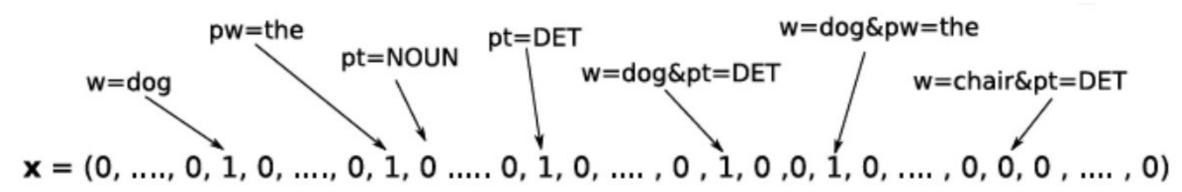
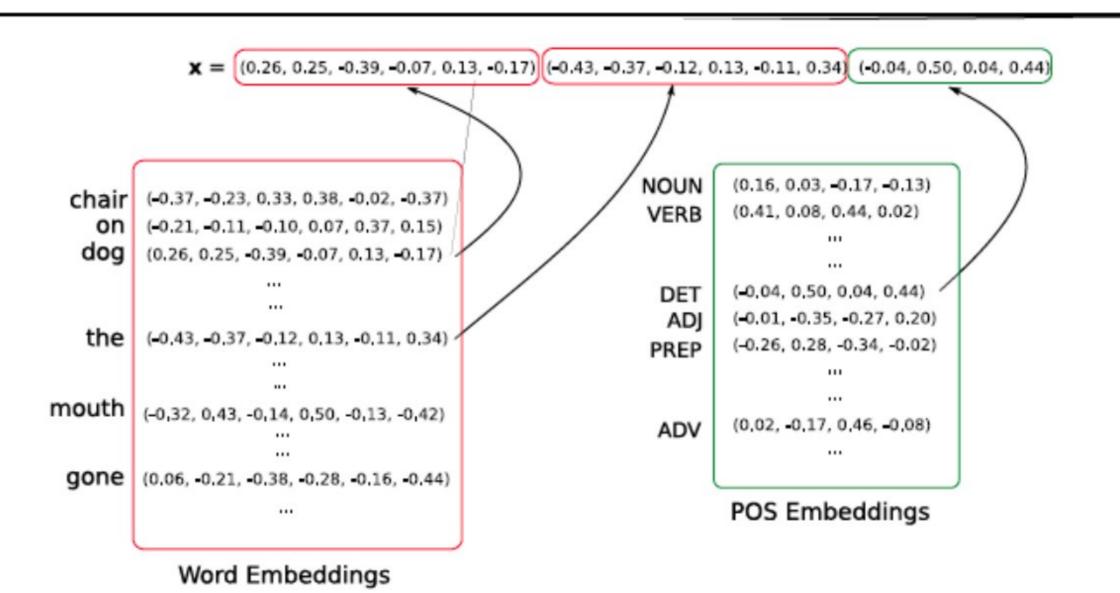
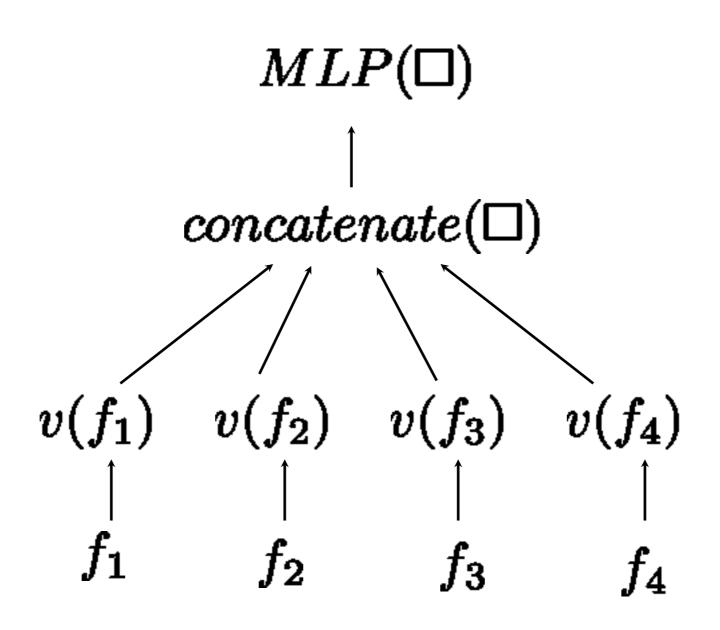
N-gram features Convolutional Networks

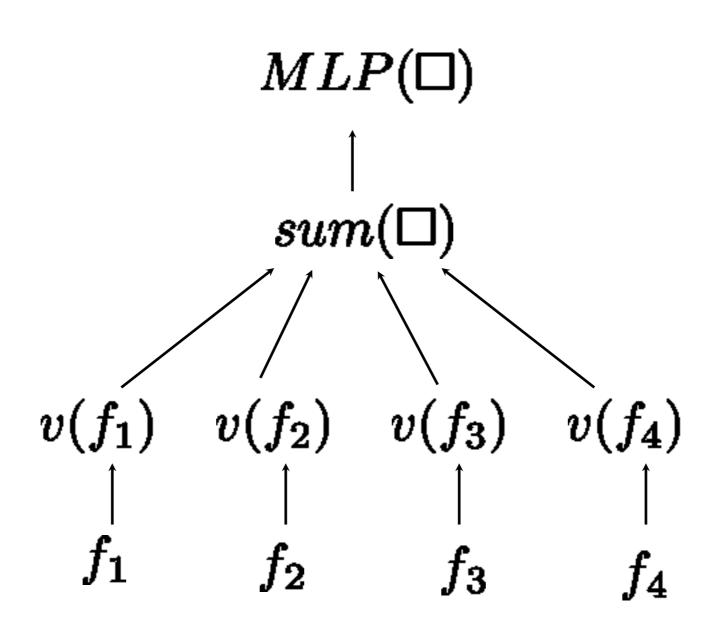
Yoav Goldberg

- Each feature is assigned a vector.
- The input is a combination of feature vectors.
- The feature vectors are parameters of the model and are trained jointly with the rest of the network.
- Representation Learning: similar features will receive similar vectors.









Continuous Bag of Words (CBOW)

$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

- a popular choice in document classification.
- can assign a different weight to each feature:

$$WCBOW(f_1, ..., f_k) = \frac{1}{\sum_{i=1}^k a_i} \sum_{i=1}^k a_i v(f_i)$$

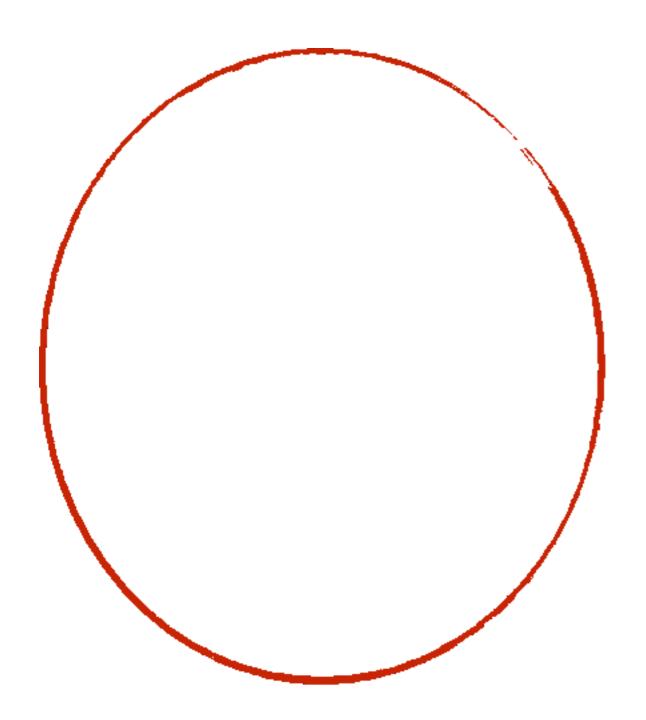
Text Classification with CBOW

scores of labels

scores of labels $softmax(\Box)$ $g^2(\mathbf{W}^2\Box + \mathbf{b}^2)$ $g^1(\mathbf{W}^1\Box + \mathbf{b}^1)$ $CBOW(\square)$

"neural bag of words"

"deep averaging network"



If each feature is bigram, works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better but not like bigrams.

"neural bag of words"

Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.
- Local sub-sequences encode useful structures.

Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.
- Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)

ConvNets

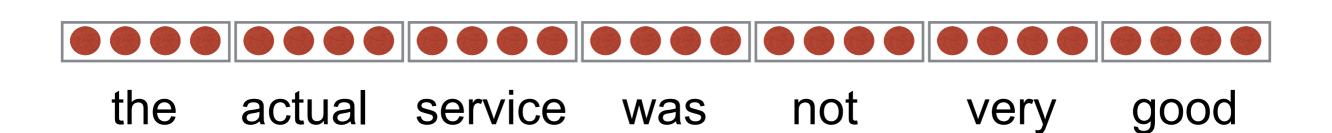
special architecture for local predictors

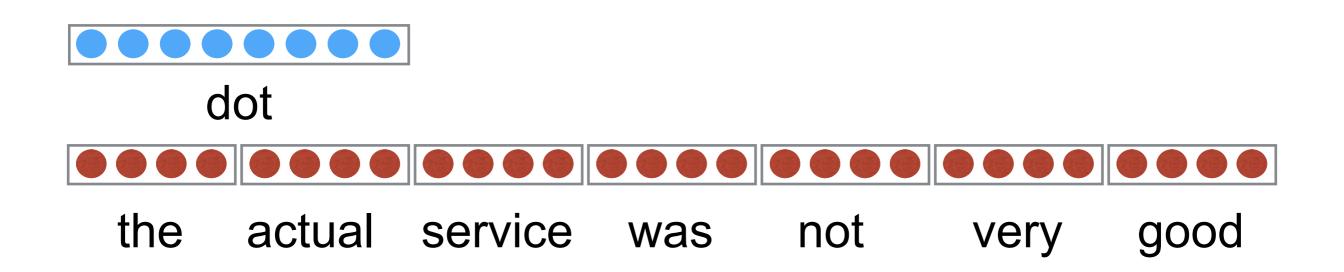
ConvNets

- CBOW allows encoding arbitrary length sequences, but loses all order information.
- Some local order (i.e. bigrams, trigrams) is informative.
 Yet, we do not care about exact position in the sequence. (think "good" vs. "not good")
- ConvNets (in language) allow to identify informative local predictors.
- Works by moving a shared function (feature extractor) over a sliding window, then pooling results.

ConvNets

- ConvNets have huge success in computer vision.
- It allows invariance to object position.
- It allows composing large predictors from small.

