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Abstract—Synchronous reactive data flow is a paradigm that
provides a high-level abstract programming model for embedded
and cyber-physical systems, including the locally synchronous
components of IoT systems. Security in such systems is severely
compromised due to low-level programming, ill-defined interfaces
and inattention to security classification of data. By incorporating
a Denning-style lattice-based secure information flow framework
into a synchronous reactive data flow language, we provide a
framework in which correct-and-secure-by-construction imple-
mentations for such systems can be specified and derived. In
particular, we propose an extension of the LUSTRE programming
framework with a security type system. We prove the soundness
of our type system with respect to the co-inductive operational
semantics of LUSTRE by showing that well-typed programs
exhibit non-interference.

Index Terms—: Synchronous reactive data flow, Lustre, Security
lattice, Security type system, Stream semantics, Non-interference

I. INTRODUCTION

The widespread deployment of millions of embedded and
cyber-physical systems, especially in the Internet of Things
paradigm, poses interesting challenges such as efficiency,
scale, and, most significantly, of correctness of operation
and security [30]. Numerous high-profile attacks such as
those on CAN systems [27], [12], smart lighting [23], and
pacemakers [17], [40] have exposed vulnerabilities in critical
systems. These attacks exploit lacunae such as: (L1) ill-defined
interfaces; (L2) no secure information flow (SIF) architecture
and weak security mechanisms; (L3) components operating
with greater privilege or more capability than necessary.

Our contention is that much of this unfortunate insecurity
can be avoided by using a high-level programming paradigm.
While Domain-Specific Languages suggest a principled way
to build more reliable systems, we contend, in the tradition of
Landin [35], that for the large subset of locally synchronous
systems there already is a quintessential solution — namely,
reactive synchronous data-flow languages.

There are several merits to adopting this paradigm: (M1)
“Things”, embedded and cyber-physical systems, can be ab-
stractly treated as sources, sinks and transducers over (clocked)
streams of data. Indeed, this extensional view supports not
only abstract “things” but composite computations as first-
class entities. (M2) The data flow model makes explicit all
interfaces, connections and data dependencies, and (clocked,
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named) flows — thus greatly reducing attack surfaces and
unanticipated interactions. (M3) In synchronous reactive data
flow languages, monitoring safety properties is easy and
can be achieved using finite-state automata [25]. Not only
can monitors be expressed within the model, but the same
framework can be used to specify axioms and assumptions, to
constrain behaviour, and specify test cases [48]. (M4) LUSTRE
[11], [24] is an eminently suitable synchronous reactive data
flow language, for which there already exist elegant formal
semantics and a suite of tools for (a) certified compilation
from the high-level model into lower-level imperative lan-
guages [7], [8], (b) model-checkers [46], [33] (c) simulation
tools [31], etc. Indeed, the simplicity of LUSTRE — with its
underlying deterministic, clocked, structured model — makes
it both attractive and versatile as a programming paradigm: It
can express distributed embedded controllers, numerical com-
putations, and complex Scade 6 [16] safety-critical systems
with its support for difference equations. Moreover, the gamut
of formal structures such as automata, regular expressions,
temporal logic, test harnesses, synchronous observers, etc., can
all be efficiently expressed within the LUSTRE model.

The only missing piece in this picture is a security model. In
this paper, we seek to integrate Denning’s lattice-based secure
information flow (SIF) framework [18] into LUSTRE and pro-
pose a security type system. In this simple type system, (i) each
stream of data is assigned a security type that is mapped to a
security class from the security lattice, based on assumptions
made about security types of the program variables, and (ii)
the output streams from a node have security levels at least as
high as the security levels of the input streams on which they
depend. The rules are simple, intuitive and amenable to being
incorporated into the mechanised certified compilation [36]
already developed for LUSTRE [10]. The main contributions
of this paper thus are: (C1) Proposal of a security type
system which ensures secure information flow in LUSTRE. The
security types are as simple as possible, which makes possible
any further refinements. The main technical achievement lies
in formulating appropriate rules for LUSTRE equations, with
node (function) call posing particular challenges. The security
types and constraints are stated in a symbolic style, thus not
hard-wiring the security lattice into the rules. Based on the
security typing rules, we propose a definition of security for
LUSTRE programs. (C2) The main technical result of this
paper is showing that our security type system is sound with
respect to the co-inductive Stream semantics for LUSTRE, by



establishing non-interference [22] for well-typed programs.
Security type systems have so far been proposed for impera-
tive [18], [19] and functional-imperative languages [53]. We
believe that ours is the first presentation of such a type system,
and more significantly of its soundness with respect to the
operational semantics, for a (synchronous, reactive) data-flow
language. While our result broadly follows Volpano et al.’s
approach [53], we believe that the adaptation to a data-flow
setting is both novel and inventive. In particular, instead of
a notion of confinement checking used to specify security in
imperative paradigms, we generate and solve constraints for
equations and programs. Thus we go beyond just checking
that a program is secure to inferring constraints that suffice to
ensure security.

Structure of the paper: In §II, we review the language
LUSTRE and its semantics. Our presentation of the Stream se-
mantics of LUSTRE is consistent with the CompCert encoding
on a github repository [10] mentioned in [8]. §III recapitulates
Denning’s lattice-based model for secure information flow
(SIF), and then presents the basic type system in a syntax-
oriented manner. Based on these rules, we propose a definition
of security for LUSTRE programs. The main results follow in
§IV, where we show, using the simple security lemma for
expressions and the constraints for equations and programs,
that securely-typed LUSTRE programs exhibit non-interference
with respect to the Stream semantics. The paper concludes
with a discussion of the related work (§V) and directions for
future work in §VI. Auxiliary definitions such as those used
in the Stream semantics are presented in Appendix A.

