Recurrent Neural Networks

Mausam

IIT Delhi
(some slides by Yoav Goldberg, Silviu Pitis)

Common NLP Tasks

- Word-level Tasks
- Understanding word synonyms, word senses...
- Sentence/Document Classification
- Sentiment Mining, Fake news detection, Racist tweet classification
- Sequence Labeling
- POS Tagging, Noun Phrase Chunking, Named Entity Recognition
- Parsing: converting sentence to its syntactic structure
- Generation Tasks
- Machine Translation, Summarization, Dialogue Systems

Common NLP Tasks

- Word-level Tasks
- Understanding word synonyms, word senses...
- Sentence/Document Classification
- Sentiment Mining, Fake news detection, Racist tweet classification
- Sequence Labeling
- POS Tagging, Noun Phrase Chunking, Named Entity Recognition
- Parsing: converting sentence to its syntactic structure
- Generation Tasks
- Machine Translation, Summarization, Dialogue Systems

Main Challenge in Text Data

- Input (sentence) is variable length
- Classification: Output may be a single bit

This book is a fantastic read. This movie should never have been made.

- Sequence Labeling: Output may be a sequence of same length as input

- Generation: Output may be sequence of length different from input

Dealing with Sequences

- For an input sequence $\mathbf{x 1}, \ldots, \mathbf{x n}$, we can:
- If n is fixed: concatenate and feed into an MLP.
- ${ }^{\text {sl }}$ Some of these approaches consider local word order
- Br
${ }^{\text {co }}$ How can we consider global word order?
- Fir
a single vector.

Recurrent Neural Networks (Encoder)

- Model to handle variable length input
- Parameters/model cannot be position dependent
- Same computation will be repeated at every position

Recurrent Neural Networks (Encoder)

Recurrent Neural Networks (Encoder)

$$
R N N\left(s_{t-1}, x_{t}\right)=s_{t}, y_{t}{\underset{\text { prev }}{\text { state }}}_{s_{t-1}}^{s_{t}=R\left(s_{t-1}, x_{t}\right)} \underbrace{\substack{\mathrm{s}_{\mathrm{t}} \\
\text { Rext output } \\
\text { state }}}_{\text {RNN }} \begin{aligned}
& x_{t} \in \mathbb{R}^{\text {din }} \\
& y_{t} \in \mathbb{R}^{\text {dout }} \\
& s_{t} \in \mathbb{R}^{\text {dstate }}
\end{aligned}
$$

$$
y_{t}=O\left(s_{t}\right)
$$

- They are called recurrent nets
- because the same computation recurs at each position
- There's a vector y_{t} for every prefix $x_{1: t}$

Unrolling an RNN

y_{t} depends on $x_{1: t}$

$$
\begin{aligned}
y_{t} & =O\left(s_{t}\right) \\
s_{t} & =R\left(s_{t-1}, x_{t}\right) \\
& =R\left(R\left(s_{t-2}, x_{t-1}\right), x_{t}\right) \\
& =R\left(R\left(R\left(s_{t-3}, x_{t-2}\right), x_{t-1}\right), x_{t}\right) \\
& \ldots \\
& \left.=R\left(R\left(R \ldots R\left(s_{0}, x_{1}\right), x_{2}\right), \ldots\right), x_{t}\right)
\end{aligned}
$$

y_{t} depends on $x_{1: t}$

$$
\begin{aligned}
y_{t} & =O\left(s_{t}\right) \\
s_{t} & =R\left(s_{t-1}, x_{t}\right) \\
& =R\left(R\left(s_{t-2}, x_{t-1}\right), x_{t}\right) \\
& =R\left(R\left(R\left(s_{t-3}, x_{t-2}\right), x_{t-1}\right), x_{t}\right) \\
& \cdots \\
& \left.=R\left(R\left(R \ldots R\left(s_{0}, x_{1}\right), x_{2}\right), \ldots\right), x_{t}\right) \\
y_{t} & =O\left(s_{t}\right) \\
s_{t} & =R N N\left(s_{0}, x_{1: t}\right)
\end{aligned}
$$

Classification: To make a single bit prediction for the full sentence decode y_{t}

Sentiment Classification

Sentence Classification (Sentiment Mining)

Training: BPTT
 Backpropagation through Time

Building a Simple RNN

- What are good functions for R and O ?

$$
\begin{aligned}
& s_{t}=R\left(s_{t-1}, x_{t}\right) \\
& y_{t}=O\left(s_{t}\right)
\end{aligned}
$$

- Suggestion 1: $s_{t}=s_{t-1}+x_{t}$
- What are the parameters?
- Problem?
- Suggestion2: $s_{t}=\tanh \left(s_{t-1}+x_{t}+b^{s}\right)$
- Problem?