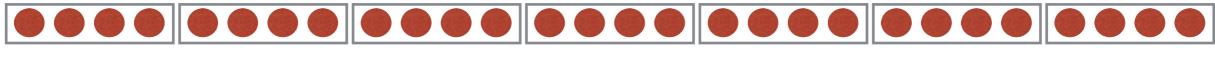




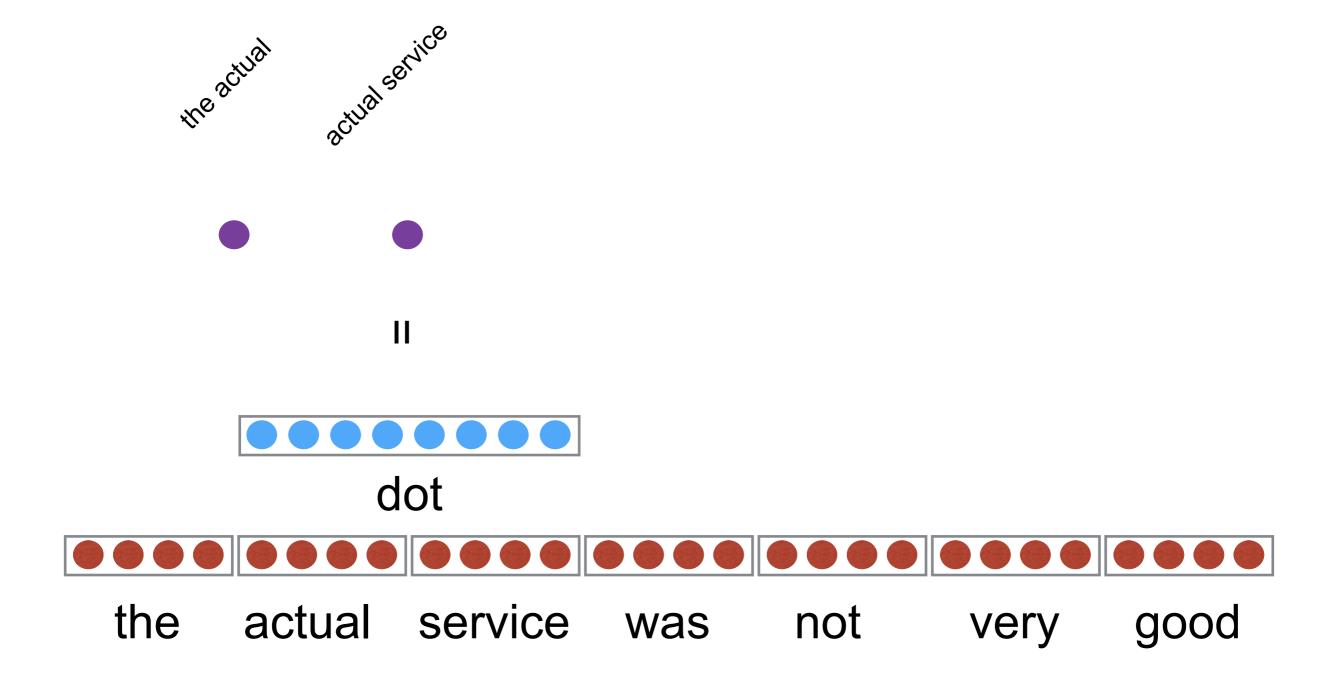
dot
the actual service was not very good

