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ABSTRACT
Recently, wireless body area network (WBAN) plays an im-
portant role in remote cardiac patient monitoring, and mo-
bile healthcare applications. Generally, the use of WBAN
technology is restricted by size, power consumption, trans-
mission capacity (bandwidth), and computational loads. In
this paper, we therefore propose an automated cardiac event
change detection for continuous remote patient monitoring
devices. The proposed event change detection algorithm
consists of two stages: i) ECG beat extraction; and ii) ECG
beat similarity measure. In the first stage, the onset of
each QRS complex is identified using the Gaussian deriva-
tive based QRS detector and the two heuristics rules. In
the second stage, we employ the weighted wavelet distance
(WWD) metric for finding the similarity between two ECG
beats in wavelet domain. The WWD is the weighted nor-
malized Euclidean wavelet distance between the wavelet sub-
band coefficients vectors of the current and past ECG beats,
where weights are equal to the relative wavelet subband
energies of the corresponding subbands. The experimen-
tal results show that the weighted wavelet distance measure
works substantially better than the conventional PRD and
the wavelet based weighted PRD (WWPRD) measures un-
der noisy environments. The proposed approach has been
tested and yielded an accuracy of 99.76% on MIT-BIH Ar-
rhythmia Database.

Keywords
electrocardiogram, QRS detection, cardiac event detection,
peak-finding logic, Gaussian derivative, remote cardiac pa-
tient monitoring, wavelet distance metric.

1. INTRODUCTION
In recent years, wireless remote health monitoring system
is widely used for screening, diagnosis and management of
cardiac diseases of post-surgical patients and chronic heart

failure patients. Cardiac patients with wireless wearable
and/or implant medical devices can be checked remotely no
matter where they are located. Cardiologists can monitor
and access cardiac data of any patient by connecting the
mobile devices such as mobile phones, smartphones, per-
sonal digital assistants (PDAs), and wireless-enabled (Wi-
Fi) laptops to telemedicine network using any of wireless
and cellular technologies such as Wi-Fi, Bluetooth, GSM,
GPRS, CDMA, WiMAX, UMTS, CDPD, Mobitex, 4G, and
satellite-internet technology. The remote patient monitor-
ing system has the following advantages: i) monitoring and
accessing subjects who are mobile and may reduce hospi-
tal readmissions; ii) time-saving and cost-effective means for
follow-up; iii) continuous monitoring decreases the risk fac-
tors of life threatening cardiac diseases; iv) supports emer-
gency patient promptly and appropriately; v) provides the
better privacy and peace of mind for patients and extensive
care from family members. The electrocardiogram (ECG)
records the electrical activity of the heart that can be use-
ful to detect signs of poor blood flow, heart muscle damage,
abnormal heartbeats, and other heart problems. The contin-
uous recording and monitoring of ECG signal can play a ma-
jor role in prevention of cardiovascular disease. For clinical
evaluation of hospitalized cardiac patients, the ECG signal
is recoded for duration of 12-48 hours using an ECG Holter
device. Then, the clinical evaluation of long-term ECG sig-
nal is performed by physicians. The recent advancements
in microelectronics, digital signal processing techniques and
wireless communication technologies enable cardiologists to
provide medical treatment by monitoring remotely located
ambulatory, post-surgical, and chronic cardiac patients. Al-
though the wearable cardiac monitoring device collect and
transmit the vital signs of cardiac patients continuously,
there are limitations in the use of wireless sensor network
technology and wearable devices. Generally, the use of wire-
less wearable cardiac monitoring device is restricted by size,
power consumption, transmission capacity (or bandwidth),
memory, and computational loads. Recent growth in 2G
and 3G technologies enable to access remote patient car-
diac information by cardiologists at any time and location.
Although, these technologies provide high bandwidth, pub-
lic highly demands cost-effective healthcare services. More-
over, the continuous cardiac monitoring device reduces more
power for transmission and thus reduces the battery life.
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Figure 1: The electrocardiogram (ECG) signal and
some diagnostic parameters.