II. A BRIEF OVERVIEW OF LUSTRE

LUSTRE [24], [44], [8] is a synchronous data-flow language
used for modelling, simulating, and verifying a wide range
of reactive programs including embedded controllers, safety-
critical systems, communication protocols, railway signal net-
works, etc. In LUSTRE, a (reactive) system is represented as
data streams flowing between operators and nodes in a data-
flow network, i.e., a synchronous analogue to Kahn Process
networks [32]. The main characteristics of the language are:

1) Declarative Style: Programs consist of a set of nodes,
each of which contains defining equations. The order
in which equations are written has no effect on the
semantics of the program. Equations exhibit referential
transparency, referred to as the Substitution Principle.

2) Synchronous Semantics: Each variable and expression
defines a data stream, indexed with respect to a clock.
A clock is a stream of boolean values. A flow takes its
n'™ value on the n clock tick, i.e., when the clock has
value true.

3) Deterministic Behaviour: Program behaviours in LUS-
TRE are completely determined by sequences of clocked
occurrences of events.

4) Temporal Operators: when, merge and fby are used
to express complex clock-changing and clock-dependent
behaviours.

LUSTRE has seen a steady development of its suite of tools
over three decades, commencing with its introduction [11]
through to formally certified compiler developments [7], [8]. In
this paper, we will use a normalised form of the core syntax
of LUSTRE (Figure 1), taken from [8], [1], but without the
reset operator introduced there. (Note: LUSTRE keywords
are written in teletype face, meta-variables in italic face,
while semantic values and operations are in sans serif face.)

Expressions comprise variables, constants, and those con-
structed using unary and binary operators. In addition, an
expression can be sampled when a variable takes the value
k (restricted to boolean values in [8]). Control expressions
are a special class of expressions that comprise the previously
mentioned expressions as well as the conditional composition
of two control expressions, and the merge of two control
expressions based on a boolean variable. Clocks are special
boolean valued expressions, that are either base or a derived
(slower) clock that samples when a (boolean) variable takes
the value k (again, restricted to booleans in [8]). We write
¢ to denote a vector of expressions. Equations are of three
kinds: (i) a simple definition of a program variable equated
to a control expression; (ii) a program variable equated to an
initialised delay-expression; and a tuple of program variables
defined by a node call. LUSTRE being a clock-synchronous
language, equations are governed by a clock parameter.

A node consists of a named function which takes an n-
tuple of (clocked) streams as input and outputs an m-tuple
of streams which are defined using a set of equations. The
equations in a node may also define and use local variables.
All variables used in a node are either explicitly classified as
input, output or local variables. Each output or local program
variable has a unique defining equation within a node. Defining
equations may be recursive, provided they are well-clocked
[44], [24]. In normalised LUSTRE (i.e., prior to the “scheduling
transform”, which is beyond the scope of this paper), the order
of equations is not relevant. The notions of free and defined
variables in equations are as expected (definitions elided).

The text of a program in normalised LUSTRE consists of
a set of node definitions, each of which uniquely determine
a named function. There is a distinguished (“main") node
containing the top-level equations, on which no node is
dependent. Note that LUSTRE does not permit recursive node
calls or cyclic dependencies. Thus the text of a well-formed
LUSTRE program can be thought of as forming a directed
acyclic graph G, with main being the unique apex node.
Therefore, we can perform a topological sort of the DAG G,
and give nodes dependency levels (0 is the level for nodes
with no dependency on any other node).

LUSTRE maintains the following core principles:

Definition I1.1 (Definition Principle). The context in which an
expression e is used can have no influence on the behaviour of
that expression. In particular, no information may be inferred
about the input. The principle extends naturally to tuples of
expressions and sets of simultaneous equations.

Definition I1.2 (Substitution Principle). An equation r = e



e:= (expression)
| x (variable)
| ¢ (constant)
| o e (unary op)
|ede (binary op)
| e when x =k (k-sample)

d:=
| node f(Z°) returns 7

var 7z let eqn tel

(node declaration)

(control expression)

| e (expression)

| merge x ce ce (merge)

| ifethenceelsece (if-then-else)

ck := (clock)

| base (base clk)

| ckonz=k (k-clock)

eqn = (equation)
| & =ck ce (defn)

| £ =cx ¢ fby e (delay)

| T =k f(é’) (node call)

Fig. 1. Normalised core LUSTRE syntax

—-—-simple counter node with a reset

node Ctr (init®', incr®?: int, rst®: bool)
returns (nﬁ: int);
var fsto: bool, pre_n52: int;
let
N =paser 1f (£st or rst®) then init™
else pre_n52 + incr®?;
fst =base truet fby falseL;
pre_n =pgsey 0+ fby nﬂ;
tel

specifies the program variable x and the expression e to be
completely synonymous. In any context, x may be replaced by
e, and vice versa. The principle extends naturally to sets of
simultaneous equations.

LUSTRE has a carefully designed system of static analy-
ses including type checking, clock checking [44] and cyclic
dependency checks [24], the details of which are beyond the
scope of this paper, but on which we rely for the correctness
of our results. Indeed, we will consider only well-typed, well-
clocked and well-formed normalised core LUSTRE programs
in this paper.

A. LUSTRE Example

We present a small example of a LUSTRE program. (For
the moment, let us ignore the superscript annotations in blue.)

Example IL.1 (Counter). Ctr is a node which takes two
integer stream parameters init and incr and a boolean pa-
rameter rst, representing (respectively) an initial value, the
increment and a reset signal stream. The output is the integer
stream n. Two local variables are declared: the boolean stream
fst, which is true initially and false thereafter, and the integer
stream pre_n, which latches onto the previous value of n. The
equation for n sets it to the value of init if either fst or
rst is true, otherwise adding incr to n’s previous value
(pre_n). pre_n is initialised to 0, and thereafter (using

£by) trails the value of n by a clock instant. All equations here
are on the same implicit “base” clock, and the calculations
may be considered as occurring synchronously.