Building a Simple RNN

- What are good functions for R and O ?

$$
\begin{aligned}
& s_{t}=R\left(s_{t-1}, x_{t}\right) \\
& y_{t}=O\left(s_{t}\right)
\end{aligned}
$$

- Suggestion 1: $s_{t}=s_{t-1}+x_{t}$
- Problem?
- Suggestion2: $s_{t}=\tanh \left(s_{t-1}+x_{t}+b^{s}\right)$
- Problem?
- Elman's RNN: $s_{t}=\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right) \longleftarrow s_{t}=R\left(s_{t-1}, x_{t}\right)$

$$
y_{t}=\tanh \left(W^{y} s_{t}+b^{y}\right)
$$

$$
\longleftarrow y_{t}=O\left(s_{t}\right)
$$

RNN Transducer for Sequence Labeling (POS Tagging)

RNN \rightarrow Bidirectional RNN

- An RNN s_{t} encodes all history $x_{1: t}$.
- But, future can also help in making a prediction
- Example: "the length is 6 hours" vs. "the length is 6 metres"
- A bidirectional RNN runs two unidirectional RNNs
- The final state encodes $\mathrm{x}_{1: \mathrm{t}}$ and $\mathrm{x}_{\mathrm{t}: \mathrm{T}}$

Bidirectional RNN

Bidirectional RNN

Bidirectional RNN

Bidirectional RNN for Classification

Elman's RNN

- $s_{t}=\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right)$
- $y_{t}=\tanh \left(W^{y} s_{t}+b^{y}\right)$
- Theorem: Any non-linear dynamical system can be approximated to any accuracy by an Elman's RNN, provided that the network has enough hidden units.
- Just because it can approximate it, doesn't mean it knows how to!
- In practice: Elman's RNN is very hard to train
- This is because of vanishing/exploding gradients!

$$
\frac{\partial L}{\partial W^{s}}=\sum_{k=1}^{T}\left(\frac{\partial L}{\partial s_{T}} \frac{\partial s_{k}}{\partial W^{s}} \prod_{i=k+1}^{T} \frac{\partial \mathrm{R}\left(s_{i-1}, x_{i}\right)}{\partial d_{i}} W^{s}\right)
$$

Vanishing Gradients

$$
\begin{gathered}
\qquad R_{S R N N}\left(\mathbf{s}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right)=\tanh \left(\mathbf{W}^{\mathbf{s}} \cdot \mathbf{s}_{\mathbf{i}-\mathbf{1}}+\mathbf{W}^{\mathbf{x}} \cdot \mathbf{x}_{\mathbf{i}}+b^{s}\right) \\
\frac{\partial L}{\partial \theta}=\sum_{t=1}^{T} \frac{\partial L}{\partial \theta} \\
\frac{\partial L}{\partial W^{s}}=\sum_{k=1}^{T}\left(\frac{\partial L}{\partial s_{T}} \frac{\partial s_{T}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W^{s}}\right) \\
\frac{\partial s_{T}}{\partial s_{k}}=\prod_{i=k+1}^{T} \frac{\partial s_{i}}{\partial s_{i-1}}= \\
\frac{\partial L}{\partial W^{s}}=\sum_{k=1}^{T}\left(\frac{\partial L}{\partial s_{T}} \frac{\partial s_{k}}{\partial W^{s}} \prod_{i=k+1}^{T} \frac{\partial \mathrm{R}\left(s_{i-1}, x_{i}\right)}{\partial d_{i}} W^{s}\right)
\end{gathered}
$$

A Memory View of Elman's RNN

- $s_{t}=\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right)$
- $y_{t}=\tanh \left(W^{y} s_{t}+b^{y}\right)$
- Think of RNN as a computer. Input (x_{t}) arrives. Memory s gets updated
- In Elman RNN entire memory is rewritten at every time step!
- There is no explicit inertia!
- Memory predicts the output PLUS maintains the history
- Ideally those two calculations should be separated.