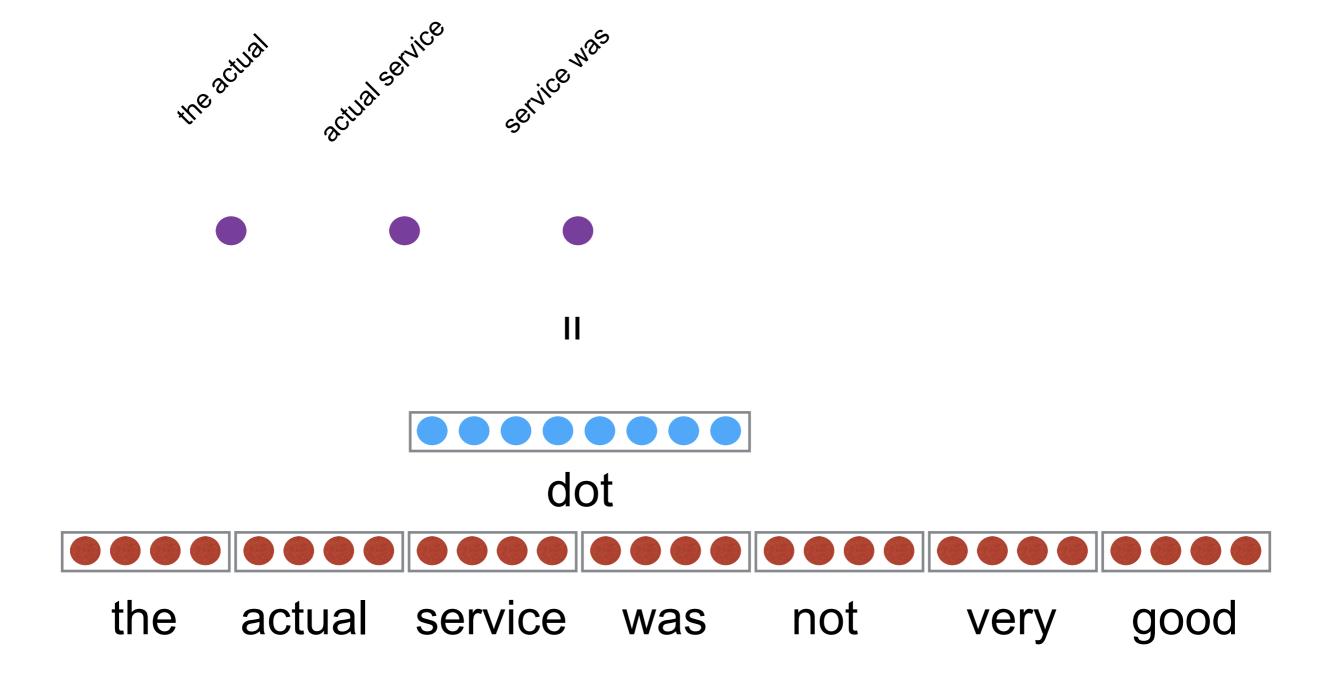
the actual

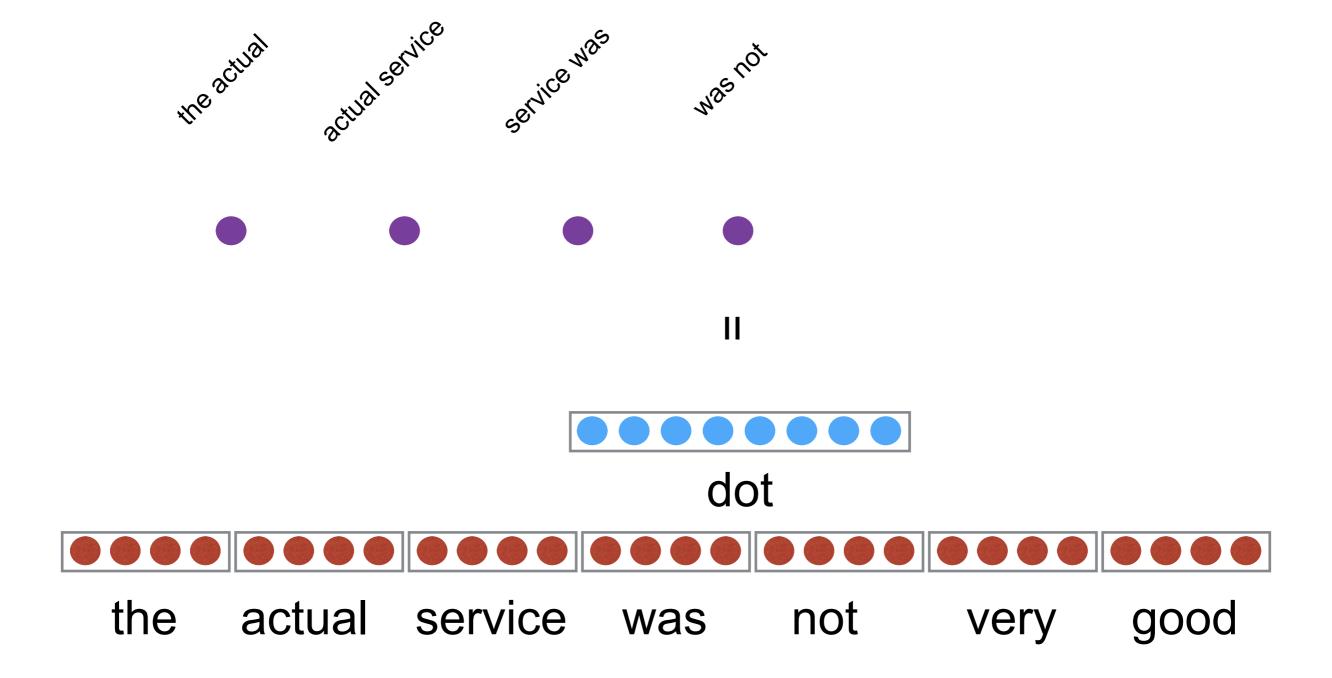
dot

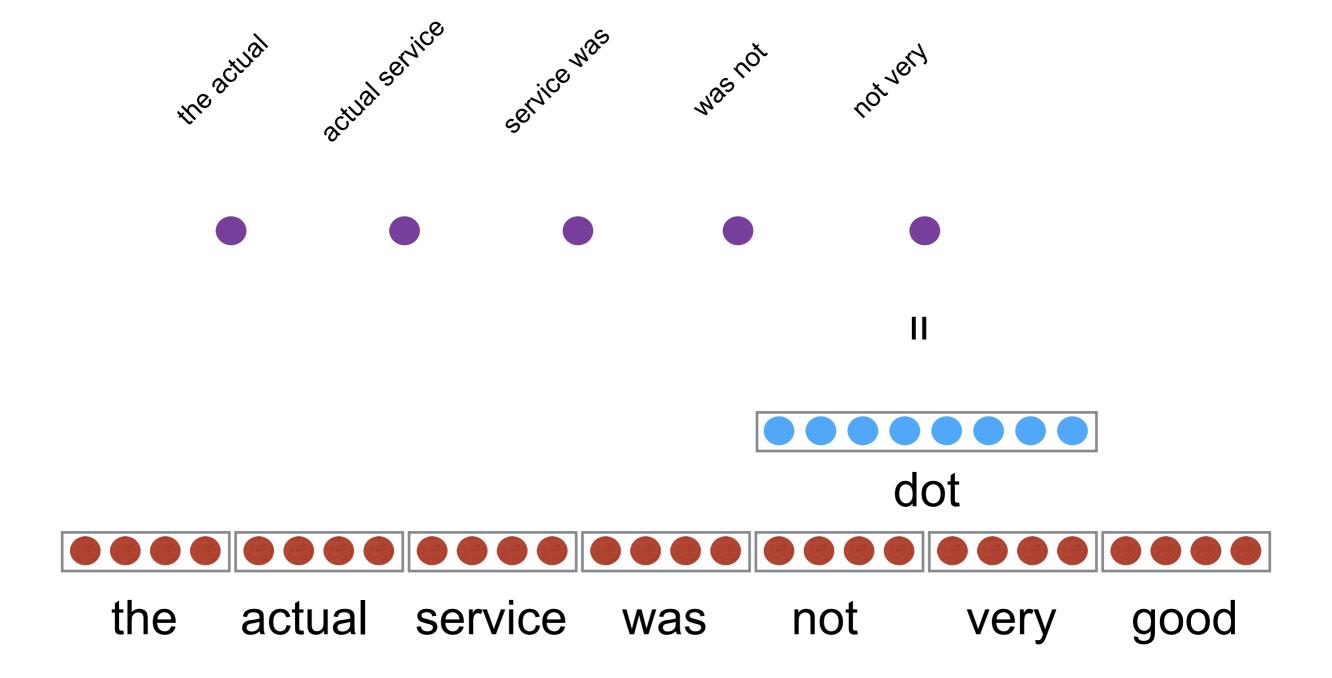


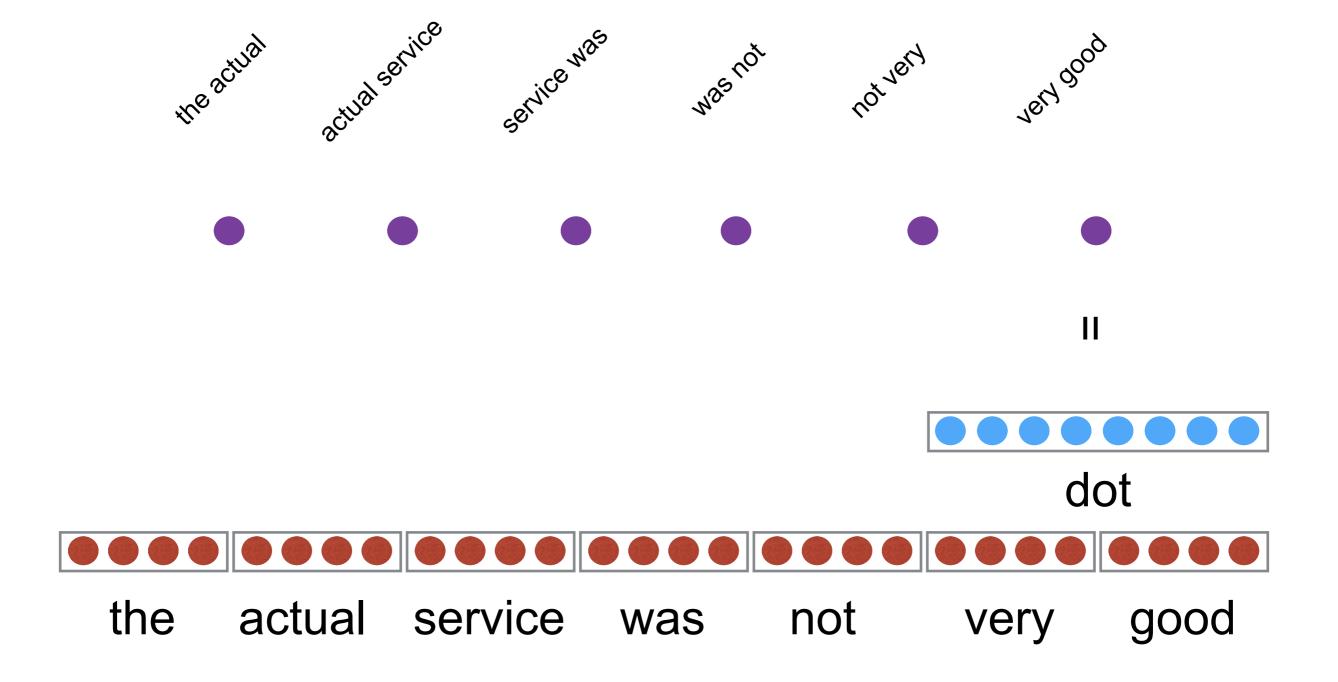
the actual service was not very good





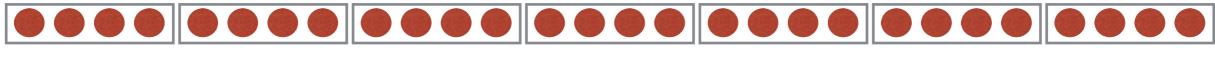






the actual

dot



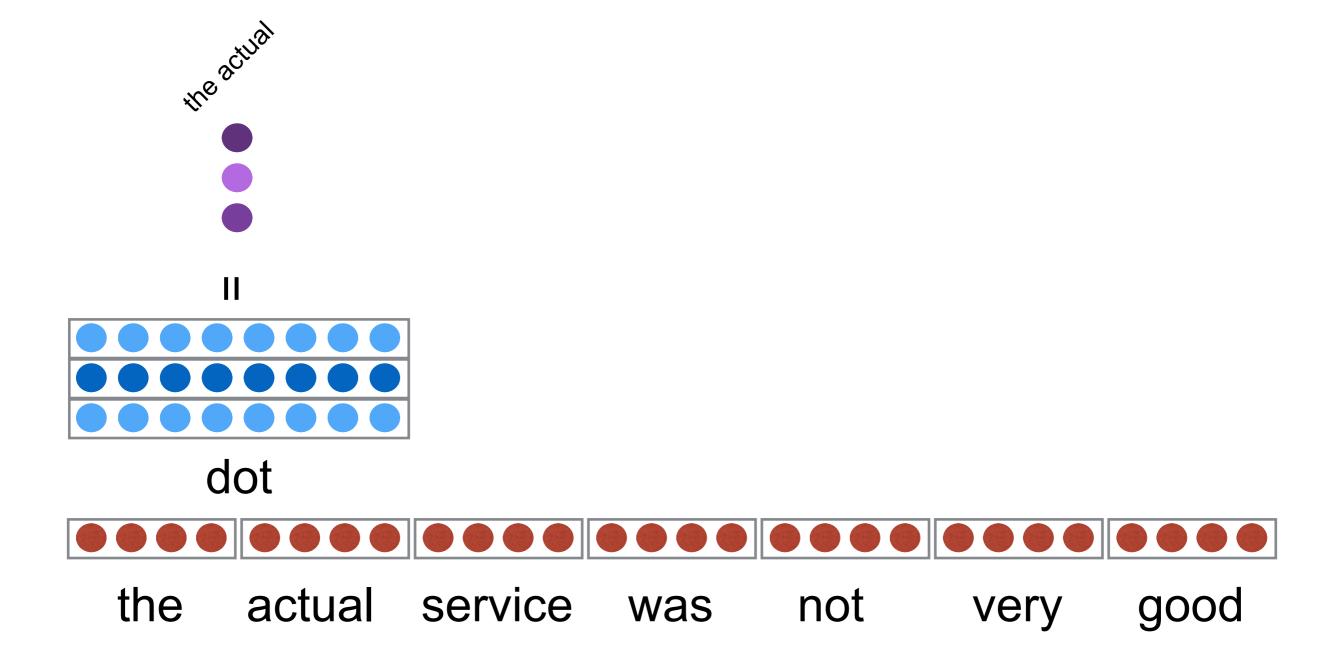
the actual service was not very good

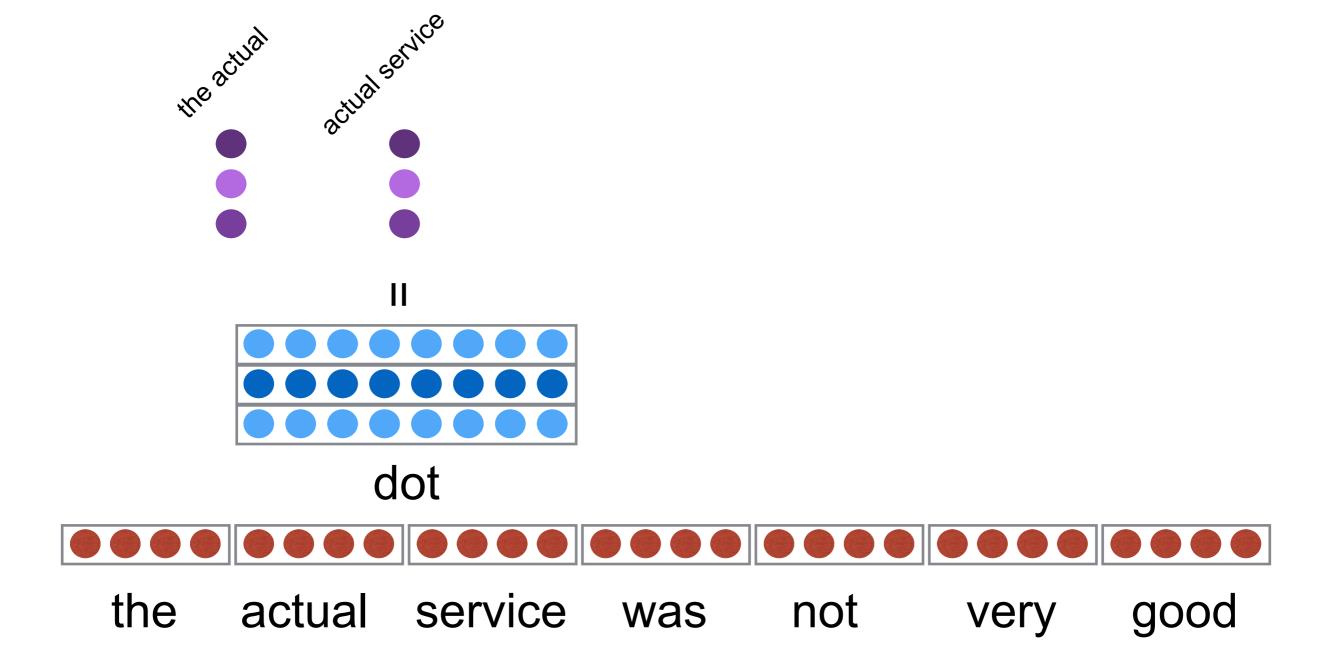
the actual

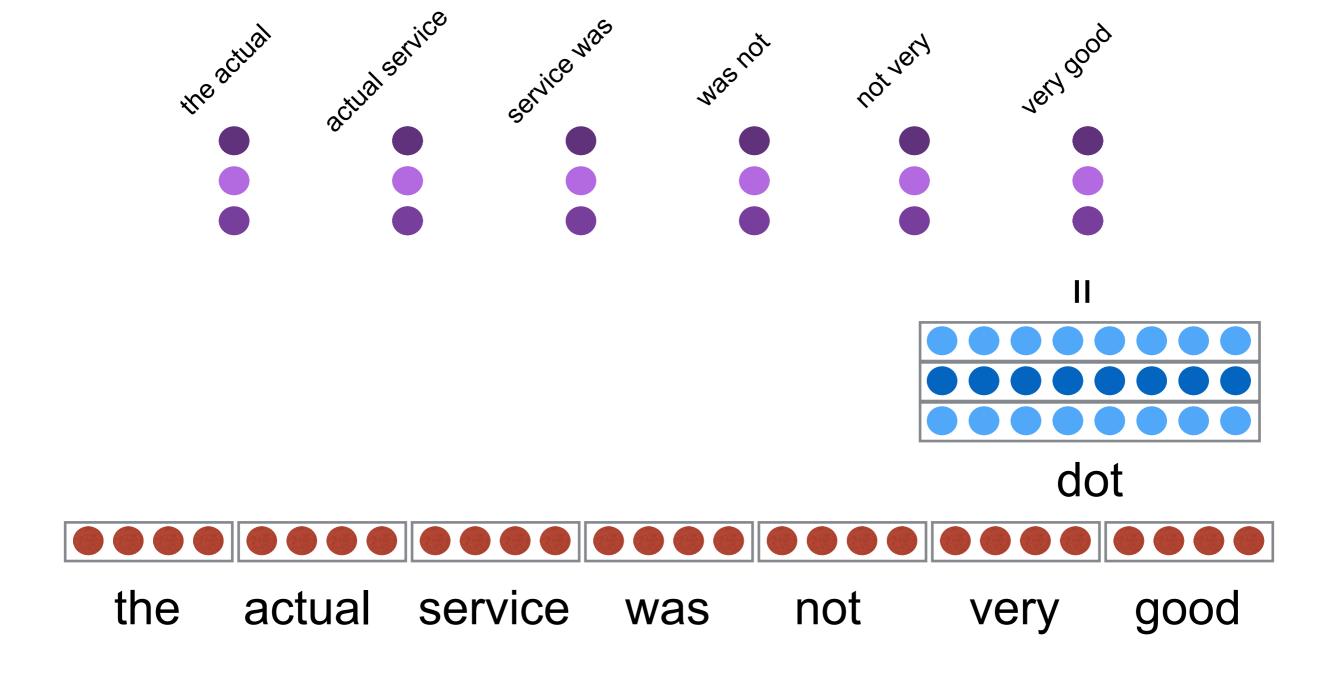