An  example run of Ctr is the following:
[ Flow [ Values

init <> > < < <Dy D
incr <> D D B 3> < 2>
rst > PIS SRY SN]SR DRI SN Y
fst I PIS SRY S SPY SP] SR SN S
n <> 3 S & D <Dy s
pre_n <> A 3 S & D D>

Example I1.2 (Speedometer). We next define another node,
SpdMt r, using two instances of node Ctr. spd is calculated
by invoking Ctr with suitable initial value 0 and increment
acc, while pos is calculated with initial value 3 and incre-
ment spd. Again, both equations are on the same base clock,
and the calculations are synchronous. In Example I1.2, the two
instances of Ctr are never reset.

—--reusing counter node

node SpdMtr (acc®: int)

returns (spdﬁ1 , pos62 : int);
let
spd =pgser2 Ctr (01, acc®, falsel);
POS =pgser2 Ctr (3J‘, spdﬂl, falset) ;
tel

B. Motivation: Information flow leaks

Currently LUSTRE does not have a security framework.
Suppose we decorated variables in a LUSTRE program
with security levels drawn from a Denning-style lattice. We
give two simple instances of insecure expressions which
can leak information implicitly. The conditional expression
ifepthene; elseey which, depending on whether ey is
true or false, evaluates expression e; or else ey (all expressions
are on the same clock), can leak the value of the ey. Consider
the following example, where by observing the public flow
named c, we can learn the secret variable b:



-— b secret, c public

c = 1f b then 1 else 0

Similarly, the expression merge = e; es — which merges,
based on the value of x at each instant, the corresponding
value from streams e; or e; into a single stream — also can
leak the variable x=’s values. This is evident in the following:

-— x secret, c0 public
cO0 = merge x 1 0

Our type system aims at preventing such implicit flows.
Further, it should be able to correctly combine the security
levels of the arguments for all operators, and allow only legal
flows in equational definitions of variables, node definitions
and node calls.

C. Stream semantics

We now detail the semantics of LUSTRE programs in terms
of co-inductively defined streams of values. The formulation
is essentially an abstract presentation of the Velus compiler
formalisation on a github repository [10] reported in [8],
though we are unaware of any earlier presentation in this
form. The semantic rules for the evaluation of expressions
are given in Figure 2, those for clocks and clock-annotated
expressions in Figure 3, and those for control expressions in
Figure 4. The Velus formalisation introduces clock-annotated
expressions of the form e :: ck and ce :: ck in order to
capture the correct clock-synchronous behaviour of equations.
Semantic operations are written in blue sans serif typeface.
The semantic predicates assume a (co-inductive) stream his-
tory (H, : Ident — value Stream) and a clock bs and relate
an expression, control expression, annotated expression or
clock expression to a Stream of values. A clock is a stream
of booleans (CompCert/Coq’s true and false in Velus). The
evaluation rules for equations, including function calls, and
the semantics of node definitions are given in Figure 5. Here
the semantic predicate for equations in a program (graph) G
establishes consistency between the assumed Stream history
for the program variables and the history induced by the
equations, under the requisite conditions. The semantics for
a node call establishes the relationship between the input and
output streams.

The predicate H,,bs F e |e¢ vs in Figure 2 defines the
meaning of a LUSTRE expression e, with respect to a given
history H, associated with each variable and a clock bs, to
be the resultant stream vs. The streams beat to the pulse of
the clock, i.e., some value <v> is present at instants when the
clock is true, and absent (written <) when it is false. Rule
(SScnst) maps a constant ¢ via the auxiliary operation const
to a stream which has value <« present exactly when the given
clock bs is true, and « at the instants when clock bs is false.
In rule (SSvar), a variable is mapped to its associated stream
according to the history H,. Unary and binary operators are
applied point-wise on the argument streams, as stated in rules
(SSunop) and (SSbinop). In the latter, both argument streams
are assumed to pulse to the (same) given clock bs. The rule
(SSwh) for e when x = k allows projecting a stream to exactly

those instants when the clock is true and the (boolean) variable
x has a given value k. All auxiliary operators, defined co-
inductively in Appendix A, ensure that the resulting streams
have values present only when the given clock bs is true, or,
in the case of when, according to a derived clock.

Likewise, the predicate H.,bs - ck e bs’ in Figure 3
defines the meaning of a LUSTRE clock expression ck with
respect to a given history H, and a clock bs to be the resultant
clock bs’. Coarser clocks can be defined over a given clock
using the on construct, whenever a LUSTRE variable has the
desired value and the given clock is true. The three cases (with
the LUSTRE variable z having the desired value k and clock
being true; with the clock being false; and with the program
variable = having the complementary value and the clock being
true) are listed in the rules (SSonT), (SSonA1) and (SSonA2)
respectively. These rules use the auxiliary operations tl and htl,
which give the tail of a stream, and the tails of streams for each
variable according to a given history H,. In rules (SSe2aeA)-
(SSce2ae) for clock-annotated expressions, the output stream
carries a value exactly when the clock is true.

The normalised LUSTRE language treats as special control
expressions for merging streams and conditional combination.
We use the co-inductively defined auxiliary stream operations
merge and ite to synchronise the combination of streams
according to the given clock when defining the predicate
H, bs - ce | wvs in Figure 4. The control expression
merge x e; ey assumes that e;’s value is present and ef’s
value is absent at those instances where x is true, and comple-
mentarily, when x is false, e;’s value is present and e;’s value
is absent, with both being absent when z’s value is absent.
These conditions are enforced by the auxiliary operation
merge. In contrast, the conditional if ethence;elsecey
requires all three argument streams to pulse to the same clock,
as ensured by ite.

Note that the rules for all kinds of expressions employ
similar predicates; when we wish to abstract from the par-
ticular kind of expression, we use a generalised predicate
H, bs - ge |, vs that can be appropriately instanced.

The semantics of equations establish the conditions under
which the assumed stream history of the defined variables
is consistent with the generated semantics of the right-hand
side expressions. The rule for fby uses the auxiliary stream
operation fby that prepends a constant to a resulting stream
for subexpression e, again in accordance with the tempo of a
given clock.