Selectivity to Control Writing

- Write Selectively: when taking class notes, we only record the most important points; we certainly don't write our new notes on top of our old notes
- Read Selectively: apply the most relevant new knowledge
- Forget Selectively: in order to make room for new information, we need to selectively forget the least relevant old information

Building Towards LSTM

- Main Idea: control the reading and writing of memory

We'd like to:

- Selectively read from some memory "cells".
- Selectively write to some memory "cells".
- Selectively write from the "input".

Vector of Gates

- Read/write selectivity

Gating to Control Access in an LSTM

- Main Idea: control the reading and writing of memory

Problem with 0-1 Gates

- They are fixed
- They don't depend on inputs or outputs
- We need to make them differentiable!
- Solution: make the gates "soft" and "input dependent"
- Instead of $f \in\{0,1\}^{\text {dstate }}$, use $f \in[0,1]^{\text {dstate }}$
- Moreover, compute $f=\sigma\left(W s_{t-1}+W^{\prime} x_{t}+b\right)$

number between 0 and 1

Differentiable Gating to Control Access in an LSTM

- Main Idea: control the reading and writing of memory

\[\)| $s_{t}=s_{t-1} \odot f_{t}$ |
| :--- |$+x_{t} \odot i_{t} \quad$| $f_{t} \in[0,1]^{\text {dstate }}$ |
| :--- |
| $i_{t} \in[0,1]^{\text {dstate }}$ |

\]

time-dependent soft
input gate
forget gate

\[\)| $f_{t}=\sigma\left(W^{s f} s_{t-1}+W^{x f} x_{t}+b^{f}\right)$ |
| :--- |
| $i_{t}=\sigma\left(W^{s i} s_{t-1}+W^{x i} x_{t}+b^{i}\right)$ |

\]

Differentiable Gating to Control Access in an LSTM

- Not a good idea adding input to state

$$
\begin{array}{ll}
s_{t}=s_{t-1} \odot f_{t}+x_{t} \odot i_{t} & \begin{array}{l}
f_{t}=\sigma\left(W^{s f} s_{t-1}+W^{x f} x_{t}+b^{f}\right) \\
i_{t}=\sigma\left(W^{s i} s_{t-1}+W^{x i} x_{t}+b^{i}\right)
\end{array} \\
s_{t}=s_{t-1} \odot f_{t}+\tilde{s}_{t} \odot i_{t} & \\
\tilde{s}_{t}=\phi\left(s_{t-1}, x_{t}\right) \underbrace{}_{\text {proposal for new state }}
\end{array}
$$

From Elman RNN to Prototype LSTM

- RNN: $s_{t}=\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right)$

$$
y_{t}=\tanh \left(W^{y} s_{t}+b^{y}\right)
$$

- Prototype LSTM:

$$
\begin{aligned}
& s_{t}=s_{t-1} \odot f_{t}+\tilde{s}_{t} \odot i_{t} \\
& \tilde{s}_{t}=\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right) \\
& f_{t}=\sigma\left(W^{s f} s_{t-1}+W^{x f} x_{t}+b^{f}\right) \\
& i_{t}=\sigma\left(W^{s i} s_{t-1}+W^{x i} x_{t}+b^{i}\right)
\end{aligned}
$$

Problem: same s_{t} will be used for output and maintaining state

Prototype LSTM \rightarrow LSTM by Splitting the State

- Prototype LSTM:

$$
\begin{aligned}
\tilde{s}_{t} & =\tanh \left(W^{s} s_{t-1}+W^{x} x_{t}+b^{s}\right) \\
s_{t} & =s_{t-1} \odot f_{t}+\tilde{s}_{t} \odot i_{t}
\end{aligned}
$$

$$
f_{t}=\sigma\left(W^{s f} s_{t-1}+W^{x f} x_{t}+b^{f}\right)
$$

$$
i_{t}=\sigma\left(W^{s i} s_{t-1}+W^{x i} x_{t}+b^{i}\right)
$$

- LSTM:

