Fast Approximate Inference in Higher Order MRF-MAP Labeling Problems IEEE 2014 Conference on **Computer Vision and Pattern Subhashis Banerjee** Prem Kalra **Chetan Arora** S.N. Maheshwari Recognition The Hebrew University of Jerusalem (now with IIIT Delhi) Indian Institute of Technology Delhi Approximate Cuts (AC) otimal Inference) **Complimentary Slackness Condition**

MRF-MAP Inference Problem

$$\arg\min E(l_P) = \sum_{p \in P} D_p(l_p) + \sum_{c \in C} W_c(l_c)$$

P is the set of pixels, *C* is the set of cliques. D_p is per pixel unary/data cost. W_c is clique prior/potential.

Inference problem is NP hard in general

Higher Order MRF-MAP

Allows more complex clique potential based upon learnt patterns [4].

Structural constraints based upon shape and gradients can only be encoded using higher order potentials [9].

Reference Image

Disparity 2-clique

Inference Algorithms

Problem Type	Optimal Inference	Approximate Inf
2-Label First Order	Graph Cuts (max flow)	QPBO [3]
2-Label Higher Order	Generic Cuts [1]	Proposed Algorithm, Re
Multi-Label First Order	Ishikawa [9]	Alpha Expansion
Multi-Label Higher Order	MLGC [2]	Message Passing Varian

Primal

Dual

$min_{X_{p}^{l},Y_{c}^{lc}}\sum_{p,l}D_{p}(l)X_{p}^{l} + \sum_{p,l_{c}}W_{c}(l_{c})Y_{c}^{l_{c}}$	s.t. whore	$\max_{p} (U_{p})$ $U_{p} \leq h_{p}^{l}$ $h^{l} = D_{p}(l) + \Sigma$
S.t. $\Sigma_l X_p = 1$, $\Sigma_{l_c:l_c^p = l} Y_c = X_p$ $X_p^l \in [0,1]$ and $Y_c^{l_c} \in [0,1]$	and	$N_p - D_p(t) + \Sigma_{c:p}$ $\sum_{p \in c} V_{c,p,l_c^p} \le W_c(t)$

$$Y_c^{l_c} > 0 \implies \sum_{p \in c} V_{c,p,l_c^p} = W_c(l_c)$$

Which can also be written as

Proposed Gadget for Non-submodular Potentials

$$V_{c,p,a} = f_{n_a \to p_a} - f_{p_a \to m_a} \qquad V_{c,p,b}$$

Capacity Constraints:

$$\sum_{p \in c: l_c^p = a} \left(f_{n_a \to p_a} - f_{p_a \to m_a} \right) + \sum_{p \in c: l_c^p = b} \left(f_{n_b \to p_b} - f_{p_b \to m_b} \right) \le W_c(l_c)$$

Weak Persistence

- We have embedded a k-ary potential function f(.) in a 2k-ary function $g_c(\cdot,\cdot)$ such that $g_c(x, \bar{x}) = W_c(x)$ and $g(x, y) = \infty, y \neq \bar{x}$.
- The Approximate Cuts compute a submodular approximation $g^*(\cdot, \cdot)$ of $g(\cdot, \cdot)$.
- Weak Persistence is guaranteed along the lines of Kahl and Strandmark [6] and Windheuser et al. [5].
- Node labels are guaranteed to be weakly persistent whenever the two graph nodes corresponding to a pixel are on opposite sides of cut.

Disparity 3-clique

rence

eduction [8]

nts [10,11,12]

$p \in c V_{c,p,l}$

 (l_c)

 $= f_{n_b \to p_b} - f_{p_b \to m_b}$

12.

13.

Results				
Denoising -	– 4 Clique: S	ubmodular	· Potential (Ор
		IO(0.4s)	FZ(0,2c)	
mput	673535 673535	775052	775052	
Stereo – 4	Clique			
GT	AC (20.5%,2.1	DD) (40.9%,4	GTR 4457) (20.7%	WS ,17.
Deblurring	– 9 Clique			
Ground Truth	Input(10)	AC (38.2%,0.115)	DD (42.18%,28.8)) (3
Deblurring	– 4 Clique			
Input(20)	AC	DD	GTRWS	
	(12.4%,0.009)	(14.5%,6.3)	(12.5%,0.079)) (1.
AC ru	uns order	rs of mag	gnitude	fas
Reference	es			
 C. Arora, S. Bar C. Arora and S. V. Kolmogorov C. Rother, P. Ko T. Windheuser, [KS] F. Kahl an Woodford, O., [IQ] Ishikawa, 	nerjee, P. Kalra, and S. M Maheshwari. Multi Lab and C. Rother. Minimizi ohli, W. Feng, and J. Jia. I H. Ishikawa, and D. Cre d P. Strandmark. Genera Torr, P., Reid, I., Fitzgibb H.: Transformation of g	Taheshwari. Generic C rel Generic Cuts: Optir ng nonsubmodular fu Minimizing sparse hig mers. Generalized roo alized roof duality for on, A.: Global stereo r eneral binary MRF min	Cuts: An efficient optim nal Inference in Multi nctions with graph cut her order energy funct of duality for multi-lab pseudo-boolean optim reconstruction under s nimization to the first-	nal algo Label I ts-a rev tions o el opti nization second order o

DD(6.9s) 797675

GTRWS(0.22s) 673535 673535

MPI(0.2s)824715

CVPR

2014

KS(210.8s 709283 668276

FΖ (62.1%, 12.7)

IQ (61.7%, 16.5)

MPI (72%,0.38)

GTRWS

IQ FΖ MPI 38.8%, 5.17) (99.79%, 30.45) (99.79%, 137.7) (49.29%, 0.092

KS

FΖ

13.9%,82.89) (18.4%,0.080) (45.8%,0.192) (20.9%,0.104)

ster with superior visual quality

orithm for submodular MRF-MAP problems with higher order cliques. In ECCV, 2012. Multi Clique MRF-MAP Problems. In CVPR, 2014.

view. TPAMI, 2007.

of discrete variables. In CVPR, 2009.

imization: optimal lower bounds and persistency. In ECCV, 2012.

on. In ICCV, 2011. order smoothness priors. In CVPR, 2008.

case. In TPAMI 2011.

H. Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors. In TPAMI 2003

[DD] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient optimization for higher-order MRFs. In CVPR, 2009.

[MPI] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, 2009.

[GTRWS] V. Kolmogorov. Reweighted message passing revisited. CoRR, abs/1309.5655, 2013.

[FZ] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut algorithm for higher-order markov random fields. In ICCV, 2011