In the case of node (function) calls, a system of equations
is simultaneously checked. The rule for a node in a program
graph G checks various conditions with respect to the (com-
mon) tempo of all base clocks of all the input streams, estab-
lishing the consistency of all the equations defined within the
node. We use the auxiliary predicates base-of to determine the
clock of the input streams, and respects-clock to check that
a history pulses in accordance with that clock. All auxiliary
predicates are defined in Appendix A.

We will use the following lemma about the stream semantics
in section IV.



const bs ¢ =cs

——————— (SScnst)
H, bst clecs

H,,bst ey Jeest Hi bst ey e esy
esidDess = o
H,,bst e ®es e 0s

H, bst x e xs

H.(z) =uzs H, bskelees ©es=os
(SSvar) (SSunop)
H, bst ¢ e e o0s
H,, bst elees Hi(x)=uzas
S when k es s = os
(SSbinop) (SSwh)
H,,bs - e when z =k |e 0s
Fig. 2. Stream semantics of expressions
H,, bs = ck |k (true - bk) H.(z) = (<> - x8)
htl H,), (tl bs) - ck on z =k bs'
( ), ( bs) Yo (SSonT)

(SSbase)

H,, bs - base | bs

H, bs I ck | (false - bk)

H,,bs - ck on « =k e (true - bs’)

H.(z) = (o-xs)
(htl H,), (tl bs) I ck on © =k Y bs’

H,,bs b ck on x =k | (false - bs’)

H,,bs b ck | (tfrue - bk) H,(z) = (<k> - xs)
(htl H,), (tl bs) - ck on = —k Y bs’

(SSonA1l)

H, bst ck on x =~k | (false - bs')

H,, bst celle o-es
H, bs - ck | false - cs
H, bst ce::cklc o -es

(SSonA2)

(SSce2aeA)

H*,bs = el}e - es
H, bs b ck false -

5 7 ek Yo @ (SSe2aeA)
H. bste:ckleo-es

H, bstele«w-es
H,, bs - ck | true - cs
H. bske::ck e <> -es

(SSe2ae)

H,, bsF celce <v»-es
H,, bs - ck | true - cs
H, ,bst ce::cklce «»-es

(SSce2ae)

Fig. 3. Stream semantics of clocks and annotated expressions

H.(z)=xs H.bst e Jeets Hy,bslt ef lee fs

H, bstelees

(SSe2ce)

merge xs ts fs = os

H,,bsF elc es

H,,bst elees Hy,bst cep Jee ts

H, bstcef e fs

(SSmrg)

H,,bs - merge x e; ef |ce 05

ite es ts fs = os

(SSite)

H,,bs - ifethenceielseces |ce 05

Fig. 4. Stream semantics of control expressions

Lemma 1 (Relevant variables for expression evaluation). If A. Information Flow Types

fu(ge) C X and for all x € X : H.(x) = H.(x), then
H, bst gellovs iff H.,bs - ge {»vs.

III. TYPING FOR SECURE INFORMATION FLOW

Denning proposed complete lattices as the appropriate
mathematical model for reasoning about secure information
flow [18], [19]. An information flow model (N,SC,C, LI, 1)
consists of a set N of all data variables/objects in the system,
which are assigned security classes (typically ¢, possibly with
subscripts) from SC, which is a finite complete lattice, partially
ordered by the relation C, and with U being the least upper-
bound (LUB) operator and L the least element of the lattice.
The intuitive reading of ¢; T ¢, is that the security class t;
is less secure (i.e., less confidential, or dually, more trusted)
than ¢,, and so a flow from ¢; to ¢, is permitted.

We define a simple security type system, where under
security type assumptions for program variables, LUSTRE
expressions are given a security type, and LUSTRE equations
induce a set of constraints over security types.

The set of security types ST comprises (i) security type
variables, typically written as § € STV with subscripts or
diacritical marks, standing for an arbitrary security class, and
(i1) the join of two security types:

OZ,/J),’Y,,U/,I/GST n= 0 (e STV) | oy L as.

The operator LI, interpreted as the LUB in the lattice, is
intended to be associative, commutative and idempotent with
L as its identity. (Security types are written in blue Greek.)
p ranges over constraints on security types, which are
(conjunctions of) relations of the form oo C 3. We write S[a/d)]
to denote the substitution of security type « for security



bs = base-ofvs G(f) =g H.(g.in) =03 H.(g.out) =y3

respects-clock H, bs g.in Veq € g.eqs: G, H,,bs | eq

H,,bs t e::ck Jge Hi(x)

=

G J@) IR

H,,bst e::cklevs fby c vs = H,(x)

G,H,,bstxz=c ¢

H,, bs t ck |k base-of

v
Haobs b € be @ G, J(53) 4 Ha(F)

G,H, bstx=,c fby e

G, H, bsF 2 = f(©)

Fig. 5. Stream semantics of nodes and equations

type variable ¢ in security type (. The notation extends to
substitutions on constraints, i.e., p[a/0d].

The main reason for introducing type variables and syntax
for security types rather than directly mentioning the security
classes of a lattice SC is in order to support stating, simplifying
and solving constraints symbolically. Not only do the rules,
e.g., those in section III-C and subsection III-D, become easier
to state using the notion of substitution, the analysis can be
framed independently of the security lattice, thereby providing
a degree of abstraction. In fact, the formulation permits the
inference of minimal constraints that suffice to ensure SIF.

We assume a typing environment I : Ident — ST, a partial
function that associates a security type to each free variable x
in a LUSTRE program.

Let Ar = {0 € STV | ¢ appears in I'(z) for some z €
dom(T")}, i.e., the security type variables that appear in some
security type in the range of T'. Let s : Ar — SC be a
ground instantiation of security type variables with respect
to some information flow lattice FM = (N, SC,C, L, 1 ). Lift
s to security types and constraints in the obvious way:

s(a € §) = s(a) E s(f)

The (lifted) composition I' o s : Ident — SC maps program
variables to security classes in the lattice.