$$
\begin{aligned}
& \tilde{c}_{t}=\tanh \left(W^{s} h_{t-1}+W^{x} x_{t}+b^{s}\right) \\
& c_{t}=c_{t-1} \odot f_{t}+\tilde{c}_{t} \odot i_{t} \\
& h_{t}=\tanh \left(c_{t}\right) \odot o_{t}
\end{aligned}
$$

$$
f_{t}=\sigma\left(W^{s f} h_{t-1}+W^{x f} x_{t}+b^{f}\right)
$$

$$
i_{t}=\sigma\left(W^{s i} h_{t-1}+W^{x i} x_{t}+b^{i}\right)
$$

$$
o_{t}=\sigma\left(W^{s o} h_{t-1}+W^{x o} x_{t}+b^{o}\right)
$$

Asssumption: information irrelevant for previous output is irrelevant for gate computation

$$
\begin{gathered}
\tilde{c}_{t}=\tanh \left(W^{s} h_{t-1}+W^{x} x_{t}+b^{s}\right) \\
c_{t}=c_{t-1} \odot f_{t}+\tilde{c}_{t} \odot i_{t} \\
h_{t}=\tanh \left(c_{t}\right) \odot o_{t}
\end{gathered}
$$

$$
\begin{gathered}
f_{t}=\sigma\left(W^{s f} h_{t-1}+W^{x f} x_{t}+b^{f}\right) \\
i_{t}=\sigma\left(W^{s i} h_{t-1}+W^{x i} x_{t}+b^{i}\right) \\
o_{t}=\sigma\left(W^{s o} h_{t-1}+W^{x o} x_{t}+b^{o}\right)
\end{gathered}
$$

LSTM

Less Problem of Vanishing Gradient

$$
\begin{gathered}
c_{t}=c_{t-1} \odot f_{t}+\tilde{c}_{t} \odot i_{t} \\
f_{t}=\sigma\left(W^{s f} h_{t-1}+W^{x f} x_{t}+b^{f}\right) \\
\frac{\partial c_{t}}{\partial c_{t-1}}=\frac{\partial f_{t}}{\partial c_{t-1}} c_{t-1}+\frac{\partial c_{t-1}}{\partial c_{t-1}} f_{t}+\frac{\partial i_{t}}{\partial c_{t-1}} \tilde{c}_{t}+\frac{\partial \tilde{c}_{t}}{\partial c_{t-1}} i_{t} \\
\text { Initialize such that } f_{t} \rightarrow 1 \\
=>b^{f}=1 \text { or more }
\end{gathered}
$$

GRU (Gated Recurrent Unit)

- Impose a hard bound on the state \& coordinate writes and forgets by explicitly linking them
- instead of selective writes and selective forgets, we do selective overwrites
- by setting our forget gate equal to 1 minus our write gate

GRU (Gated Recurrent Unit)

- The GRU formulation:

$$
\mathrm{s}_{\mathrm{j}}=R_{\mathrm{GRU}}\left(\mathrm{~s}_{\mathrm{j}-\mathbf{1}}, \mathrm{x}_{\mathbf{j}}\right)=
$$

Proposal state: $\quad \tilde{\mathrm{s}}_{\mathbf{j}}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x s}}+\left(\mathbf{r} \odot \mathrm{s}_{\mathbf{j}-\mathbf{1}}\right) \mathbf{W}^{\mathrm{sg}}\right)$

GRU (Gated Recurrent Unit)

- The GRU formulation:

$$
\mathrm{s}_{\mathbf{j}}=R_{\mathrm{GRU}}\left(\mathrm{~s}_{\mathbf{j}-\mathbf{1}}, \mathrm{x}_{\mathbf{j}}\right)=
$$

gate controlling effect of prev on proposal:

$$
\begin{aligned}
\mathbf{r} & =\sigma\left(\mathrm{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x r}}+\mathrm{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathrm{sr}}\right) \\
\tilde{\mathbf{s}_{\mathbf{j}}} & \left.=\tanh \left(\mathrm{x}_{\mathbf{j}} \mathbf{W}^{\mathrm{xs}}+(\mathrm{r}) \cdot \mathrm{s}_{\mathbf{j}-\mathbf{1}}\right) \mathbf{W}^{\mathbf{s g}}\right)
\end{aligned}
$$

