Multi Label Generic Cuts: Optimal Inference in Multi Label Multi Clique MRF-MAP Problems **Chetan Arora** S.N. Maheshwari

The Hebrew University of Jerusalem (now with IIIT Delhi)

MRF-MAP Inference Problem

$$\arg\min E(l_P) = \sum_{p \in P} D_p(l_p) + \sum_{c \in C} W_c(l_c)$$

P is the set of pixels, *C* is the set of cliques. D_p is per pixel unary/data cost. W_c is per clique prior/clique potential.

Inference problem is NP hard in general

Higher Order MRF-MAP

Allow more complex clique potential based upon learnt patterns [4].

Structural constraints based upon shape and gradients can only be encoded using higher order potentials [5].

Reference Image

Disparity 2-cliquel

Inference Algorithms		
Problem Type	Optimal Inference	Approximate In
2-Label First Order	Graph Cuts (max flow)	QPBO [3]
2-Label Higher Order	Generic Cuts [1]	Approximate Cuts[2],
Multi-Label First Order	Ishikawa [6]	Alpha Expansion
Multi-Label Higher Order	Proposed Algorithm	Message Passing Varia

Multi Label Generic Cuts (MLGC) - Encoding

- 1. Let $L = \{l_1, l_2, \dots, l_m\}$ be the ordered label set.
- 2. For each pixel p we introduce an m-tuple $b_p = (b_1^p, b_2^p, \dots, b_m^p)$.
- 3. The m possible label states of pixel p are represented by states (0,1,1,...,1), (0,0,1,...,1), ..., (0,0,...,0,0) of the *m*-tuple. That is the label at position i in L is represented by the state of b_p in which i Boolean variables from left have value 0 and remaining (m - i) variables have value 1.
- 4. $B(l_p)$ denotes the state of b_p corresponding to the label l_p of p.

Indian Institute of Technology Delhi

Disparity 3-clique

rence

Reduction [7]

ants [8-11]

Multi Label Generic Cuts (MLGC) - Transformation

- We explain the transformation for 2-cliques. The technique generalizes to k-cliques.
- 2. For the 2-ary clique potential function $W_{\{p,q\}}(l_p, l_q)$ defined on labels of pixels in clique

 $\{p,q\}$, we introduce a 2m-ary function $W^b_{\{p,q\}}(B(l_p), B(l_q)): \mathfrak{B}^{2m} \to \mathfrak{R}$.

- The domain of W^b is 2^{2m} states of the 2m binary variables. Of these only m^2 correspond to labels of pixels p and q. These states are referred to as *feasible* states, remaining states are called *infeasible*.
- Value of W^b is equal to W for feasible states and set to infinity for infeasible states.
- This transformation ensures that the minimum as well as minimum energy state for the
- 2m-ary function W^b is the same as that of the original multi-label problem.

Submodularity Preservation

If the original multi-label clique potential W is submodular, then the binary label clique potential function W^b is also submodular.

xample											
Step 1: Inp	ut										
Labeling	Pot.	Labeling	Pot.	Labeling	Pot.	Labeling	Pot.	Labeling	Pot.	Labeling	Pot.
W(a, a, a)	50	W(a, b, c)	130	W(b, a, b)	120	W(b,c,a)	120	W(c, a, c)	160	<i>W</i> (<i>c</i> , c, b)	110
W(a, a, b)	110	W(a,c,a)	110	W(b,a,c)	150	W(b,c,b)	100	$W(c, \mathbf{b}, a)$	140	W(c, c, c)	60
W(a, a, c)	140	W(a,c,b)	130	W(b, b, a)	90	W(b,c,c)	90	$W(c, \mathbf{b}, \mathbf{b})$	120		
W(a, b, a)	80	W(a, c, c)	120	W(b, b, b)	70	W(c, a, a)	150	$W(c, \mathbf{b}, \mathbf{c})$	110		
W(a, b, b)	100	W(b, a, a)	100	W(b, b, c)	100	W(c, a, b)	170	W(c, c, a)	130		
<i>w</i> (<i>a</i> , <i>b</i> , <i>b</i>)	100	W (D, u, u)	100	<i>w</i> (<i>b</i> , <i>b</i> , <i>c</i>)	100	<i>w</i> (c, u, b)	170	W (C, C, U)	130		

Step 2: Convert to binary function			Step 3: Reparan	Step 3: Reparametrize to make $W^b(0,0,,0)$			
Labeling	Pot.	Labeling	Pot.	Labeling	Pot.	Labeling	Pot.
$W^{b}(011011011)$	50	$W^b(001001000)$	100	$W^b(011011011)$	50	$W^b(001001000)$	40
$W^{b}(011011001)$	110	$W^b(001000011)$	120	$W^b(011011001)$	110	$W^b(001000011)$	120
$W^b(011011000)$	140	$W^b(00100001)$	100	$W^b(011011000)$	80	$W^b(001000001)$	100
$W^b(011001011)$	80	$W^b(00100000)$	90	$W^{b}(011001011)$	80	$W^b(00100000)$	30
$W^b(011001001)$	100	$W^b(000011011)$	150	$W^b(011001001)$	100	$W^b(000011011)$	150
$W^b(011001000)$	130	$W^b(000011001)$	170	$W^b(011001000)$	70	$W^b(000011001)$	170
$W^b(011000011)$	110	$W^b(000011000)$	160	$W^b(011000011)$	110	$W^b(000011000)$	100
$W^b(011000001)$	130	$W^b(000001011)$	140	$W^b(011000001)$	130	$W^b(000001011)$	140
$W^b(011000000)$	120	$W^b(000001001)$	120	$W^b(011000000)$	60	$W^b(000001001)$	120
$W^b(001011011)$	100	$W^b(000001000)$	110	$W^b(001011011)$	100	$W^b(000001000)$	50
$W^b(001011001)$	120	$W^b(00000011)$	130	$W^{b}(001011001)$	120	$W^b(00000011)$	130
$W^b(001011000)$	150	$W^b(00000001)$	110	$W^b(001011000)$	90	$W^b(00000001)$	110
$W^b(001001011)$	90	$W^b(00000000)$	60	$W^b(001001011)$	90	$W^b(00000000)$	0
$W^b(001001001)$	70			$W^b(001001001)$	70		
All unary costs are zero.			$D(b_r^3(0))$ is now	v 60			

MLGC runs order of magnitude faster with superior visual quality even for non-submodular clique potentials

References

- cliques. In ECCV, 2012
- C. Arora, S. Banerjee, P. Kalra, and S.N. Maheshwari. Fast Approximate Inference in Higher Order MRF-MAP Labeling Problems. In CVPR, 2014.
- V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts-a review. In TPAMI, 2007.
- C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse higher order energy functions of discrete variables. In CVPR, 2009.
- H. Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors. In TPAMI 2003.
- Ishikawa, H.: Transformation of general binary MRF minimization to the first-order case. In TPAMI 2011.
- [DD] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient optimization for higher-order MRFs. In CVPR, 2009.
- [MPI] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press,
- [TRWS] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. In TPAMI, 2006.
- **[ICM]** J. Besag. On the statistical analysis of dirty pictures. In Journal of the Royal Statistical Society, 1986.

C. Arora, S. Banerjee, P. Kalra, and S.N. Maheshwari. Generic Cuts: An efficient optimal algorithm for submodular MRF-MAP problems with higher order

Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under second order smoothness priors. In CVPR, 2008.