A ground instantiation s : STV — SC satisfies a constraint
aC Bin FM if FM | s(a) C s(). A set of constraints p is
satisfied by ground instantiation s if s satisfies each constituent
constraint in p. A constraint « C 3 is satisfiable with respect
to FM if for some ground instantiation s: FM = s(«) E s(f).
A set of constraints p is satisfiable in FM if some ground in-
stantiation s satisfies each constituent constraint in p. Note that
if h : SC — SC’ is a structure-preserving lattice morphism,
i.e, t; Tty € SC implies h(t1) T’ h(tz) € SC’, then if p is
satisfied by s, it is also satisfied by so h : STV — SC".

s(ag Uag) = s(aq) U s(ag)

B. Security Typing Rules for expressions

Expressions are type-checked with the predicates:

e ck ce
I'e: a, I'ck:a, and T'Fce:«

which are read as “under the context I" mapping vari-
ables to security types, the expression/clock/control expression
e/ck/ce has the security type a”.

Figure 6 details rules for simple expressions and control
expressions. No matter what context I', constants have the

security type L. For variables, we look up the environment
T'. Binary (¢,when) and ternary (1f-then-else, merge)
operations on flows generate a flow with a type that is the join
(LUB) of the types of the operand flows. There is an implicit
dependency on the (security level of the) common clock of
the operand flows for these operators. This dependence on the
security level of the clock is made explicit in the judgements
for equations. Figure 7 shows inference rules for clocks and
clock-annotated expressions. We assume I' maps the base
clock base to some security variable (y by convention).
Observe that in general, the security type for any constructed
expression is the join of those of its components (and the
clock). The structure of all three predicates being similar,
?

for convenience we use a generalized predicate FFge tato
represent a parametric analysis over the appropriate syntactic
structure ge (this notation is used in stating results of §IV).

C. Security Typing Rules for Equations

The security typing rules for equations use the predicate:

eqn

I'F emn :>p

which represents that under the security assumption context
T, equation eqn when type-elaborated generates constraints p.
The constraints for equations are of the form « C 3, where 3
is the security type of the defined variable, and « the security
type obtained from that of the defining expression joined with
the clock’s security type. Recall that every flow in LUSTRE is
defined exactly once and no further constraints are placed on
flows according to Definition II.1.

The rules for type-elaborating equational statements are
given in Figure 8. For simple equational definitions, a con-
straint relating the security type of the defined variable with
that of its defining (control) expression is added to the set
of type constraints: The security type associated with the
defined variable x is at least that of the right-hand-side, i.e., 3,
explicitly joined with the clock’s security type 7. The rule for
fby is very similar. When considering a set of equations, we
take the union of the constraints generated for each equation.
Note that in LUSTRE, the order of equations is not important.

Example III.1 (Constraints from equations). With respect
to Example II.1, the constraints generated for the def-
initions of variables n, fst and pre_n are p; =
{’Y|_|6] U asUay |_|(52|_|C¥2 Eﬁ}, P2 = {’}/HLUL E(S]},
and p3 = {vy U LU B C 02} respectively.



=T
w (CSvar)

€

Iz : o

——— (CScnst)
Te: L

Tre: o g =T(x)

o e:a

I‘}:e e F}ie e
e 272 (CSbinop)

FF@l Des:a; Uas

(CSunop)

v =T(x) F}'—'cel Do Fly—yceg e

e (CSwh) = (CSmrg )
I'Ye whenz=k:alUf I'Fmerge x cey ces : vy U ay L ag
Fﬁe e Fﬁe e’ F(ﬁce : F[‘Fﬁce :
— T (CSexp)  — 12 Py 202 csie)
T'te: « I'Fifethencejelseces : all By LBy

Fig. 6. Security typing rules for expressions and control expressions
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Fig. 8. Security typing rules for equations

Security Typing Rules for Function Calls: Node
instantiation uses the node’s security signature (explained in
greater detail in subsection III-D) to define the constraints. Let
us assume that the node defining f is such that it takes in n
input streams and produces m output streams. A node security
signature is of the form

Node N P
F Node £ (@) = f

where the «; are type variables for the security types of
the respective input streams, [3; are type variables for the
security types of the output streams, < is the security type
variable for the (common) clock of the input streams, and p
the security type constraints obtained by type-elaborating the
defining equations in the node. The rule for node call is:

(CScall)

The rule can be understood as saying the following: find

the security types (o, ...al,) of all input flows (eq,...e,),

and from the environment I', find the expected security types

—

(3’ of the output flows, then instantiate these in a copy of the
constraints from the node security signature.

The node call rule can be formulated in this simple and
modular manner since LUSTRE does not allow recursive node
calls and cyclic dependencies. Moreover, all variables in a
node definition are explicitly accounted for as input and output
parameters or local variables. Of course, the rule relies on the
correct formulation of the node signature and the attendant
constraints. In particular, when local variables are themselves
defined using a node call, the 3, will always be type variables
according to the prevailing type environment.

In subsection III-D, we will illustrate the rule (CScall) with
respect to the definitions of spd and pos in node SpdMtr
of Example IL.2.

D. Node definition

Node definitions induce node signatures of the form:

Node
F Node £ (&’)7£>B

The node security signature is obtained as follows. From the
node definition, create type assumptions by associating type
variables for the input, output, clock and local identifiers. Then



p' = simplify p [ ]

o' = simplity p[v/5] &

— = 4 not in v
p" = simplify (pU {v C 6}) [6; 0]

o = simplity p[v/5] & ,
— - —- J notin v
p = simplify (pU{rud C §}) [d; d]

Fig. 9. Eliminating local variables’ security type constraints

type-elaborate the equations to obtain constraints, which are
then turned into a canonical form. This is formalised as:

name = f; Z; ca
out =

Tp={Z—a, 7 B,ck—~}

. —_—
in= x:ck; var =

Y; eqs = eqn

T, ={Z— 0}
TpUTL - &g :> o p=simplify o/ &
eqn : =
rUly q pop plity p (CSndef)
Node - o =
F Node £ (&)Y = 0
where aq,...,qp,01,...0%,B1,-..Bm,y are distinct type

variables (for clarity, assume these are all fresh variables).

