
Chapter 30: XML

Outline

▪ Structure of XML Data

▪ XML Document Schema

▪ Querying and Transformation

▪ Application Program Interfaces to XML

▪ Storage of XML Data

▪ XML Applications

Introduction

▪ XML: Extensible Markup Language

▪ Defined by the WWW Consortium (W3C)

▪ Derived from SGML (Standard Generalized Markup Language), but

simpler to use than SGML

▪ Documents have tags giving extra information about sections of the

document

• E.g., <title> XML </title> <slide> Introduction …</slide>

▪ Extensible, unlike HTML

• Users can add new tags, and separately specify how the tag should

be handled for display

XML Introduction (Cont.)

▪ The ability to specify new tags, and to create nested tag structures make

XML a great way to exchange data, not just documents.

• Much of the use of XML has been in data exchange applications, not

as a replacement for HTML

▪ Tags make data (relatively) self-documenting

• E.g.,

<university>

<department>

<dept_name> Comp. Sci. </dept_name>

<building> Taylor </building>

<budget> 100000 </budget>

</department>

<course>

<course_id> CS-101 </course_id>

<title> Intro. to Computer Science </title>

<dept_name> Comp. Sci </dept_name>

<credits> 4 </credits>

</course>

</university>

XML: Motivation

▪ Data interchange is critical in today’s networked world

• Examples:

▪ Banking: funds transfer

▪ Order processing (especially inter-company orders)

▪ Scientific data

• Chemistry: ChemML, …

• Genetics: BSML (Bio-Sequence Markup Language), …

• Paper flow of information between organizations is being replaced by

electronic flow of information

▪ Each application area has its own set of standards for representing

information

▪ XML has become the basis for all new generation data interchange formats

XML Motivation (Cont.)

▪ Earlier generation formats were based on plain text with line headers

indicating the meaning of fields

• Similar in concept to email headers

• Does not allow for nested structures, no standard “type” language

• Tied too closely to low level document structure (lines, spaces, etc)

▪ Each XML based standard defines what are valid elements, using

• XML type specification languages to specify the syntax

▪ DTD (Document Type Descriptors)

▪ XML Schema

• Plus textual descriptions of the semantics

▪ XML allows new tags to be defined as required

• However, this may be constrained by DTDs

▪ A wide variety of tools is available for parsing, browsing and querying

XML documents/data

Comparison with Relational Data

▪ Inefficient: tags, which in effect represent schema information, are

repeated

▪ Better than relational tuples as a data-exchange format

• Unlike relational tuples, XML data is self-documenting due to presence

of tags

• Non-rigid format: tags can be added

• Allows nested structures

• Wide acceptance, not only in database systems, but also in browsers,

tools, and applications

Structure of XML Data

▪ Tag: label for a section of data

▪ Element: section of data beginning with <tagname> and ending with

matching </tagname>

▪ Elements must be properly nested

• Proper nesting

▪ <course> … <title> …. </title> </course>

• Improper nesting

▪ <course> … <title> …. </course> </title>

• Formally: every start tag must have a unique matching end tag, that is

in the context of the same parent element.

▪ Every document must have a single top-level element

Example of Nested Elements

<purchase_order>

<identifier> P-101 </identifier>

<purchaser> …. </purchaser>

<itemlist>

<item>

<identifier> RS1 </identifier>

<description> Atom powered rocket sled </description>

<quantity> 2 </quantity>

<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>

<description> Superb glue </description>

<quantity> 1 </quantity>

<unit-of-measure> liter </unit-of-measure>

<price> 29.95 </price>

</item>

</itemlist>

</purchase_order>

Motivation for Nesting

▪ Nesting of data is useful in data transfer

• Example: elements representing item nested within an itemlist

element

▪ Nesting is not supported, or discouraged, in relational databases

• With multiple orders, customer name and address are stored

redundantly

• normalization replaces nested structures in each order by foreign

key into table storing customer name and address information

• Nesting is supported in object-relational databases

▪ But nesting is appropriate when transferring data

• External application does not have direct access to data referenced

by a foreign key

Structure of XML Data (Cont.)

▪ Mixture of text with sub-elements is legal in XML.

• Example:

<course>
This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>
<title> Computational Biology </title>
<dept name> Biology </dept name>
<credits> 3 </credits>

</course>

• Useful for document markup, but discouraged for data representation

Attributes

▪ Elements can have attributes

<course course_id= “CS-101”>

<title> Intro. to Computer Science</title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

▪ Attributes are specified by name=value pairs inside the starting tag of an

element

▪ An element may have several attributes, but each attribute name can only

occur once

<course course_id = “CS-101” credits=“4”>

Attributes vs. Subelements

▪ Distinction between subelement and attribute

• In the context of documents, attributes are part of markup, while

subelement contents are part of the basic document contents

• In the context of data representation, the difference is unclear and may

be confusing

▪ Same information can be represented in two ways

• <course course_id= “CS-101”> … </course>

• <course>

<course_id>CS-101</course_id> …

</course>

• Suggestion: use attributes for identifiers of elements, and use

subelements for contents

Namespaces

▪ XML data has to be exchanged between organizations

▪ Same tag name may have different meaning in different organizations,

causing confusion on exchanged documents

▪ Specifying a unique string as an element name avoids confusion

▪ Better solution: use unique-name:element-name

▪ Avoid using long unique names all over document by using XML

Namespaces

<university xmlns:yale=“http://www.yale.edu”>

…
<yale:course>

<yale:course_id> CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept_name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>
…

