Fast Approximate Inference in Higher Order MRF-MAP Labeling Problems

Chetan Arora

Subhashis Banerjee

Prem Kaira

Approximate Cuts (AC)
Complimentary Slackness Condition

$$
Y_{c}^{l_{c}}>0 \Rightarrow \sum_{p \in c} V_{c, p, l_{c}^{p}}=W_{c}\left(l_{c}\right)
$$

Which can also be written as

$$
\sum_{p \in c: l_{c}^{p}=a} V_{c, p, a}+\sum_{p \in c: l_{c}^{p}=b} V_{c, p, b}=W_{c}\left(l_{c}\right)
$$

Proposed Gadget for Non-submodular Potentials

$$
V_{c, p, a}=f_{n_{a} \rightarrow p_{a}}-f_{p_{a} \rightarrow m_{a}}
$$

Capacity Constraints:

$$
\sum_{p \in c: l_{c}^{p}=a}\left(f_{n_{a} \rightarrow p_{a}}-f_{p_{a} \rightarrow m_{a}}\right)+\sum_{p \in c: l_{c}^{p}=b}\left(f_{n_{b} \rightarrow p_{b}}-f_{p_{b} \rightarrow m_{b}}\right) \leq W_{c}\left(l_{c}\right)
$$

Denoising - 4 Clique: Submodular Potential (Optimal Inference)

	∞				∞		m
Input	$\begin{aligned} & \mathrm{AC}(0.011) \\ & 673535 \\ & 673535 \end{aligned}$	$\begin{aligned} & \mathrm{IQ}(0.4 \mathrm{~s}) \\ & 775052 \end{aligned}$	$\begin{aligned} & \mathrm{FZ}(0.2 \mathrm{~s}) \\ & 775052 \end{aligned}$	$\begin{gathered} \text { DD(6.9s) } \\ 797675 \end{gathered}$	$\begin{gathered} \text { GTRWS }(0.22 \mathrm{~s}) \\ 673535 \\ 673535 \end{gathered}$	$\begin{gathered} \text { MPI }(0.2 \mathrm{~s}) \\ 824715 \end{gathered}$	$\begin{gathered} \mathrm{KS}(210, \\ 70928 \\ 66827 \end{gathered}$

Stereo - 4 Cliqu

 Deblurring - 9 Clique

$$
V_{c, p, b}=f_{n_{b} \rightarrow p_{b}}-f_{p_{b} \rightarrow m_{b}}
$$

Deblurring - 4 Cliqu

atamatar
 Input(20)
 AC runs orders of magnitude faster with superior visual quality

Weak Persistence

We have embedded a k-ary potential function $\mathrm{f}($.$) in a 2 k$-ary function $g_{c}(\cdot, \cdot)$ such that $g_{c}(x, \bar{x})=W_{c}(x)$ and $g(x, y)=\infty, y \neq \bar{x}$.
The Approximate Cuts compute a submodular approximation $g^{*}(\cdot \cdot)$ of $g(\cdot \cdot)$. Weak Persistence is guaranteed along the lines of Kahl and Strandmark [6] and Windheuser et al. [5] .
Node labels are guaranteed to be weakly persistent whenever the two graph nodes corresponding to a pixel are on opposite sides of cut.

References