Local variables in LUSTRE are used as aliases for expres-
sions on input/output variables. Observe that the ¢; are the
security type variables assigned to the local variables in a
node, and so should not appear in the security signature of
a node. Since there will be exactly one defining equation for
any local variable z;, and since in I';, we introduce a fresh
type variable §; for local variable z;, note that in constraints
p, there will be exactly one constraint in which §; is on the
right, and this is of the form v; C §;.

To eliminate the J;, the constraints are turned mto canon-
ical form by the auxiliary program simplify p (5 defined
in Figure 9. This serially eliminates the type Varlables K
assigned to the local variables in the node definition. Observe
that constraints of the form {v/§ T 4} can arise due to
recursion in equations. The notation [J; ¢ | denotes a sequence
of distinct type variables consisting of first ¢ followed by the
remaining sequence ¢ .

We noted above that the rules for equations introduce
exactly one constraint of the form v C § for each such 4, since
each program variable has a unique defining equation. If all
such security type variables have been eliminated in the sim-
plification process, then the constraints are in canonical form.
We use an arbitrary but fixed order on type variables and the
property that U is idempotent, associative and commutative,
and has L as identity, to transform any security type appearing
in a constraint to a suitable canonical representation. Observe
that due to the unique definition property noted above, the
right sides of constraints that are type variables will remain as
type variables during this simplification.

For Example II1.1, simplify (p; U p2 U p3) [01; 2] yields
= {yUa; UasUas C S}, Thus the node signature for
Ctr is

ode

F Node Ctr (ai,as,a3)” 5B
For Example I1.2, the constraints generated for the equations
defining spd and pos are py = {1 UL UayULLC G}
and ps {ynULUp UL C By} respectively. py U ps

simplifies to {v; Uy C f1,71 U B C B} Since v C Sy,
the latter constraint is equivalent to 5; C fs.

Lemma 2 (Correctness of simplify p ?5’). Let p be a set of
constraints such that for a security type variable 0, there is
at most one constraint of the form p C J. Let s be a ground
instantiation of security type variables in an information flow
lattice FM such that p is satisfied by s.
1) If p = p1 U{v C 6}, where variable § is not in v, then
p1[v /0] is satisfied by s. (Assume disjoint union.)
2) If p=p1 U{rvUdC 5}, where variable § is not in v,
then p1[v/d] is satisfied by s. (Assume disjoint union.)

PROOF SKETCH. Note that p; is satisfied by s, and that
0 appears to the right of C in only one constraint. Suppose
1 C B is a constraint in pp, with variable J appearing in f3;.
Since FM = s(v) C s(0), by transitivity and monotonicity of
s with respect to L: s(81[r/d]) C s(51) E s(B2). O

Lemma 3 (Security of Node Calls). Suppose g is a node in
the graph G of a LUSTRE program (g = G(f) for some f),
which has security signature

Node —
F Node £ (d) % B.
and also suppose

eqn

D' F Z=u fler,...en) > p1
Let s be a ground mstantlanon of type variables such that

for some security classes T/, w e SC: s(@ ) = T where
Fl—e

Fl—ck;'

Now zf p is satisfied by the ground instantiation {0
I B — U,y — w} where @ T u' (point-wise ordering
on the tuples), then p is satisfied by s.

o, s(B) = o where ['(7) =7, and s(§) = w where

Definition III.1 (Node Security). Let g be a node in the graph
G of a LUSTRE program (g = G(f) for some f), which has
security signature

Node —
F Node £ ()% 5.
Let s be a ground instantiation that maps the security type
variables in the set {(aq,...qn)} U{(B1,...Bm)} U{7} r0
the security classes SC of an information flow lattice FM.
Node g is secure with respect to s if
1) p is satisfied by s;
2) For each node g' on which g is directly dependent, ¢’ is
secure with respect to the ground instantiations as given
by Lemma 3 for each call to ¢’ in g.
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IV. SOUNDNESS OF THE TYPE SYSTEM

We establish the soundness of the type system by adapting
the approach of Volpano et al [53] to a data-flow setting. The
novelty of the approach is to dispense with the usual notion of
confinement checking but instead to generate and solve security
type constraints.

The Simple Security Lemma for expressions (respectively,
control expressions and clock expressions says: “if, under
given security assumptions for the free program variables,
the type system gives a general expression ge (expression,
control expression, clock expression) a security type «, then
all variables which may have been read in evaluating the
expression have a security level that is o or lower”.

Lemma 4 (Simple Security). For any general expression ge
?

and security type assumption T, if FFge :
x € fu(ge) : T'(z) C o

«, then for all

PROOF SKETCH. By induction on the structure of ge.
Constants, variables and base are the base cases. The result
?

is immediate from the fact that in the rules for FFge : a, the
security level of a (generalised) expression is the join of the
security levels of the component sub-expressions. ]

Definition IV.1 ((C ¢)-projected Stream). Suppose t € SC is
a security class in FM. Let X be a set of program variables,
T be security type assumptions for variables in X, and s be a
ground instantiation, i.e., I'os maps variables in X to security
classes in SC. Let us define Xgy, = {z € X | (Tos)(x) C t}.
Let H, be a Stream history such that X C dom(H.). Define
H.|x., as the projection of H, to X Ct Le., restricted to those
variables that are at security level t or lower:

Holxc, () = Ha(z)

Theorem 5 (Non-interference). Let g € G be a node with
security signature

for x € Xty

Node —

b Node £ a' & p

which is secure with respect to ground instantiation s of the
type variables.