Ш

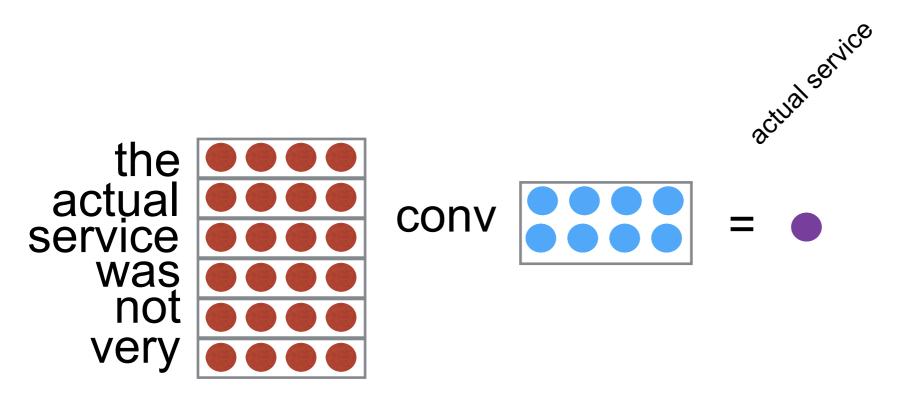
dot

the actual service was not very good

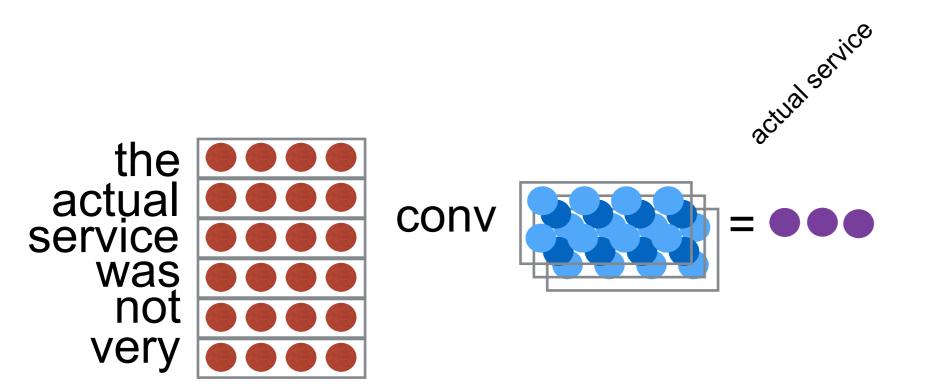




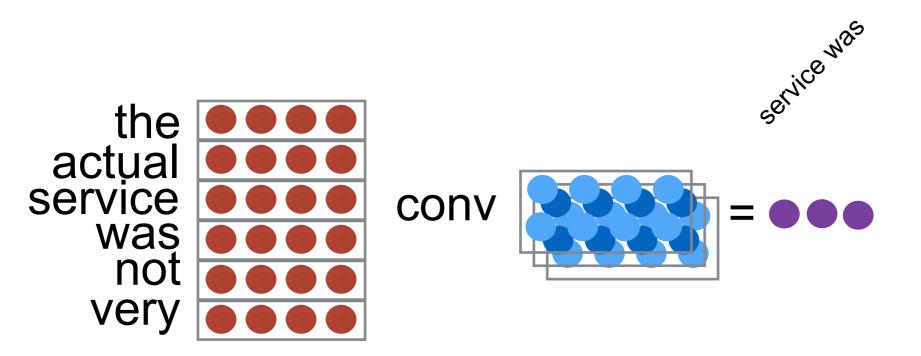




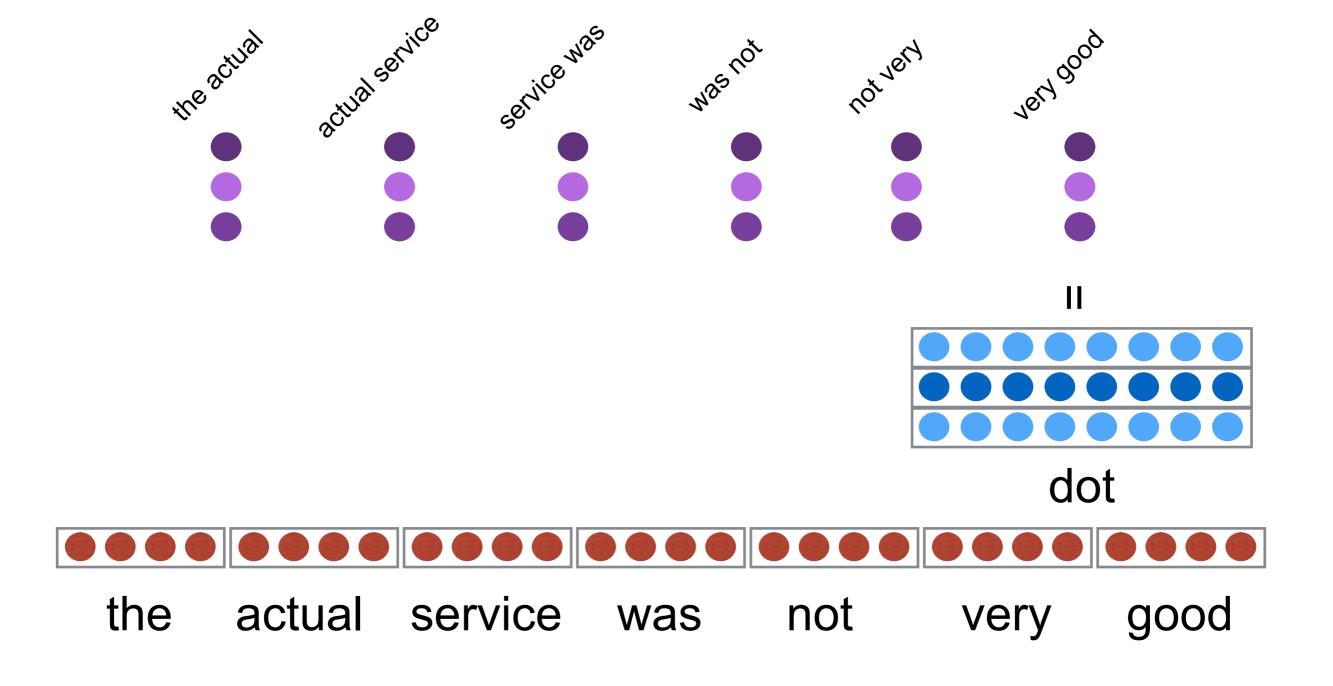
(another way to represent text convolutions)



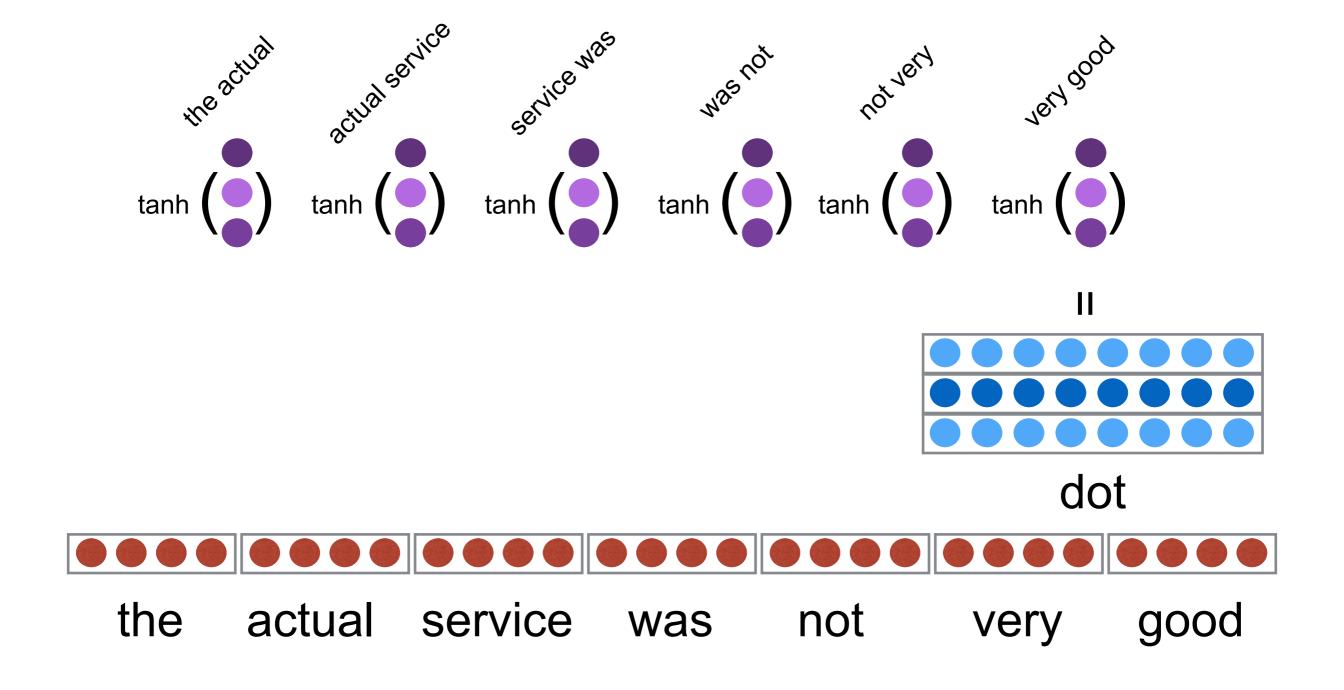
(another way to represent text convolutions)



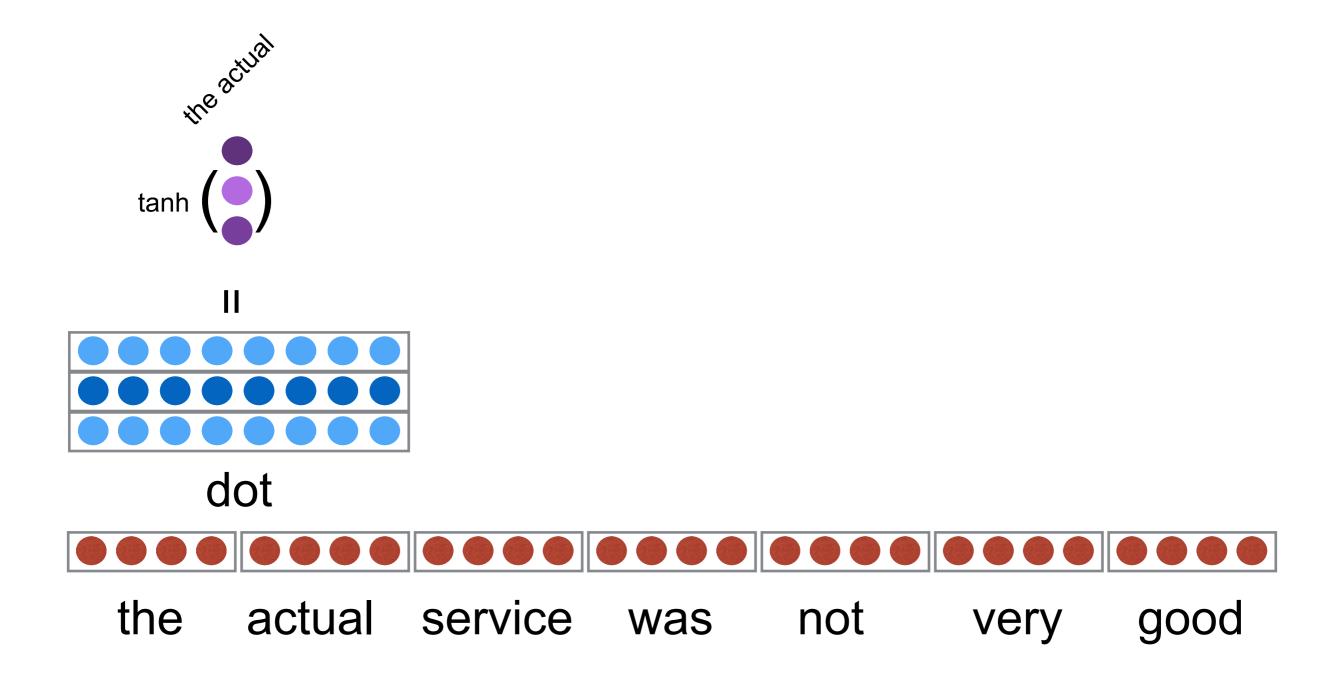
(another way to represent text convolutions)