GRU (Gated Recurrent Unit)

$$
\left.\begin{array}{rl}
& \text { blend of old state and } \\
\text { proposal state }
\end{array}\right\} \begin{aligned}
\mathbf{s}_{\mathbf{j}}=R_{\mathrm{GRU}}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right)= & (\mathbf{1}-\mathbf{z}) \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}+\mathbf{z} \odot \tilde{\mathbf{s}}_{\mathbf{j}} \\
\mathbf{r} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x r}}+\mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{s r}}\right) \\
\tilde{\mathbf{s}_{\mathbf{j}}}= & \tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x s}}+\left(\mathbf{r} \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}\right) \mathbf{W}^{\mathbf{s g}}\right)
\end{aligned}
$$

GRU (Gated Recurrent Unit)

$$
\mathbf{s}_{\mathbf{j}}=R_{\mathrm{GRU}}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right)=(\mathbf{1}-\mathbf{z}) \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}+\mathbf{z} \odot \tilde{\mathbf{s}_{\mathbf{j}}}
$$

gate for controlling the blend

$$
\begin{aligned}
\mathbf{z} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x} \mathbf{z}}+\mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{s z} \mathbf{z}}\right) \\
\mathbf{r} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x r}}+\mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{s r} \mathbf{r}}\right) \\
\tilde{\mathbf{s}_{\mathbf{j}}} & =\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x s}}+\left(\mathbf{r} \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}\right) \mathbf{W}^{\mathbf{s g}}\right)
\end{aligned}
$$

GRU (Gated Recurrent Unit)

- The GRU formulation.

$$
\begin{aligned}
\mathbf{s}_{\mathbf{j}}=R_{\mathrm{GRU}}\left(\mathbf{s}_{\mathbf{j}-\mathbf{1}}, \mathbf{x}_{\mathbf{j}}\right) & =(\mathbf{1}-\mathbf{z}) \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}+\mathbf{z} \odot \tilde{\mathbf{s}}_{\mathbf{j}} \\
\mathbf{z} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x} \mathbf{z}}+\mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{s z}}\right) \\
\mathbf{r} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x r}}+\mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{s \mathbf { r }}}\right) \\
\tilde{\mathbf{s}_{\mathbf{j}}} & =\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x s}}+\left(\mathbf{r} \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}}\right) \mathbf{W}^{\mathbf{s g}}\right)
\end{aligned}
$$

Other Variants

- Many other variants exist.
- Mostly perform similarly to each other.
- Different tasks may work better with different variants.
- The important idea is the differentiable gates.

Deep LSTMs

(a) Conventional stacked RNN

Deep Bi-LSTMs

Pooling in RNNs (2020)

Why and when should you pool? Analyzing Pooling in Recurrent Architectures

Pratyush Maini ${ }^{\dagger}$, Keshav Kolluru ${ }^{\dagger}$, Danish Pruthi ${ }^{\ddagger}$, Mausam ${ }^{\dagger}$
${ }^{\dagger}$ Indian Institute of Technology, Delhi, India
${ }^{\ddagger}$ Carnegie Mellon University, Pittsburgh, USA
\{pratyush.maini, keshav.kolluru\}@gmail.com, ddanish@cs.cmu.edu, mausam@cse.iitd.ac.in

Sentence Representation: Pooling in RNNs

You can't cram the meaning of the whole *\%\#@ing sentence in a single *\%\#@ing vector.

- Encoding a single vector is too restrictive. Instead of producing a single vector for the sentence, produce one vector for each word.
- But, eventually need 1 vector. Multiple vectors \rightarrow Single vector \rightarrow Pooling

Pooling

Attention

Vanishing Gradients @~Start of Training

(a) Gradient Norms

Vanishing Ratio

$$
\text { vanishing ratio }\left(\left\|\frac{\partial L}{\partial h_{\text {mid }}}\right\| /\left\|\frac{\partial L}{\partial h_{\text {end }}}\right\|\right)
$$

(b) BiLSTM

Size-Accuracy-Vanishing

	Vanishing ratio			Validation acc.		
	1K	5K	20K	1 K	5K	20K
BiLSTM	5×10^{-3}	0.03		64.9		88.4
MeanPool	2.5	0.56	1.32	78.4	82.6	88.5
MaxPool	0.40	0.42	0.53	78.0		89.6
AtT	3.87	1.04	1.19	77.1		90.0
Maxatt	0.69	0.69	0.64	78.1	86.0	90.2

Table 2: Values of vanishing ratio as computed when different models achieve 95% training accuracy, along with the best validation accuracy for that run.