In such scenarios, there is a great demand for an automated
cardiac event change detector for continuous patient moni-
toring applications. The limitations of continuous wireless
patient monitoring system can be overcome by exploiting
and exploring the patterns of ECG beat in the long-term
ECG signal. In this work, we propose an automated car-
diac change detection algorithm for pervasive and continu-
ous wireless cardiac monitoring devices. The proposed car-
diac monitoring system not only reduces the transmission
and storage cost and power consumption, but also alerts the
cardiologists and instantly sends only beat patterns which
exhibit abrupt changes in the ECG signal. In literature,
many algorithms have been developed for classification of
ECG beats and detection of ST pattern change. The ECG
beat classification algorithms are based on wavelet features,
ECG morphology and RR interval features, neural networks,
higher order statistics, hermite basis function, support vec-
tor machines, fuzzy logic, and principal component anal-
ysis. It is well-known that the analytic features capture
local information in a ECG signal. But the extraction of
the analytic features is very difficult and challenging task
under noise environments. Moreover, performance of any
ECG beat recognition system highly relies on the accuracy
of the QRS complex detector. The beat classification ap-
proach based on the ECG templates and distance measure
is heavily affected by various kinds of noise.

This paper is organized as follows. Section 2 describes the
characteristics of ECG beats in a long-term ECG signal.
Section 3 presents cardiac event change detection algorithm
based on the ECG beat extractor and weighted wavelet dis-
tance metric. The experimental results of the proposed ap-
proach for the well-know MIT-BIH arrhythmia database are
presented in Section 4. Finally, conclusions are drawn in the
Section 5.

2. PRELIMINARIES
The electrocardiogram (ECG) continues to be a critical com-
ponent of the evaluation of patients who have signs and
symptoms of emergency cardiac conditions [1]. Cardiac im-
pulses normally originate in the sinoatrial (SA) node and
then are conducted through the atrial tissue to the atri-
oventricular (AV) node and into the bundle of His [2]. The
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Figure 2: One-minute ECG signal taken from 103
illustrates the similarity between successive ECG
beats.
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Figure 3: One-minute ECG signal taken from record
107 illustrates the dissimilarity between successive
ECG beats.

ECG signal represents the changes in electrical potential in
the cardiac muscles during the cardiac cycle as recorded on
the surface of the body. A two cycle ECG signal with vari-
ous amplitudes and time intervals is shown in Fig. 1. Any
change in the cardiac rhythm or activity is clearly visible in
the PQRST morphologies. The complete PQRST morphol-
ogy is referred to as ECG beat or cycle. Generally, a normal
ECG signal consists of local waves such as P wave, QRS
complex, and T wave. Computer aided cardiac diagnosis
extracts durations (P wave, QRS complex, T wave), inter-
vals (PR interval, QT interval, RR interval), segments (PR
segment, ST segment), amplitudes, shapes of local waves of
ECG signal and also heart rate. In most of the normal cases,
the inter ECG beat patterns are similar in long-term ECG
recordings. Even in the arrhythmia cases, the inter ECG
patterns are similar for a short duration. The significance of
similar ECG patterns may not play a major role in diagnosis
of heart problems and only change in the ECG patterns pro-



vide accurate clinical information of the cardiac abnormal-
ity at particular time instants. The one-minute ECG signals
from the records 103 and 107 are shown in Figs. 2 and 3.
Each plot in Fig. 2 is the 15-second duration ECG signal.
We can notice that the variation across the ECG beats is
negligible in the case of ECG signal from the record 103 as
shown in Fig. 2. Meanwhile, the ECG signals in Fig. 2 show
that there is a beat pattern change after 15 second which is
shown in second plot of Fig. 3. It shows that the limitations
of wireless wearable medical devices that are mentioned in
the Introduction Section are rectified with noise robust event
change detection algorithm.

The amplitude of the ECG signal as measured on the skin
ranges from 0.1 mV to 5 mV [9]. The recommendations of
the committee on electrocardiography of the American heart
association suggest a conversion rate of 500 HZ with a 9-bit
precision [3]. In practice, sample rates from 100 Hz to 1000
Hz are used with 8-bit to 16-bit precision [9]. The infor-
mation rate is thus approximately 11-22 Mbits/hour/lead.
The basis of standard clinical electrocardiography is the 10-
second 12-lead ECG [4]-[6]. During each particular phase of
clinical testing, 10-second 12-lead ECGs are recorded from
the subjects in the study and these are then analyzed to de-
termine any cardiac abnormalities [4]. The usual duration
of computer evaluated ECG records is 10-second, which typ-
ically contain a number of heartbeats and hence a number
of diagnostic parameters such as amplitude, duration, inter-
val, and shape of the ECG beat. In this work, we therefore
process an ECG segment with duration of 10-second.

