N-gram features
Convolutional Networks

Yoav Goldberg



"feature embeddings”

- Each feature is assigned a vector.

- The input is a combination of feature vectors.

- The feature vectors are parameters of the model

and are trained jointly with the rest of the network.

- Representation Learning: similar features will
receive similar vectors.



"feature embeddings”
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"feature embeddings”
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"feature embeddings”
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Continuous Bag of Words
(CBOW)
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- a popular choice in document classification.

. can assign a different weight to each feature:
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Text Classification
with CBOW
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\ If each feature is bigram,
works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better
but not like bigrams.

"neural bag of words”



Importance of Ngrams

- While we can ignore global order in many cases...

- ... local ordering is still often very important.

- Local sub-sequences encode useful structures.



Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.

- Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)



ConvNets

special architecture for local predictors



ConvNets

- CBOW allows encoding arbitrary length sequences, but
loses all order information.

- Some local order (i.e. bigrams, trigrams) is informative.
Yet, we do not care about exact position in the
Sequence. (think "good" vs. "not good")

- ConvNets (in language) allow to identify informative
local predictors.

- Works by moving a shared function (feature extractor)
over a sliding window, then pooling results.



ConvNets

- ConvNets have huge success in computer vision.

- It allows invariance to object position.

- |t allows composing large predictors from smaill.
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(another way to represent text convolutions)
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(another way to represent text convolutions)

conv

M=000




the actual service was  not very good

(we'll focus on the 1-d view here,
but remember they are equivalent)
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(usually also add non linearity)
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(can have larger filters)
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the actual service was  not very good

we have the ngram vectors. now what?
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the actual service was  not very good

can do "pooling”




"Pooling”

Combine K vectors into a single vector



"Pooling”

Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.



average pooling average vector
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prediction
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train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)
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train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)
the vectors learn to capture what's important




we have the ngram vectors. now what?

Can look at the differences between terms.

microsoft office software

car body shop

Free office 2000
download office excel
word office online
apartment office hours

massachusetts office location

international office berkeley

0.550
0.541
0.502
0.331
0.293
0.274

car body kits

auto body repair

auto body parts

wave body language
calculate body fat
forcefield body armour

0.698
0.578
0.555
0.301
0.220
0.165

Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of “office” and
“body” m different contexts after the CLSM 1s trained.
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average pooling average vector
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max pooling max vec;tor
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(max in each coordinate)



Another way to draw this:

the quick brown fox jumped over the lazy dog
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max pooling max vec;tor
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max vs average — discuss

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification



one benefit of max-pooling: it's "interpretable”

we can know where each element
iIn the summary vector came from



Examples of resulting "summaries™

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator

online auto body repair estimates
vitamin a the health benefits given by carrots
calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document fitles. We examine the five most
active neurons at the max-pooling layer and highlight the words
in bold who win at these five neurons in the max operation. Note
that, the feature of a word 1s extracted from that word together
with the context words around 1t, but only the center word 1s
highlighted 1n bold.



Strides

the actual service was  not very good

strides = how much you move




Strides
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Hierarchy



Hierarchy
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can have hierarchy
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(can combine: pooling + hierarchy)




Hierarchy
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the actual service was not very good

2-layer hierarchical conv with k=2



Dilated Convolutions

we want to cover more of the sequence

idea: strides + hierarchy



Dilated Convolutions
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dilated convolution, k=3

idea: strides + hierarchy



ConvNets Summary

- Shared matrix used as feature detector.

- Extracts interesting ngrams.

- Pool ngrams to get fixed length representation.
- Max-pooling works well.

- Max vs. Average pooling.

- Use hierarchy / dilation to expand coverage.

- Train end-to-end.



Character CNNs

Fix the input OOV problem
Input: some insight in word shapes (xxxxing, xxxxly)

. Output: can’t ever output a word not in vocabulary

ldea
Instead (or in addition of) word embedding

- Use word = CNN over character sequences

/8



Char CNN for Words

. Varied filter sizes

- Word embedding

Character-Aware Neural Language Models

Yoon Kim Yacine Jernite David Sontag Alexander M. Rush
School of Engineering Courant Institute Courant Institute School of Engineering
and Applied Sciences of Mathematical Sciences of Mathematical Sciences and Applied Sciences

Harvard University New York University New York University Harvard University
yoonkim @seas.harvard.edu jernite @cs.nyu.edu dsontag @cs.nyu.edu srush@seas.harvard.edu

moment the iabsurdity: is

recognized

- Can't differentiate between words w similar spellings

- Solution: add small correctigpn [e,,=CNN(chars,, )+M.cor

]



Multi-task Learning

(time permitting)



The pitch

. Different NLP prediction tasks have shared

structures.
- Hints for predicting A may help to predict B.

- Instead of training a network to do one thing, train it
to do several things.

- YOU ARE ALL WINNERS



POS scores Chunk scores
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Multi-Task Learning
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