Let eqs be the set of equations in g. Let X = fv(egqs) —
dv(eqs), i.e., the input variables in eqs.

Let V = fu(egs) U dv(eqs), i.e., the input, output and local
variables. cqn

Let T (and s) be such that I' + eqs :> p and p is satisfied
by s. Let t € SC be any security level. Let bs be a given (base)
clock stream.

Let H, and H! be such that
1) for all eq € eqs: G,H,,bs F eq and G, H,,bs I eq,
i.e., both H, and H are consistent Stream histories on
each of the equations.
2) H.|x., = Hl|x.,, i.e, H. and H, agree on the input
variables which are at a security level t or below.
Then H,|y., = H.|v.,, i.e, H. and H| agree on all variables
of the node that are given a security level t or below.

PROOF. The proof is by induction on the dependency level

of g € G. For level 0 nodes, the only equations are of the
form z =, ce and x =, ¢ fby e. We first consider only
single equations. Consider the case when x € X (the other
case does not matter). From the rules (CSeqn) and (CSfby),
we have L~ C «, and consequently s(5L~y) C s(a) C t.
By Lemma 4, fv(ge) € X, (otherwise we would con-
tradict s(o) C ¢). So by Lemma 1: H,,bs b ge |7 vs
iff H. bs = ge {» vs. Therefore by the rules in Figure 5,
H.(z) = H.(x).
Since the constraints of each equation must be satisfied by s,
the result extends in a straightforward way to sets of equations.
Thus we have established the result for nodes at dependency
level 0.

In the general case, we assume that the result holds for all
nodes up to a dependency level k, and now consider a node
at level k + 1.

There can now be 3 forms of equations: x =, ce and
T =, ¢ fby e (as before), and node calls. For any of the
two simple cases of equation, the proof follows the reasoning
given above for level 0 nodes.

We now consider the case of node call equations Z =
1/ (€). Suppose z; € {Z}. If (T'0s)(x;) [ t, there is nothing
to show. So we only need to consider the case where s(v;) C ¢.
Since g is secure wrt s, by Definition III.1, each call to a
node ¢’ at a dependency level < k is secure with respect
to the ground instantiation specified in Lemma 3. Therefore,
by invoking the induction hypothesis on ¢’ and the Stream
semantics rules in Figure 5, let us consider the Stream histories
H, and H, augmented to include the flows on variables
of this instance of ¢'. Let us call these H; 9" and HTY.
For the corresponding output variable y; of security type 37
in node ¢’ on which z; depends, since [33-’ C v; we have:
HY (y;) = Hffg/(yj’-). Whence by the rules in Figure 5:
H.(2;) = H(x,). 0

V. RELATED WORK

Security type systems: Denning’s seminal paper [18] pro-
posed complete lattices as the appropriate structure for infor-
mation flow analyses. The subsequent paper [19] presented
static analysis frameworks for certifying secure information
flow. A gamut of secure flow analyses were based on these
foundations.

Only much later did Volpano et al. [53] provide a security
type system with a semantic soundness result by showing
that security-typed programs exhibit non-interference [22].
Type systems remain a powerful way of analysing program
behaviour, particularly secure information flow. For instance,
the JIF compiler [43] for the JFLOW language [41] (based on
Java) not only checks for IFC leaks but also deals with declas-
sification, using the Decentralised model of data ownership
[42]. Matos et al. proposed a synchronous reactive extension
of Volpano’s imperative framework. Their language is at a
lower level than LUSTRE, and has explicit synchronization



primitives for broadcast signals, suspension, preemption and
scheduling of concurrent threads. While they employ the
notion of reactive bisimulation to deal with concurrency, the
techniques employed closely follow Volpano’s formulation of
the type system (which use var and cmd types) and a reduc-
tion semantics (necessitating a subject reduction theorem). In
contrast, we are able to leverage the declarative elegance and
simplicity of LUSTRE to present a far simpler type system and
its soundness proof in terms of LUSTRE’s co-inductive stream
semantics.

Semantics and logics: Non-interference [22] is considered a
standard semantic notion for security although other notions
of semantic correctness have been proposed, e.g., [6]. Non-
interference is a typical hyperproperty [15], i.e., a set of
sets of program traces. Clarkson er al. [14] have presented
temporal logics HyperLTL, HyperCTL*, for verification of
hyperproperties.

Beyond type systems: Zanotti [54] proposed an abstract
interpretation framework similar to the earlier work from
Volpano et al., but strictly more general in its applicabil-
ity. Hunt and Sands [29] extended type-based IFC checking
with flow-sensitivity. In PARAGON, a Java-based language
proposed by Broberg et al. [9], one can additionally handle
the runtime tracking of typestate. However, in general, type-
based techniques can exhibit imprecision as they lack flow
and context sensitivity and do not systematically handle un-
structured control flow and exceptions in programs. Hammer
and Snelting [26] proposed the usage of program dependence
graphs (PDGs) to offer a flow-, context- and object-sensitive
analysis to detect IFC leaks. Livshits et al. [39] use data
propagation graphs to automatically infer explicit information
flow leaks.

Runtime techniques: Dynamic analyses provide greater pre-
cision, particularly in systems which rely on dynamic typing,
when static dependency graph or type-based approaches are
not adequate. Shroff et al. [51] have proposed dynamic track-
ing of dependencies to analyse noninterference. Austin and
Flanagan [2], [3] have proposed dynamic checks to efficiently
detect implicit flows based on the no-sensitive-upgrade seman-
tics and the permissive-upgrade semantics. Their subsequent
work [4] addressed limitations in the semantics due to which
executions where implicit flows cannot be tracked are prema-
turely terminated.

IFC analyses in hardware and systems: We refer to but
do not further discuss here work addressing IFC analyses in
hardware systems, e.g. [52], [37], [56], [21], in programming
languages [49], [45], [38], [47], in operating systems, [34],
[55], [13], [20], [47], and in databases [50]. In the context of
embedded systems, it will be interesting to see how our higher-
level LUSTRE-based approach compares with lower-level se-
cure hardware description languages such as SecVerilog [56]
and ChiselFlow [21] in which fine-grained security policies
can be expressed.