3. CARDIAC EVENT CHANGE DETECTION
ALGORITHM

3.1 ECG Beat Extraction
In this work, QRS complexes are detected using an algo-
rithm reported in our previous work [15]. This algorithm
uses Shannon energy transformation to obtain the QRS com-
plex envelope of the filtered ECG signal and the first-order
Gaussian differentiator for determining location of candi-
date R-peaks in the envelope. The simplified block diagram
of the QRS detection algorithm is shown in Fig. 4(a), which
consists of the following steps: i) QRS complex enhance-
ment; ii) squaring and thresholding; iii) Shannon energy and
smoothing; iv) first-order Gaussian differentiator (FOGD)-
based peak finding task; and v) finding time instant of true
R-peak. The original ECG signal and the forward differ-
ence of the filtered signal (dECG) are shown in Fig. 5(a)
and (b). The output of thresholding step is shown in Fig.
5(c). This smoothing process generates peaks corresponding
to the QRS-complex portions and its output is depicted in
Fig. 5(d). The 1080-point Gaussian window with spread
σ = 45 is shown in Fig. 4(b) and the corresponding FOGD
is shown in Fig. 4(c). Due to the anti-symmetric nature of
the FOGD, the convolved output z[n] shown in Fig. 5(e) has
zero-crossings around the peaks of the envelope s[n]. Hence,
the zero-crossings accompanied by positive to negative tran-
sition are detected and used as guides to find locations of real
R peaks in the signal. A simple rule identifies the real R-
peak in the ECG within ±25 samples of the detected peak in
the envelope s[n]. Fig. 5(f) clearly shows that the R peaks
can be accurately detected regardless of varying amplitudes
and shapes of QRS complexes and noise.

Figure 5: (a) ECG signal, (b) Differenced filtered
signal, (c) Thresholded energy signal ẽth[n], (d)
Shannon energy (SE) envelope, (e) Convolved out-
put of the SE envelope with FOGD operator and (f)
Detected R peaks.

3.2 The Weighted Wavelet Distance Measure
The wavelet transform (WT) provides a description of the
signal in the time-scale domain, allowing the representa-
tion of the temporal features of a signal at different reso-
lutions. Therefore, it is a suitable tool to analyze the ECG
signal which is characterized by local wave patterns (QRS
complexes, P and T waves) with different frequency con-
tent. Moreover, the noise and artifacts appear at differ-
ent frequency bands, thus having different contribution at
various scales [10]. The information can be organized in a
hierarchical scheme of nested subspaces called multiresolu-
tion analysis in L2(ℜ). In multiresolution signal decompo-
sition (MSD), the signal x(t) ∈ L2(ℜ) is decomposed to de-
tailed and approximated versions using the scaled and trans-
lated versions of the wavelet (ψj,k(t)) and scaling functions
(φj,k(t)). The approximations are the low-frequency com-
ponents of the signal and the details are the high-frequency
components. The MSD is used to exploit two important is-
sues. The first is the localization property in time and will
appear by the presence of large coefficients at the time. The
second property is the partitioning of the signal energy at
different frequency bands. The MSD for a given signal x(t)
is given by

x(t) =
∞
∑

k=−∞

AJ(k)φJ,k(t) +
J
∑

j=1

∞
∑

k=−∞

Dj(k)ψj,k(t) (1)

with AJ (k) =
∫∞

−∞
x(t)φJ,k(t)dt and Dj(k) =

∫∞

−∞
x(t)ψj,k(t)dt

where J is the number of decomposition levels, AJ = {aJ (k)}k∈Z

are the approximation coefficient vectors at resolution level
J and
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Figure 4: (a) Block diagram of the proposed R-peak detector, (b) 1080-point Gaussian window with spread
σ = 45 and (c) First-order Gaussian differentiator (FOGD).

Figure 6: Subband coefficients obtained by five-level
decomposition of the ECG signal blocks taken from
from mita, cuvt and mitsva databases using a BW
9/7-tap wavelet filter set. Black indicates the least
active regions and gray depicts the most active re-
gions. Large coefficients toward low frequency sub-
bands and, more importantly, spatial clustering of
the wavelet coefficients within each subband.

