokenization Strategies

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

Byte Pair Encoding (cs224n slides)

- Originally a compression algorithm:
 - Most frequent byte pair \mapsto a new byte.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword Units. ACL 2016.

<u>https://arxiv.org/abs/1508.07909</u> <u>https://github.com/rsennrich/subword-nmt</u> <u>https://github.com/EdinburghNLP/nematus</u>

Byte Pair Encoding

- A word segmentation algorithm:
 - Though done as bottom up clusering
 - Start with a unigram vocabulary of all (Unicode) characters in data
 - Most frequent ngram pairs → a new ngram

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs → a new ngram

5 low 2 lower 6 newest 3 widest Vocabulary

l, o, w, e, r, n, w, s, t, i, d

start with all characters in vocab

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs → a new ngram

5 low 2 lower 6 new**es**t 3 wid**es**t Vocabulary

l, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e, s) with freq 9

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs → a new ngram

- 5 low
- 2 lower
- 6 new **est**
- 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs → a new ngram

5 low
2 lower
6 newest
3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

Add a pair (1, 0) with freq 7

Byte Pair Encoding

- Have a target vocabulary size and stop when you reach it
- Do deterministic longest piece segmentation of words
- Segmentation is only within words identified by some prior tokenizer (commonly Moses tokenizer for MT)
- Automatically decides vocab for system
 - No longer strongly "word" based in conventional way

Wordpiece model

- Rather than char n-gram count, uses a greedy approximation to maximizing language model log likelihood to choose the pieces
- Add n-gram that maximally reduces perplexity
- [<u>link1</u>] and [<u>link2</u>] contain further details

Issues with Wordpiece tokenizers

- Handles "sub-words" but not "typos"
- Need to re-train for adding new languages
- Takes engineering effort to maintain

Character-level models

CANINE: Character-level Pre-trained Encoder

- Issues:
- Results in much longer sequence-lengths
- 143K unicode characters

- Down-sample input embeddings (Convolution)
- Hash functions to reduce embedding space

ByT5: Byte-level Seq2Seq

- Operate directly on byte-representations
 Only 256 input embeddings!
- Embeddings occupy 66% of T5-base
- "Unbalanced"-Seq2Seq
 6 layer encoder, 2 layer decoder (3:1)

Positional Embeddings

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

Absolute Positional Embeddings in BERT

- Transformer architecture suggested using sinusoidal embeddings
- BERT instead learnt absolute positional embeddings
- Fine tuned a randomly initialized embedding matrix
- Size: 512 * 768
- To reduce training time: 90% of the time trained with sequence size of 128

Relative Positional Embeddings

$$z_i = \sum_{j=1}^n \alpha_{ij}(x_j W^V)$$
 $z_i = \sum_{j=1}^n \alpha_{ij}(x_j W^V + a_{ij}^V)$

$$e_{ij} = \frac{(x_i W^Q)(x_j W^K)^T}{\sqrt{d_z}} \qquad \qquad e_{ij} = \frac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$$

Relative Positional Embeddings in T5

$$Att_{ij} = Q_i * K_j + RPE_{clip(j-i,128)}$$

Only 32 embeddings, scaled logarithmically

Long Input Transformers

Attention in Transformers

- Every word attends over every other word
- O(n^2) complexity, compared to O(n) complexity of LSTM
- Inherently unscalable to long sequences

Transformer-XL: Recurrence in Transformers

- Chunk the text into segments
- Attend over current and previous segments
- Don't pass gradient to previous segment
- Faster training and inference (1800x)

Transformer-XL

BigBird - Sparse Attention

(c) Global Attention

BigBird - Sparse Attention

(b) Window attention

BigBird - Sparse Attention

(a) Random attention

BigBird - Sparse Attention (8x faster)

(d) **BIGBIRD**

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.