VI. CONCLUSIONS

We have presented a simple security type system for a syn-
chronous reactive data-flow language, and shown its semantic
soundness with respect to the language’s stream semantics
in the form of non-interference. Type systems for security
and their soundness proofs have traditionally been proposed
for imperative programming languages and for functional
languages with imperative features [5], [28], [53]. Declar-
ative data-flow languages such as LUSTRE pose interesting
issues, since there is a reactive transformation between infinite
input and output streams within a clock instant, and there
are interesting clock dependencies. Since the evaluation of
expressions is synchronous, within a clock tick, the usual
operational rules that account for control constructs are of
less importance. Further, in the source program, the syntactic
order of equations is irrelevant to the semantics of programs.
The traditional issues of control flow and termination cannot
be used in the same way, and indeed the results such as
the confinement lemma and subject reduction, so central to
Volpano et al’s formulation [53], become less important in the
streams semantic model. Non-interference requires a novel re-
interpretation to handle possibly recursively defined flows, and
to cater to the infinite stream semantics. On the other hand,
the simple and elegant semantics of LUSTRE, particularly that
all variables have unique definitions and that node calls are
not recursive, greatly simplifies our formulation of the type
system, the notion of security and the non-interference proof.

We are currently formalising our results in Coq and inte-
grating them into the CompCert-Velus efforts [36], [10]. (A
discussion of details is omitted from this paper for lack of
space.) We are also currently extending our analysis to the
translation of LUSTRE to an imperative language [7], [8]. Our
preliminary results indicate that the instantaneous semantics
for LUSTRE provides the necessary scaffolding in showing that
our notions of security and non-interference are mapped by the
translation to their traditional counterparts in the imperative
language setting.
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APPENDIX

The definitions of the auxiliary semantic stream predicates when,
const, merge, ite are given in Figure 10.

All auxiliary stream operators are defined to behave according to
the clocking regime. For example, the rule (DFcnstF) ensures the
absence of a value when the clock is false. Likewise the unary and
binary operators lifted to stream operations & and & operate only
when the argument streams have values present, as in (DFunop) and
(DFbinop), and mark absence when the argument streams’ values are
absent, as shown in (DFunopA) and (DFbinopA).

Note that in the rules (DFmrgT) and (DFmrgF) for when, a value
is present on one of the two streams being merged and absent on
the other. When a value is absent on the stream corresponding to
the boolean variable, values are absent on all streams (DFmrgA).
The rules for ite require all streams to have values present, ie.,
(DFiteT) and (DFiteF), or all absent, i.e., (DFiteA). We have already
discussed the when operation. The fby operation is a bit subtle,
and rule (DFfby) may look non-intuitive. However, its formulation
corresponds exactly to the Velus formalisation, ensuring that a value
from the first argument stream is prepended exactly when a leading
value would have been present on the second argument stream. Note
that since the streams may be infinite, and the Stream semantics is
co-inductive, there is no base case. The operation base-of converts
a value stream to a clock, i.e., a boolean stream. The operation
respects-clock is formulated corresponding to the Velus definition.
The rules (DFtl) and (DFhtl) are obvious.

const bs’ ¢ = cs’
const (true - bs') ¢ =« - cs

const bs’ ¢ = ¢s’
const (false - bs’) ¢ = o - ¢s

> (DFcnstT)

- (DFcnstF)

S es’ =os
— /_ - (DFunopA)
<>(<>-6$)—<>~08
Ses' =08 VvV =0w

— DFuno
S («»-es’) =<'>- 08 ( P

esy desh = os’

= (DFbinopA)
(<> . 68'1)@(0 . 68/2) =o-0s
esi@esh, =08’ v Buy =0

- DFbino
(«wp> - esh)D(<vo> - esh) = <> - 08’ ( P

merge zs' ts' fs' = os’
merge (<I> - xs") («wp - ts') (o - fs') = wp - 08’
merge xs’ ts' fs' = os’

(DFmrgT)

DFmrgF
merge (<F>-xzs’) (o -ts') («wp - fs') = wp> - o8 (DFmrgF)

merge zs’ ts' fs' = os’
merge (o -xs’) (o-ts') (o fs)=0-0
ite es’ ts’ fs' = os’
ite (<I>-es’) («vop - ts') («wp>- fs') = <vp - 0s
ite es’ ts' fs' = o8
ite (<F>-es’) («wp-ts') («wp- fs') =<wp>-o0s
ite es’ ts’ fs' = os’
ite (o-es’) (o-ts') (o-fs')=0-0
when k zs’ es’ = os’
when & (</1f> . :ES') (<(,'> . es’) = <> - 08
when & zs’ es’ = os’
when & (k> - xs’) (<> -es’) =0 -0
when k zs’ es’ = os’

7 (DFmrgA)

- (DFiteT)

- (DFiteF)

- (DFiteA)
S

~ (DFwhnk)

, (DFwhnkA1)
S

DFwhnkA2
when & (<> . xs') (<> . 68/) =o-08 (DFwhnkA2)

foy v xs = ys

DFfb
foy ¢ (<> - zs) = <o - ys ( v

foy ¢ s = ys
fby C (<> . xs) =0y
respects-clock H, bsvs

respects-clock H, (false - bs) (¢ - vs)
respects-clock H, bsvs

(DFfbyA)
S

(DFresA)

respects-clock H, (true - bs) (<> - vs) (DFres)
base-of vs = bs (DFbasel)
base-of (v - vs) = true - bs
base-of vs = bs (DFbasc2)
base-of (¢ - vs) = false - bs
es=v-es (OFt) x € dom(H,) (DFht)
(thes) = es’ (htl H)(z) = (1l Hy(x))

Fig. 10. Definitions of auxiliary predicates
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