{Dj = {dj(k)}k∈Z}j=1,2,...J are the detail coefficient vec-
tors. The wavelet coefficients vector is given by C = [D1 D2 D3·
· ·DJ AJ ]. The signal x(n) can be expressed as the summa-
tion of approximation AJ (n) signals and detail {Dj(n)}1≤j≤J

signals, that is:

x(n) =
J
∑

j=1

Dj(n) + AJ (n), n = 1, 2, 3.......N. (2)

For example, if a five-level decomposition of the signal is
done, it results in one approximation signal (low-frequency)
and five detail signals (high- and intermediate-frequency).

In practice, the amplitude distributions of the wavelet coeffi-
cients of subbands are different due to varying characteristics
of ECG morphologies. Therefore, an analysis of amplitude
distribution of the wavelet coefficients is essential for an ef-
fective data compression and will be discussed in this sec-
tion. Seventy-eight 1024 sample segments of ECG signals
are selected from three different ECG databases, 15 each

from the MIT-BIH Supraventricular arrhythmia (mitsva)
database (128 Hz, 10 b/sample), the Creighton university
ventricular tachyarrhythmia cuvt database (250 Hz, 12 b)
and 48 from the MIT-BIH arrhythmia (mita) database (360
Hz, 11 b). The 78 signal blocks are decomposed up to five-
level using a BW 9/7-tap wavelet filter set and their ampli-
tude distributions of wavelet coefficients are shown in Fig.
6. Black (low active regions) and gray (high active regions)
in the figure represent the smaller amplitude wavelet coeffi-
cients and larger amplitude coefficients, respectively. For all
the signal blocks, high activity regions toward low frequency
subbands and these regions are most important for perfect
reconstruction. It shows that the WT of most ECG signals
are sparse, resulting in a large number of small coefficients
and a small number of large coefficients. We notice that the
noise is well explained by a few levels that contain fine details
and its effect disappears at the coarser scales which is shown
in Fig. 6. A measure of amplitude distribution of coeffi-
cients within the subbands is important to know the degree
of importance. The wavelet subband energy (WSE) gives
a good measurement of information of the signal contents
and can be exploited to characterize the signal and noise
contents. The relative wavelet subband energies of the sub-
bands of the decomposed ECG signals are shown in Fig. 7.
We notice that the subbands D1 and D2 contain most of the
energy attributed to the noise and that the noise energy is
practically nonexistent at the lower subbands. The relative
wavelet subband energy estimate provides local information
associated to the different frequency subbands present in the
ECG segment and their corresponding degree of importance.
Thus, the wavelet energy estimates are used as weights to
characterize the local clinical distortions of the compressed
signal.

Let AJ be the approximation and DJ ,DJ−1, ....,D1 be the
details in a J-level WT. The amplitude distribution of the
wavelet coefficients of the decomposed ECG signals are shown
in Fig. 6. The total energy of the wavelet coefficients Et is
expressed as

Et = EAJ +

J
∑

j=1

EDj =

NAJ
∑

k=1

|AJ (k)|
2 +

J
∑

j=1

NDj
∑

k=1

|Dj(k)|
2 (3)

where NAJ and NDj are the lengths of the approximation
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Figure 8: The synthesis (reconstruction) structure for a five-level decomposition of the test ECG signal.

Figure 9: Block diagram of weighted wavelet distance (WWD) measure.

and the jth level detail subband, respectively. Then, the
dynamic weights that capture the actual contribution of the

subbands are estimated as

w =

[

EAJ

Et

,
EDJ

Et

,
EDJ−1

Et

, , ..........,
ED1

Et

]T

(4)
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mitsva databases. We can note that the RWSE of the
bands D2 and D1 is lesser as compared to the other
bands.

