
Information Retrieval and
Latent Semantic Analysis

Mausam

(Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann,
Ata Kaban, Chris Manning, Melanie Martin)

Unstructured data in 1620

• Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing Calpurnia?

• Why is that not the answer?
• Slow (for large corpora)
• NOT Calpurnia is non-trivial
• Other operations (e.g., find the word Romans near

countrymen) not feasible
• Ranked retrieval (best documents to return)

• Studied in information retrieval.

2

Sec. 1.1

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains

word, 0 otherwise
Brutus AND Caesar BUT NOT

Calpurnia

Sec. 1.1

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented) bitwise
AND.

• 110100 AND
• 110111 AND
• 101111 =
• 100100

4

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Answers to query

•Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

•Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

Capitol; Brutus killed me.

5

Sec. 1.1

Term-document count matrices

• Consider the number of occurrences of a term in a
document:

• Each document is a count vector in ℕ|V|: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight
and its idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document

• Increases with the rarity of the term in the collection

Sec. 6.2.2

T

k kkd

ttd
dt

nNtf

nNtf
w

1

22
,

)]/log(1[)(

))/log(1(

Final ranking of documents for a
query

9

Score(q,d) = tf.idft,d
tÎqÇd

å

Sec. 6.2.2

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V|

Sec. 6.3

Documents as vectors

• Now we have a |V|-dimensional vector space

• Terms are axes of the space

• Documents are points or vectors in this space

• Very high-dimensional: tens of millions of
dimensions when you apply this to a web search
engine

• These are very sparse vectors – most entries are
zero

Sec. 6.3

Queries as vectors

• Key idea 1: Do the same for queries: represent
them as vectors in the space

• Key idea 2: Rank documents according to their
proximity to the query in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance
• Recall: We do this because we want to get away

from the you’re-either-in-or-out Boolean model
• Instead: rank more relevant documents higher than

less relevant documents

Sec. 6.3

Formalizing vector space proximity

• First cut: distance between two points
• (= distance between the end points of the two vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .

• . . . because Euclidean distance is large for vectors
of different lengths.

Sec. 6.3

Why distance is a bad idea
(if scores are not normalized)

The Euclidean
distance between q

and d2 is large even
though the

distribution of terms
in the query q and the
distribution of

terms in the
document d2 are

very similar.

Sec. 6.3

Use angle instead of distance

• “SemanticallyThought experiment: take a document
d and append it to itself. Call this document d′.

• ” d and d′ have the same content
• The Euclidean distance between the two

documents can be quite large
• The angle between the two documents is 0,

corresponding to maximal similarity.

• Key idea: Rank documents according to angle with
query.

Sec. 6.3

From angles to cosines

• The following two notions are equivalent.
• Rank documents in increasing order of the angle between

query and document
• Rank documents in decreasing order of

cosine(query,document)

• Cosine is a monotonically decreasing function for
the interval [0o, 180o]

Sec. 6.3

Length normalization

• A vector can be (length-) normalized by dividing
each of its components by its length – for this we
use the L2 norm:

• Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

• Effect on the two documents d and d′ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.

• Long and short documents now have comparable weights

i i
xx 2

2

Sec. 6.3

cosine(query,document)

V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(

Dot product Unit vectors

q
i
is the tf-idf weight of term i in the query

d
i
is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Sec. 6.3

Similarity Measures Compared

|)||,min(|

||

||||

||

||

||

||||

||
2

||

2
1

2
1

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

DQ

 Simple matching (coordination level match)

Dice’s Coefficient

Jaccard’s Coefficient

Cosine Coefficient (what we studied)

Overlap Coefficient

Summary – vector space ranking

• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity score for the query
vector and each document vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Evaluating ranked results: Mean Reciprocal Rank
(only 1 correct)

• 1 N

• 2 R

• 3 N

• 4 N

• 5 N

• 6 N

• 7 N

• 8 N

• 9 N

• 10 N

Assume 10 rel docs

in collection

Evaluating ranked results: Mean Avg Precision
(multiple correct)

• 1 R

• 2 N

• 3 N

• 4 R

• 5 R

• 6 N

• 7 R

• 8 N

• 9 N

• 10 N

Assume 10 rel docs

in collection

30

Common evaluation measure…

• Mean average precision (MAP)
• AP: Average of the precision value obtained for the top k

documents, each time a relevant doc is retrieved
• Avoids interpolation, use of fixed recall levels
• Does weight most accuracy of top returned results
• MAP for set of queries is arithmetic average of APs

• Macro-averaging: each query counts equally

Sec. 8.4

Problems

•Synonyms: separate words that have the same
meaning.

• E.g. ‘car’ & ‘automobile’

• They tend to reduce recall

•Polysems: words with multiple meanings
• E.g. ‘Java’

• They tend to reduce precision

 The problem is more general: there is a
disconnect between topics and words

• ‘… a more appropriate model should consider some
conceptual dimensions instead of words.’ (Gardenfors)

Latent Semantic Analysis (LSA)

• LSA aims to discover something about the meaning
behind the words; about the topics in the documents.

• What is the difference between topics and words?

• Words are observable

• Topics are not. They are latent.

• How to find out topics from the words in an automatic
way?

• We can imagine them as a compression of words

• A combination of words

• Try to formalise this

Matrix Factorization

 A(m*n) = U(m*k) V(k*n)

 Convert terms and documents to points in k-
dimensional space

 Low-rank approximation

Latent Semantic Analysis

• Singular Value Decomposition (SVD)

 A(m*n) = U(m*r) E(r*r) V(r*n)

 Keep only k eigen values from E

 A(m*n) = U(m*k) E(k*k) V(k*n)

 Convert terms and documents to points in k-
dimensional space

 Low-rank approximation

• Singular Value Decomposition
{A}={U}{S}{V}T

•Dimension Reduction
{~A}~={~U}{~S}{~V}T

Latent Semantic Analysis

Latent Semantic Analysis

• LSA puts documents together even if they don’t
have common words if

• The docs share frequently co-occurring terms

• Disadvantages:
• Statistical foundation is missing

Probabilistic LSA addresses this concern!
A famous model is LDA (Latent Dirichlet Allocation) but

we won’t study it in the course!