Important Words in Middle?

How well can different models be trained to skip unrelated words?

Results

	IMDb			IMDb (mid) + Wiki			IMDb (right) + Wiki		
	1K	2 K	10K	1K	2K	10K	1K	2K	10K
BiLSTM	64.7 ± 2.3	75.0 ± 0.4	86.6 ± 0.8	49.6 ± 0.7	49.9 ± 0.5	50.3 ± 0.3	53.5 ± 2.5	64.7 ± 2.8	85.9 ± 0.5
MeanPool	73.0 ± 3.0	81.7 ± 0.7	87.1 ± 0.6	69.8 ± 2.1	76.2 ± 1.0	84.1 ± 0.7	70.0 ± 1.1	76.8 ± 1.0	84.8 ± 0.9
MaxPool	69.0 ± 3.9	80.1 ± 0.5	87.8 ± 0.6	64.5 ± 1.8	77.2 ± 2.0	86.0 ± 0.8	65.9 ± 4.6	77.8 ± 0.9	87.2 ± 0.6
Att	75.7 ± 2.6	$\mathbf{8 2 . 8} \pm 0.8$	$\mathbf{8 9 . 0} \pm 0.3$	75.0 ± 0.8	79.4 ± 0.8	86.7 ± 1.4	74.7 ± 1.4	80.2 ± 1.8	87.1 ± 1.0
MaxAtT	75.9 ± 2.2	82.5 ± 0.4	88.5 ± 0.5	75.4 ± 2.4	$\mathbf{8 0 . 9} \pm 1.8$	$\mathbf{8 6 . 8} \pm 0.5$	77.9 ± 0.9	$\mathbf{8 1 . 9} \pm 0.5$	87.2 ± 0.5
		Yahoo		Yaho	O (mid) +	Wiki	Yahoo	(right) +	Wiki
	1K	2 K	10K	1 K	2 K	10K	1 K	2 K	10K
BiLSTM	38.3 ± 4.8	51.4 ± 2.1	63.5 ± 0.6	12.7 ± 1.1	12.7 ± 1.1	11.4 ± 0.8	18.8 ± 2.5	37.3 ± 0.9	60.1 ± 1.5
MeanPool	48.2 ± 2.3	56.6 ± 0.5	64.7 ± 0.6	31.9 ± 2.3	43.1 ± 2.0	58.5 ± 0.6	33.9 ± 2.1	43.2 ± 1.0	58.6 ± 0.4
MaxPool	50.2 ± 2.1	56.3 ± 1.8	63.9 ± 1.1	33.0 ± 1.0	40.1 ± 1.4	58.4 ± 1.2	33.1 ± 2.5	41.2 ± 0.9	60.9 ± 1.0
Att	47.3 ± 2.2	54.2 ± 1.1	$\mathbf{6 5 . 1} \pm 1.5$	39.4 ± 0.5	45.1 ± 1.8	61.5 ± 1.7	37.9 ± 1.4	47.6 ± 2.3	62.2 ± 0.9
MAXATT	$\mathbf{5 1 . 8} \pm 1.1$	57.0 ± 1.1	$\mathbf{6 5 . 1} \pm 1.1$	$\mathbf{3 9 . 6} \pm 0.9$	48.5 ± 0.6	$\mathbf{6 2 . 2} \pm 1.6$	$\mathbf{4 0 . 3} \pm 1.5$	$\mathbf{5 0 . 1} \pm 1.6$	$\mathbf{6 3 . 1} \pm 0.7$

Conclusions

- pooling mitigates the problem of vanishing gradients
- pooling eliminates positional biases
- gradients in BiLSTM vanish only in initial iterations, recover slowly during further training
- We link the observation with training saturation to provide insights as to why BiLSTMs fail in low resource setups but pooled architectures don't
- BiLSTMs suffer from positional biases even when sentence lengths are short: ~30 words
- pooling makes models significantly more robust to insertions of words on either end of the input regardless of the amount of training data