Then, the weighted wavelet distance (WWD) is defined as
[16]

WWD = wJ ×

√

√

√

√

∑KJ
k=1

(AJ [k]− ÃJ [k])2
∑Kj

k=1
(AJ [k])2

× 100 (5)

+

J
∑

j=1

wj ×

√

√

√

√

∑Kj

k=1
(Dj [k]− D̃j [k])2

∑KJ
k=1

(DJ [k])2
× 100

where j is the subband, wj is the dynamic weight of the j
subband, Kj denotes the number of wavelet coefficients in
jth subband and Dj(k) is the kth wavelet coefficient in jth

subband. The dynamic weights, wj are estimated from the
RWSEs of the subbands. The WWD measures the weighted
normalized root-mean-squared difference between the sub-
band coefficients of a current ECG beat and the subband
coefficients of a past ECG beat. The overall architecture of
the proposed weighted wavelet distance (WWD) metric is
shown in 5. The WWD metric provides subband or local er-
ror estimation criterion that will focus on diagnostic quality
for compressed signals. As will be demonstrated, the mea-
sure is insensitive to noise suppression and more sensitive
to PQRST complex features distortion. Under noisy envi-
ronments, the WWD metric reflects signal distortion and
provides more meaningful results than the conventional dis-
tance metrics.

In this experiment, the commonly used dataset-I records
(mita 100, 101, 102, 103, 107, 111, 115, 117, 118 and 119)
are processed at a PRD1 value of 6%. The weighted local
errors of the WWD and WWPRD [17] are shown in Table
1 and the reconstructed or compressed signals are shown
in Fig. 10. It is observed that important diagnostic fea-
tures are distorted and the small and short local waves are
missing in Figs. 10 (a), (d), (h), (i), (k) and (l). In Figs.
10(h), (i) and (k), the duration of the small P wave is pro-
longed. Regardless of an apparent large error as reflected
in the PRD’s and in the WWPRD’s, close examination of
the signals of Fig. 10 reveals that all the local waves of
the ECG and their diagnostic features are retained. The
PRD1 and WWPRD have poor correlations with the vi-

mita 103 mita 109 mita 115mita 101

(a) (c) (e) (g)

(b) (d) (f) (h)

(k)(i)

mita 118

(l)(j)

mita 100 mita 102 mita 107 mita 111 mita 117 mita 119

mita 119

Figure 10: Compression results (PRD1=6%) of
arrhythmia ECG signals extracted from dataset-I.
Some of the distortion of the diagnostic features are
marked in the compressed signals. From top to bot-
tom, the plots display the original signal, the com-
pressed signal and the difference between original
and compressed signals.

sual quality of the two signals obtained for the widely used
mita noisy records. In WWPRD criterion, insignificant er-
rors in subbands D2 and D1 dominate the global error while
significant errors in other bands may not reflect any contri-
bution to the global error. This may lead to overlapping of
the quality groups and to confusion in the judgement of the
quality. The WWPRD criterion is not a subjectively mean-
ingful measure since small and large numerical distortions
do not correspond to “good” and “bad” subjective quality,
respectively. Thus, the selection of upper bound distortion
level is very difficult which is useful for clinical applications.
The proposed WWD measure is superior over other mea-
sures in the sense that it is subjectively meaningful since
the small and large values correspond to good and bad sub-
jective quality, respectively. Thus, the WWD measure is
much more suitable for evaluating compressed signals than
the other measures, and naturally leads to a new method for
quality control in ECG signal compression.

4. RESULTS AND DISCUSSION
In this section, we evaluate the performance of the pro-
posed algorithm using the well-known MIT-BIH arrhyth-
mia database. It contains 48 half-hour of two-channel ECG
recordings sampled at 360 Hz with 11-bit resolution over
a 10 mV range. The ECG records from this database in-
clude signals with acceptable quality, sharp and tall P and
T waves, negative QRS complex, small QRS complex, wider
QRS complex, muscle noise, baseline drift, sudden changes
in QRS amplitudes, sudden changes in QRS morphology,
multiform premature ventricular contractions, long pauses
and irregular heart rhythms.