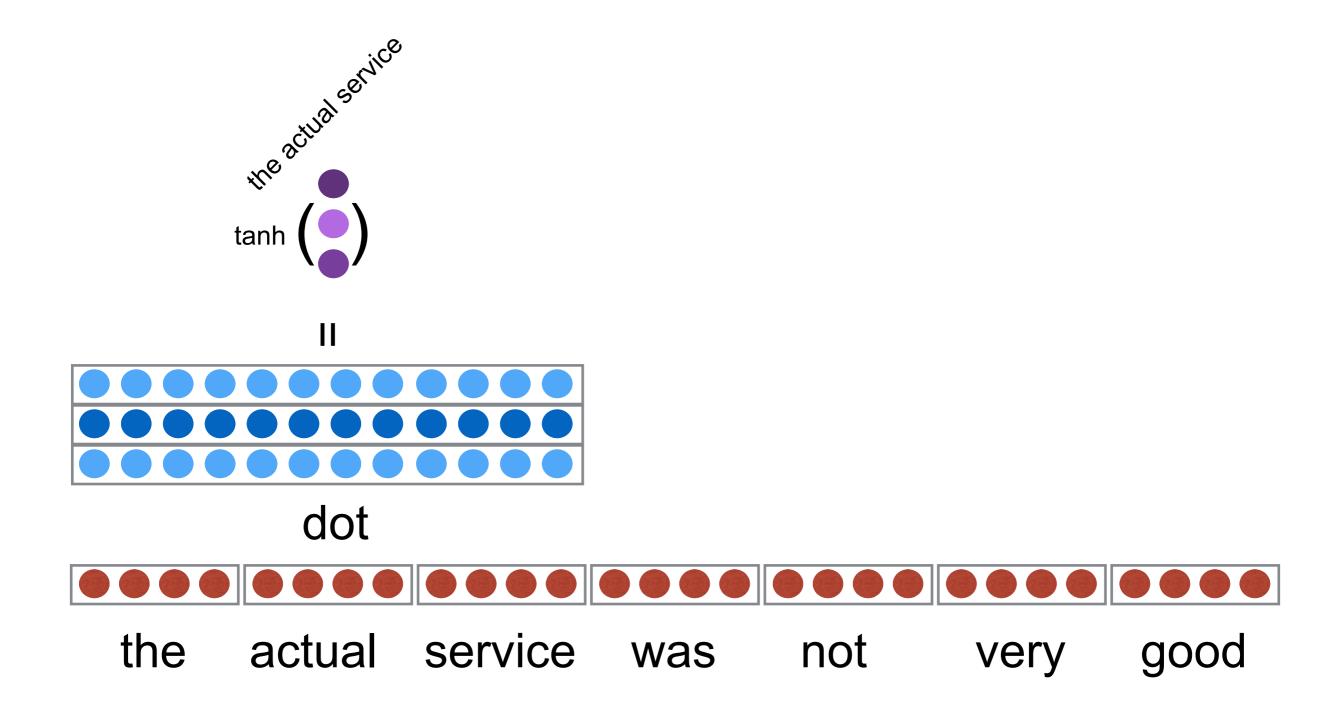
(we'll focus on the 1-d view here, but remember they are equivalent)



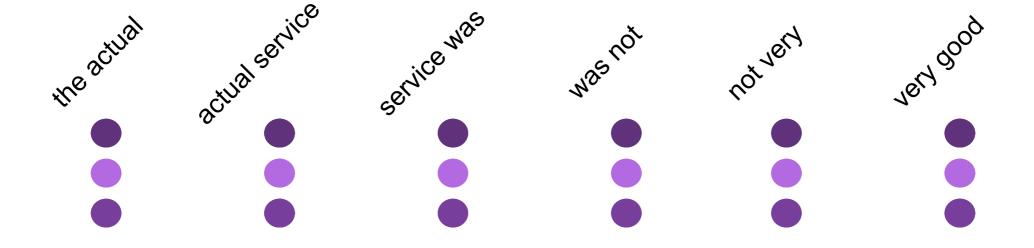
(usually also add non linearity)

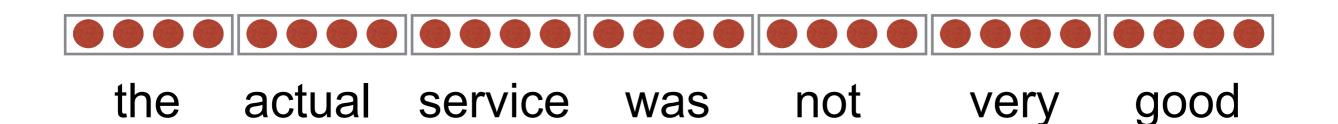


(can have larger filters)

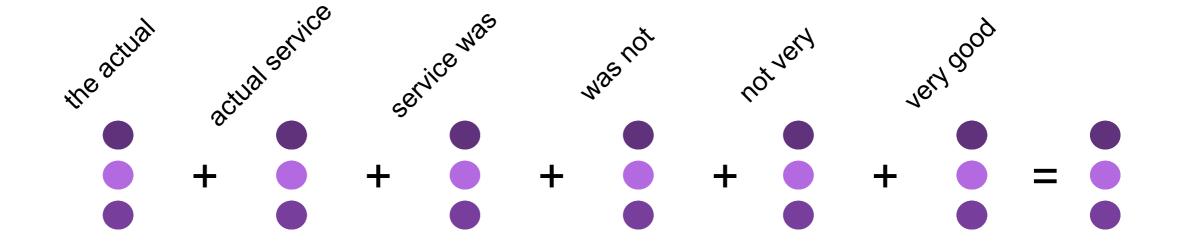


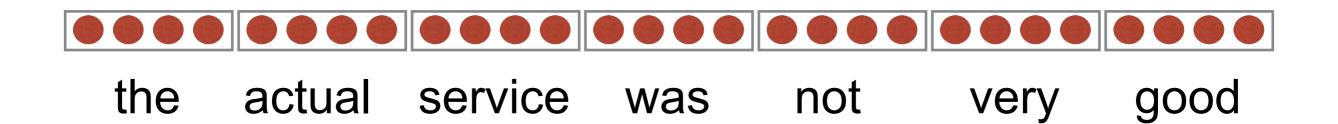
(can have larger filters)





we have the ngram vectors. now what?





can do "pooling"

"Pooling"

Combine K vectors into a single vector

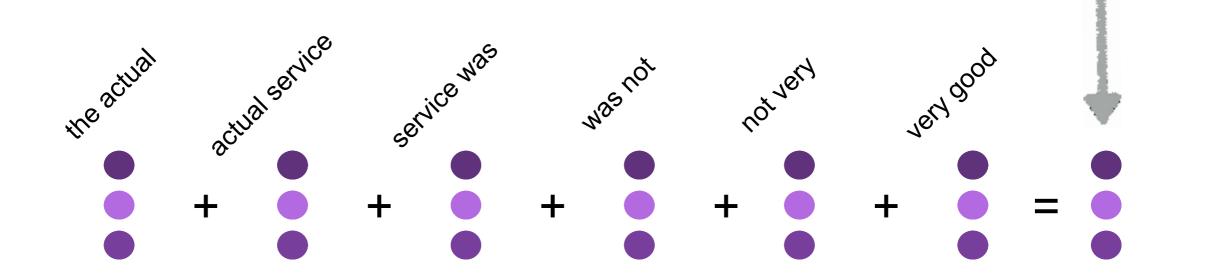
"Pooling"

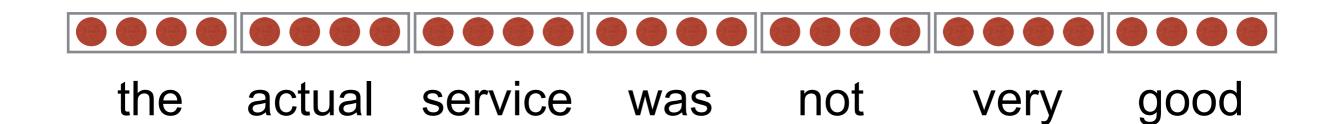
Combine K vectors into a single vector

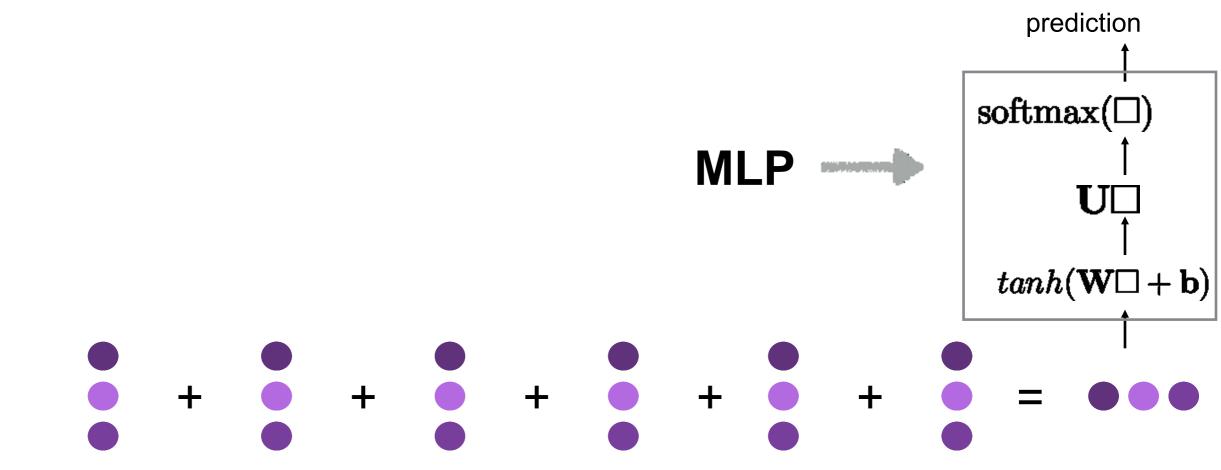
This vector is a summary of the K vectors, and can be used for prediction.