In this work, we use three ECG features which include the
heart rates, amplitudes of QRS complexes, shape of the
PQRSTmorphology. The the shape and amplitude of PQRST
complex morphology is the base for ECG diagnosis of various
heart diseases. We use weighted wavelet distance metric for
finding the similarity between shapes of the past PQRST
and the present PQRST complexes. We apply a set of



Table 1: Performance evaluation of objective quality measures. Here, PRD1=6%
Rec. Fig. WWD:Weighted PRD (%) of bands WWPRD:Weighted PRD (%) of bands

no. A5 D5 D4 D3 D2 D1 Total A5 D5 D4 D3 D2 D1 Total

100 10(a) 1.02 1.50 1.47 1.28 0.31 0.06 5.65 0.94 0.98 1.22 1.49 4.36 5.03 14.01

101 10(b) 1.56 1.11 1.51 1.06 0.67 0.08 5.99 1.52 1.01 0.74 1.42 5.49 5.33 15.52

102 10(c) 1.70 1.20 0.94 1.01 0.60 0.15 5.61 1.47 0.78 0.67 1.86 3.75 4.28 12.81

103 10(d) 2.25 2.77 1.40 0.33 0.18 0.02 6.97 4.54 1.31 1.14 2.93 3.00 3.63 16.56

107 10(e) 1.59 1.80 0.31 0.49 0.17 0.01 4.38 1.17 2.41 1.10 3.57 4.05 1.94 14.22

109 10(f) 3.89 0.50 0.58 0.29 0.22 0.05 5.52 3.07 0.31 1.61 3.79 6.51 4.43 19.73

111 10(g) 1.91 1.27 0.68 0.40 0.44 0.10 4.81 1.52 0.78 0.77 3.04 9.11 6.17 21.40

115 10(h) 1.22 1.49 1.91 0.94 0.27 0.03 5.86 2.19 1.18 0.82 2.22 2.15 3.53 12.09

117 10(i) 2.05 0.26 0.94 0.65 0.10 0.03 4.03 1.68 0.45 0.56 2.85 2.63 3.46 11.63

118 10(j) 2.18 1.16 0.55 1.10 0.48 0.03 5.50 1.98 0.44 1.43 3.02 8.46 3.65 18.96

119 10(k) 3.35 0.95 0.40 0.14 0.03 0.00 4.87 2.54 2.23 2.59 4.68 2.28 2.06 16.39

119 10(l) 3.35 0.51 0.27 0.14 0.03 0.00 4.30 2.55 1.21 1.72 4.68 2.28 2.06 14.50

Table 2: Performance of the proposed cardiac event
change detection

Test Record (Pcsb) (Pf )

101 100 0

102 100 0

103 100 0

104 97.26 2.74

105 98.8 1.2

106 100 0

107 100 0

108 100 0

109 100 0

111 100 1.45

112 100 0

113 100 0

114 100 0

115 100 0

116 100 0

117 100 0

Average 99.76 0.317

bounds to decide whether two ECG beats may belong to
the same class or not. The bounds for dissimilar ECG beats
are:

• The RR-interval for the current ECG beat is less than
75% of the RR-interval for the past ECG beats.

• The amplitude ratio for the current ECG beat is less
than 75% of the amplitude ratio for the past ECG
beats.

• The value of weighted wavelet distance is greater than
5%.

The performance of the algorithm is validated by comparing
the results of automatic annotations against groundtruth an-
notations. Each ECG record is divided into non-overlapping
segments of 10 second duration. The average processing
time required for performing our method on each 1-min ECG
data in the MIT-BIH database is approximately 2.24 s. Each

ECG segment is processed and the detected cardiac event
change regions are verified by visual inspection. The follow-
ing metrics are defined to evaluate the performance of the
proposed algorithm.

• Probability of correctly detecting similar and dissim-
ilar beats (Pcsb): It is defined as the ratio of the to-
tal number of correctly detected similar and dissimilar
beats to the total number of manually marked similar
and dissimilar beats.

• Probability of falsely detecting beats (Pf ): It is de-
fined as total number of incorrectly detected similar
and dissimilar beats to the total number of beats in
the database.

Table 2 shows the overall accuracies obtained for all records
from the well-known MIT-BIH arrhythmia database. We
can observe that the performance of the proposed cardiac
event change detection approach on the testing ECG records
is comparable with the results in the ground truth report.
The graphical user interface is shown in Figs. 11 and 12 for
the test records 103 and 104.

5. CONCLUSION
In this paper, a novel automated ECG beat change detection
approach is proposed and tested using the standard MIT-
BIH arrhythmia database. The proposed approach con-
sists of ECG beat extraction and weighted wavelet distance
measure. Experiments show that the proposed approach
achieves a better detection performance under signal with
noise. In future work, we consider many clinical features for
representation of ECG beat.
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