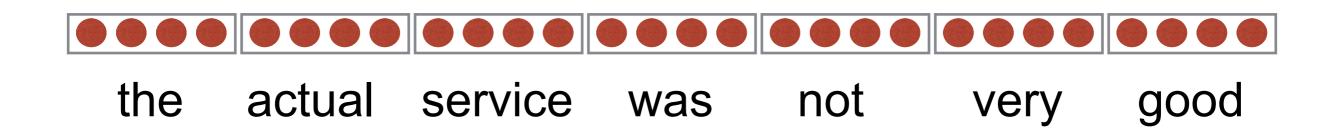
average pooling

average vector



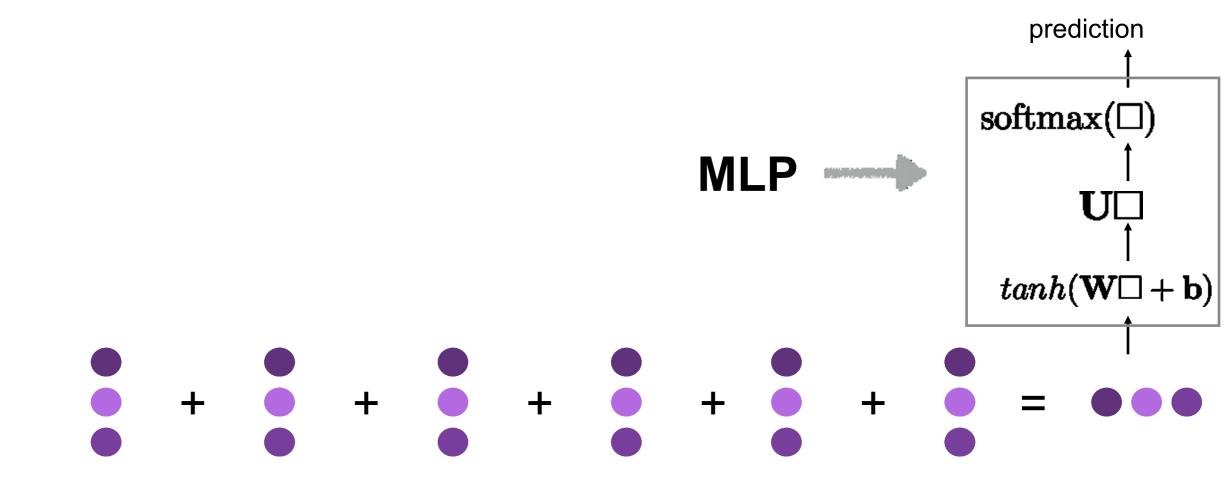


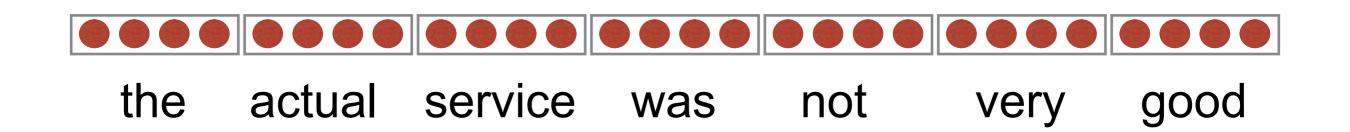




train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)





train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together) the vectors learn to capture what's important

we have the ngram vectors. now what?

Can look at the differences between terms.

microsoft office software		car body shop	
Free office 2000	0.550	car body kits	0.698
download office excel	0.541	auto body repair	0.578
word office online	0.502	auto body parts	0.555
apartment office hours	0.331	wave body language	0.301
massachusetts office location	0.293	calculate body fat	0.220
international office berkeley	0.274	forcefield body armour	0.165

Table 2: Sample word n-grams and the cosine similarities between the learned word-n-gram feature vectors of "office" and "body" in different contexts after the CLSM is trained.

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
veshen@microsoft.com

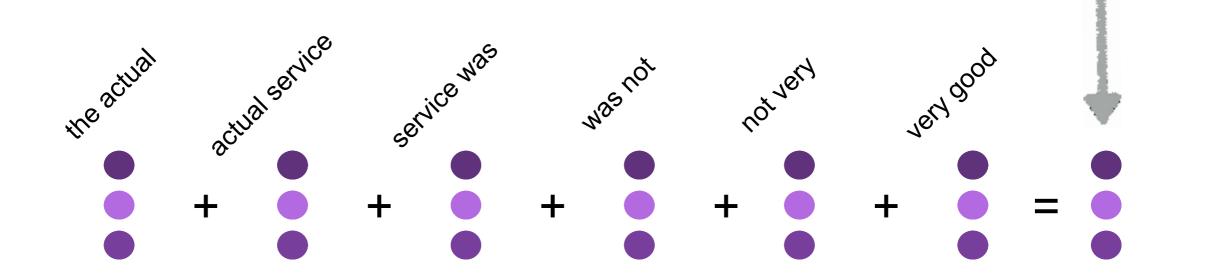
Xisodong He
Microsoft Research
Redmond, WA, USA
xisohe@microsoft.com

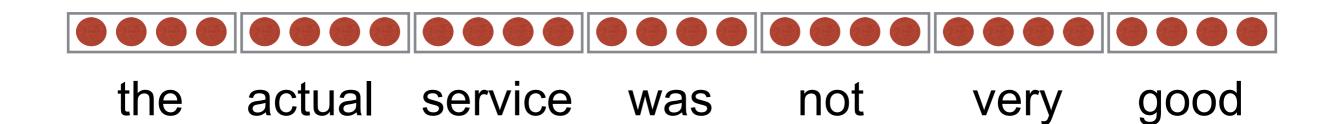
Jianfang Gao Microsoft Research Redmond, WA, USA Facc@microsoft.com Li Deng Morosoft Research Redmond, WA, USA deng@microsoft.com

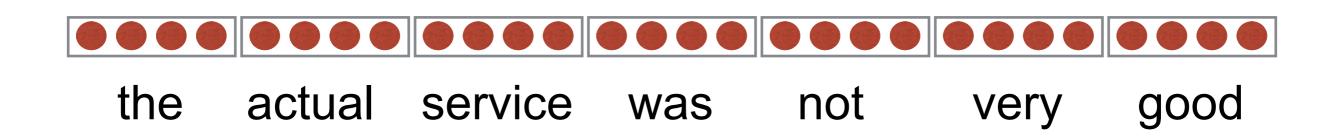
Grégoire Mesnii University of Montréal Montréal, Cenada gregoire.maenii@unort real.ca

average pooling

average vector

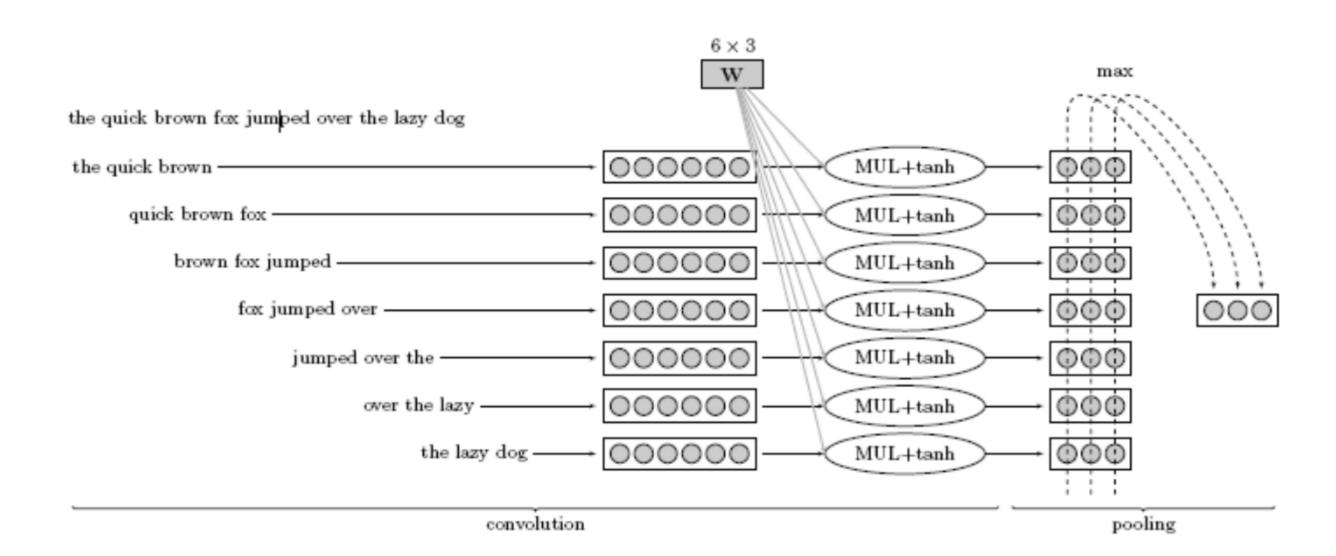


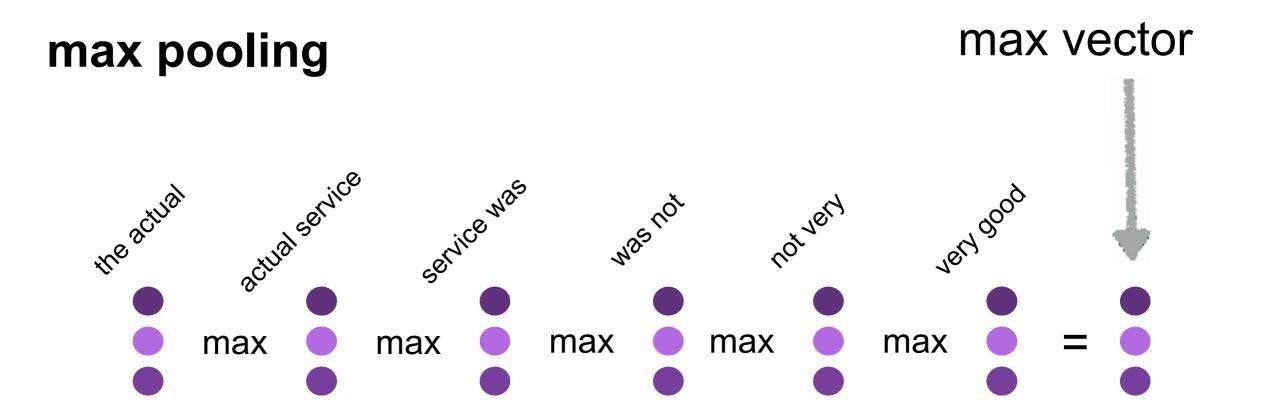


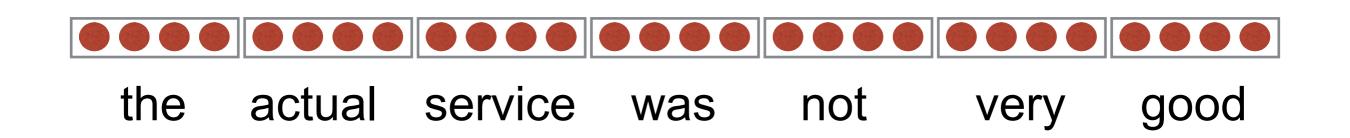


(max in each coordinate)

Another way to draw this:







max vs average – discuss

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

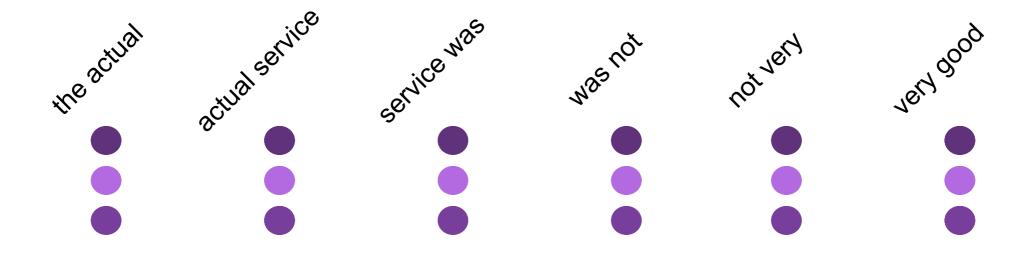
one benefit of max-pooling: it's "interpretable"

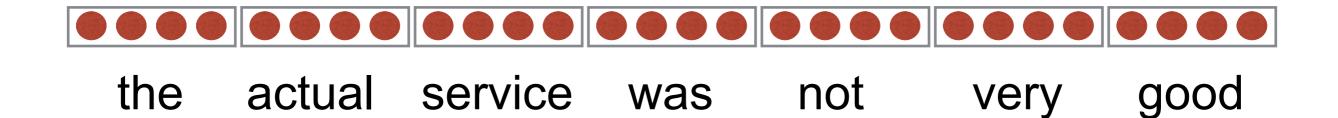
we can know where each element in the summary vector came from

Examples of resulting "summaries"

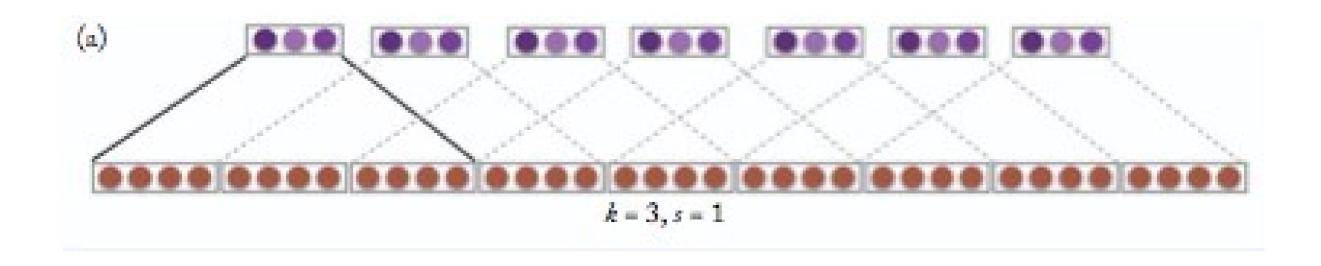
microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
vitamin a the health benefits given by carrots
calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document titles. We examine the five most active neurons at the max-pooling layer and highlight the words in **bold** who win at these five neurons in the *max* operation. Note that, the feature of a word is extracted from that word together with the context words around it, but only the center word is highlighted in bold.

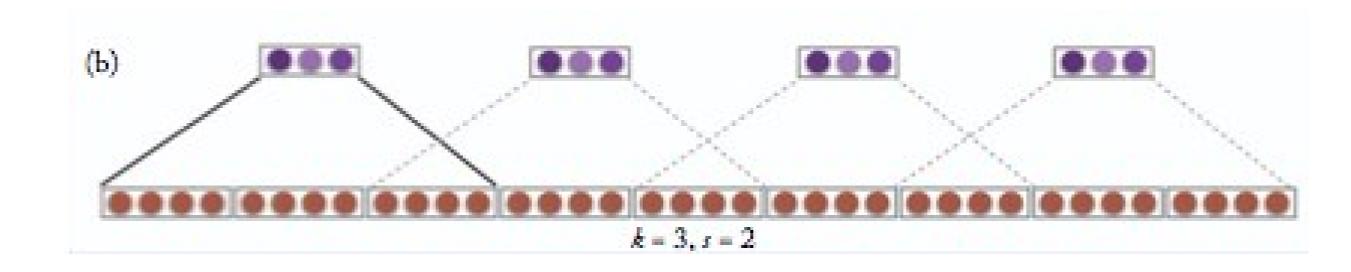




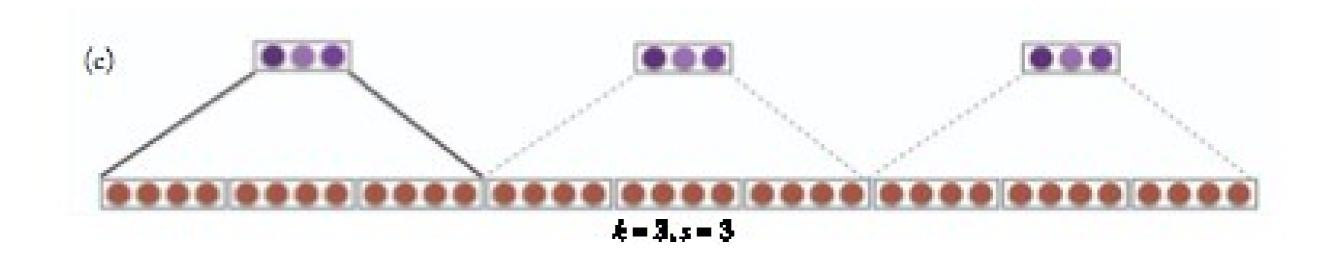
strides = how much you move



$$k = 3$$
, stride = 1



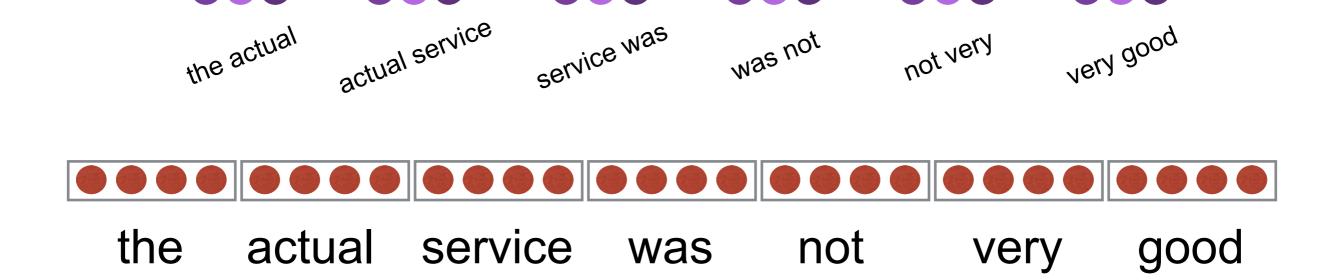
$$k = 3$$
, stride = 2



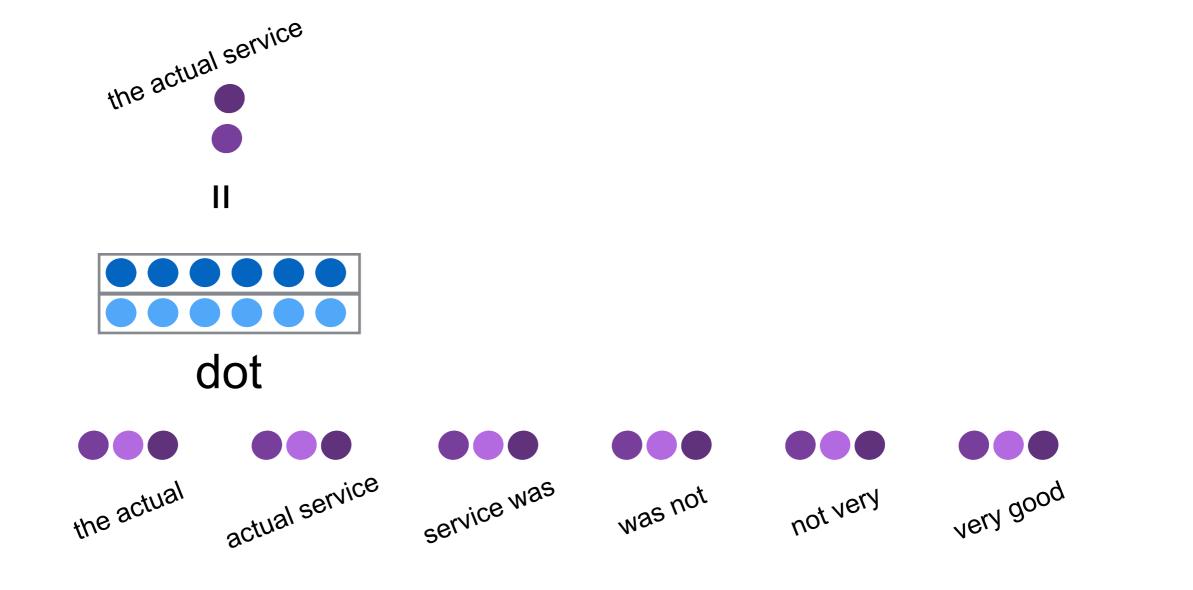
$$k = 3$$
, stride = 3

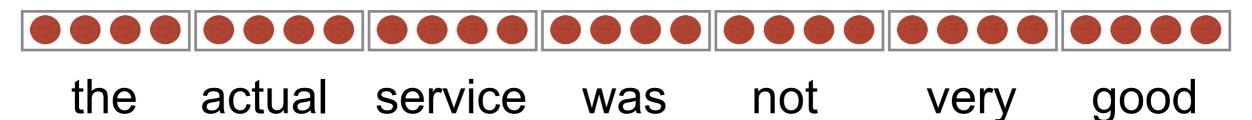
Hierarchy

Hierarchy

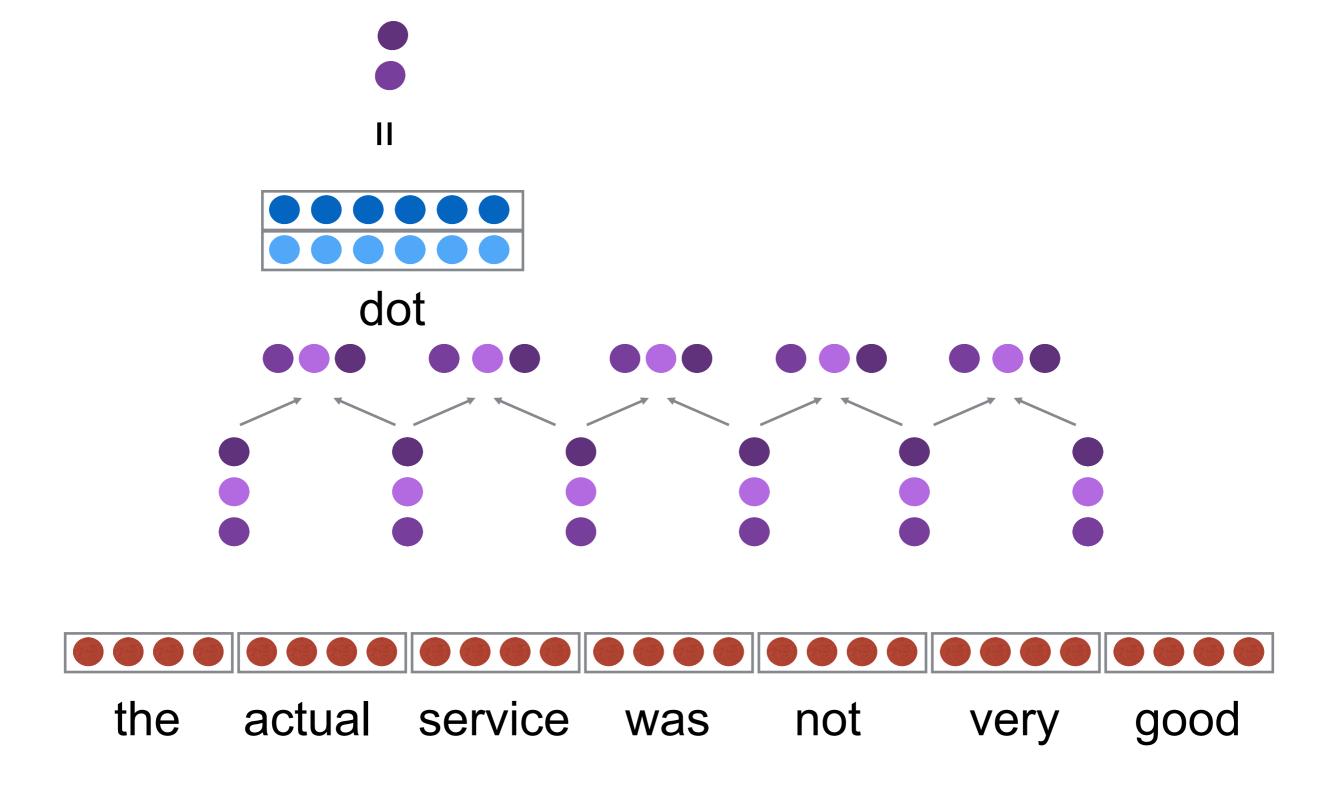


can have hierarchy



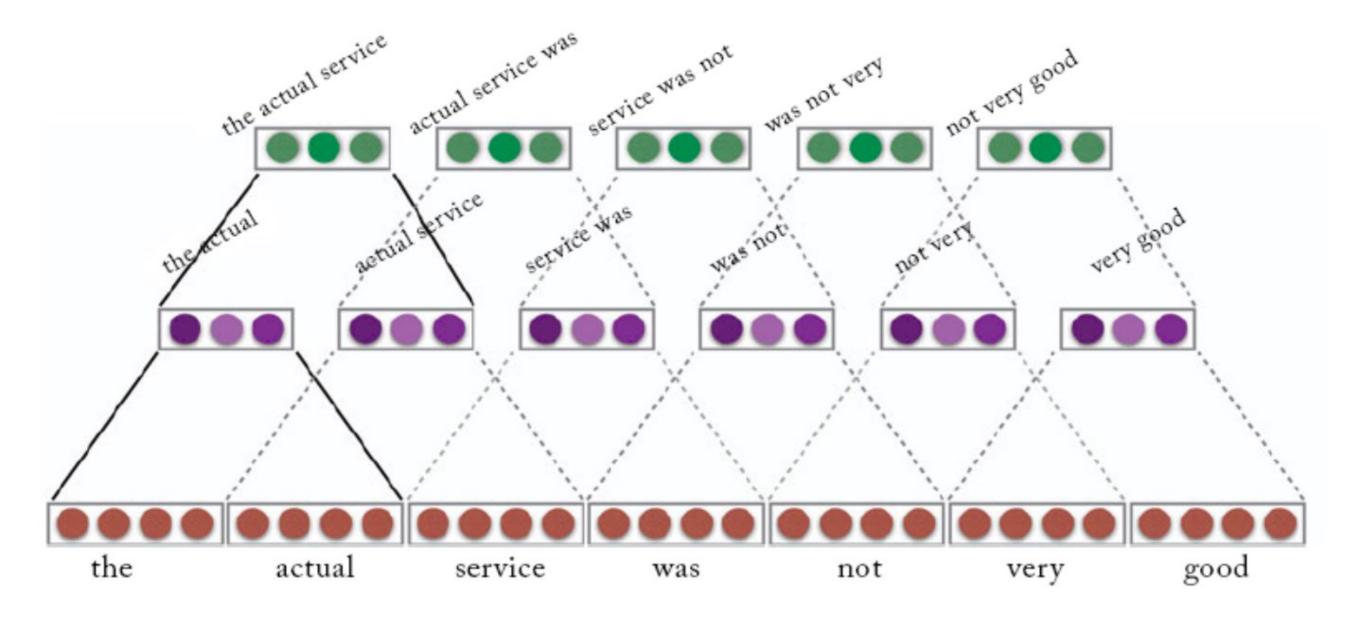


can have hierarchy



(can combine: pooling + hierarchy)

Hierarchy



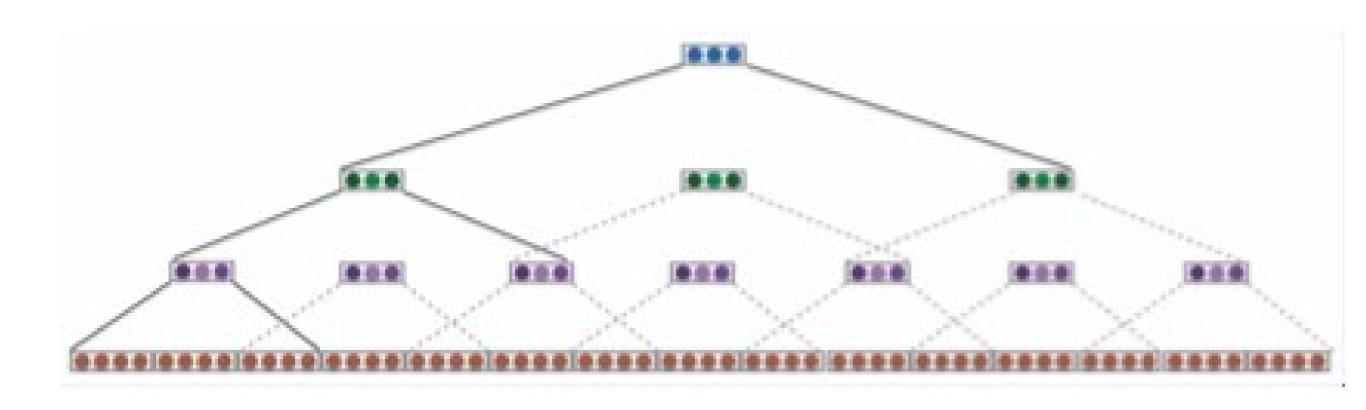
2-layer hierarchical conv with k=2

Dilated Convolutions

we want to cover more of the sequence

idea: strides + hierarchy

Dilated Convolutions



dilated convolution, k=3

idea: strides + hierarchy

ConvNets Summary

- Shared matrix used as feature detector.
- Extracts interesting ngrams.
- Pool ngrams to get fixed length representation.
- Max-pooling works well.
 - Max vs. Average pooling.
- Use hierarchy / dilation to expand coverage.
- Train end-to-end.

Character CNNs

- Fix the input OOV problem
 - Input: some insight in word shapes (xxxxing, xxxxly)
 - Output: can't ever output a word not in vocabulary

- Idea
 - Instead (or in addition of) word embedding
 - Use word = CNN over character sequences

Char CNN for Words

- Varied filter sizes
- Word embedding

Character-Aware Neural Language Models

Yoon Kim

School of Engineering and Applied Sciences Harvard University yoonkim@seas.harvard.edu

Yacine Jernite

Courant Institute of Mathematical Sciences New York University jernite@cs.nyu.edu

David Sontag

Courant Institute of Mathematical Sciences New York University dsontag@cs.nyu.edu

Alexander M. Rush

School of Engineering and Applied Sciences Harvard University srush@seas.harvard.edu



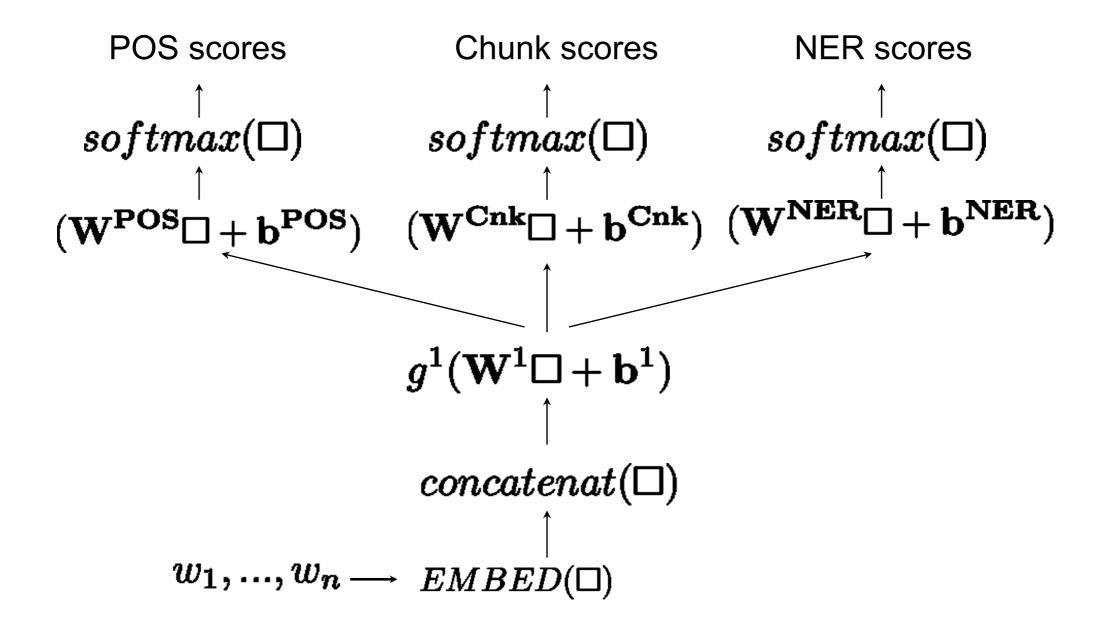
- Can't differentiate between words w similar spellings
- Solution: add small correction [e_w=CNN(chars_w)+M.corr_w]

Multi-task Learning

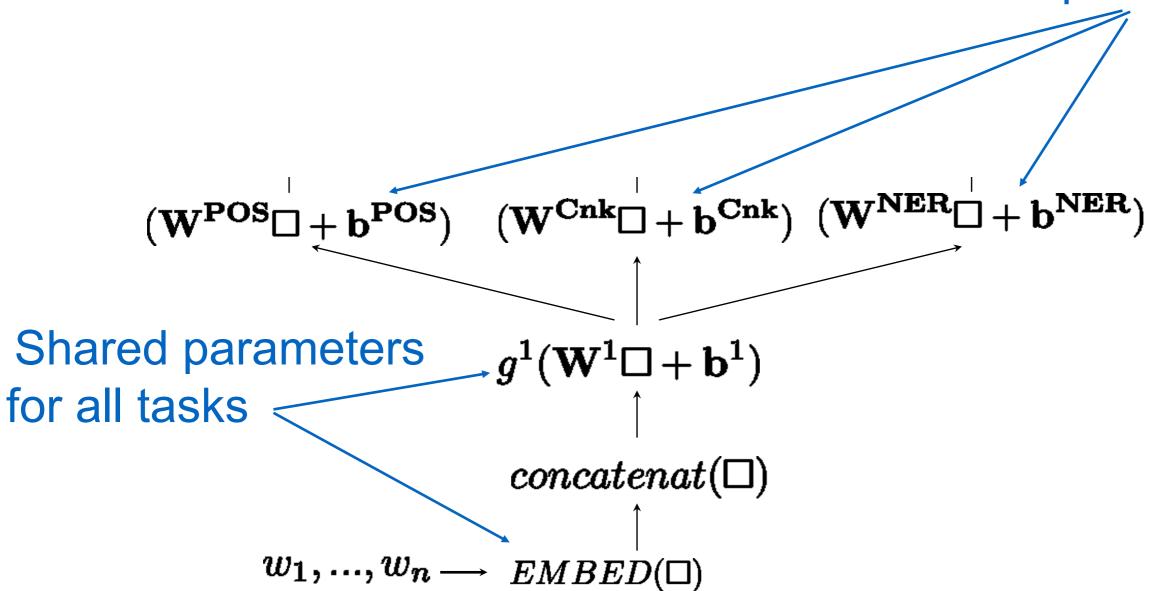
(time permitting)

The pitch

- Different NLP prediction tasks have shared structures.
- Hints for predicting A may help to predict B.
- Instead of training a network to do one thing, train it to do several things.
- YOU ARE ALL WINNERS



Task-specific parameters



Multi-Task Learning