</university>

http://www.yale.edu/

More on XML Syntax

▪ Elements without subelements or text content can be abbreviated by

ending the start tag with a /> and deleting the end tag

• <course course_id=“CS-101” Title=“Intro. To Computer Science”

dept_name = “Comp. Sci.” credits=“4” />

▪ To store string data that may contain tags, without the tags being

interpreted as subelements, use CDATA as below

• <![CDATA[<course> … </course>]]>

Here, <course> and </course> are treated as just strings

CDATA stands for “character data”

XML Document Schema

▪ Database schemas constrain what information can be stored, and the data

types of stored values

▪ XML documents are not required to have an associated schema

▪ However, schemas are very important for XML data exchange

• Otherwise, a site cannot automatically interpret data received from

another site

▪ Two mechanisms for specifying XML schema

• Document Type Definition (DTD)

▪ Widely used

• XML Schema

▪ Newer, increasing use

Document Type Definition (DTD)

▪ The type of an XML document can be specified using a DTD

▪ DTD constraints structure of XML data

• What elements can occur

• What attributes can/must an element have

• What subelements can/must occur inside each element, and how

many times.

▪ DTD does not constrain data types

• All values represented as strings in XML

▪ DTD syntax

• <!ELEMENT element (subelements-specification) >

• <!ATTLIST element (attributes) >

Element Specification in DTD

▪ Subelements can be specified as

• names of elements, or

• #PCDATA (parsed character data), i.e., character strings

• EMPTY (no subelements) or ANY (anything can be a subelement)

▪ Example

<! ELEMENT department (dept_name building, budget)>

<! ELEMENT dept_name (#PCDATA)>

<! ELEMENT budget (#PCDATA)>

▪ Subelement specification may have regular expressions

<!ELEMENT university ((department | course | instructor | teaches)+)>

▪ Notation:

• “|” - alternatives

• “+” - 1 or more occurrences

• “*” - 0 or more occurrences

University DTD

<!DOCTYPE university [

<!ELEMENT university ((department|course|instructor|teaches)+)>

<!ELEMENT department (dept name, building, budget)>

<!ELEMENT course (course id, title, dept name, credits)>

<!ELEMENT instructor (IID, name, dept name, salary)>

<!ELEMENT teaches (IID, course id)>

<!ELEMENT dept name(#PCDATA)>

<!ELEMENT building(#PCDATA)>

<!ELEMENT budget(#PCDATA)>

<!ELEMENT course id (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credits(#PCDATA)>

<!ELEMENT IID(#PCDATA)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT salary(#PCDATA)>

]>

Attribute Specification in DTD

▪ Attribute specification : for each attribute

• Name

• Type of attribute

 CDATA

 ID (identifier) or IDREF (ID reference) or IDREFS (multiple
IDREFs)

– more on this later

• Whether

 mandatory (#REQUIRED)

 has a default value (value),

 or neither (#IMPLIED)

▪ Examples

• <!ATTLIST course course_id CDATA #REQUIRED>, or

• <!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

IDs and IDREFs

▪ An element can have at most one attribute of type ID

▪ The ID attribute value of each element in an XML document must be

distinct

• Thus the ID attribute value is an object identifier

▪ An attribute of type IDREF must contain the ID value of an element in the

same document

▪ An attribute of type IDREFS contains a set of (0 or more) ID values. Each

ID value must contain the ID value of an element in the same document

University DTD with Attributes

▪ University DTD with ID and IDREF attribute types.

<!DOCTYPE university-3 [

<!ELEMENT university ((department|course|instructor)+)>

<!ELEMENT department (building, budget)>

<!ATTLIST department

dept_name ID #REQUIRED >

<!ELEMENT course (title, credits)>

<!ATTLIST course

course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >

<!ELEMENT instructor (name, salary)>

<!ATTLIST instructor

IID ID #REQUIRED

dept_name IDREF #REQUIRED >

· · · declarations for title, credits, building,

budget, name and salary · · ·

]>

XML data with ID and IDREF attributes

<university-3>

<department dept name=“Comp. Sci.”>

<building> Taylor </building>

<budget> 100000 </budget>

</department>

<department dept name=“Biology”>

<building> Watson </building>

<budget> 90000 </budget>

</department>

<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>

<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

….

<instructor IID=“10101” dept name=“Comp. Sci.”>

<name> Srinivasan </name>

<salary> 65000 </salary>

</instructor>

….

</university-3>

Limitations of DTDs

▪ No typing of text elements and attributes

• All values are strings, no integers, reals, etc.

▪ Difficult to specify unordered sets of subelements

• Order is usually irrelevant in databases (unlike in the document-layout

environment from which XML evolved)

• (A | B)* allows specification of an unordered set, but

▪ Cannot ensure that each of A and B occurs only once

▪ IDs and IDREFs are untyped

• The instructors attribute of an course may contain a reference to

another course, which is meaningless

▪ instructors attribute should ideally be constrained to refer to

instructor elements

XML Schema

▪ XML Schema is a more sophisticated schema language which addresses

the drawbacks of DTDs. Supports

• Typing of values

▪ E.g., integer, string, etc

▪ Also, constraints on min/max values

• User-defined, comlex types

• Many more features, including

▪ uniqueness and foreign key constraints, inheritance

▪ XML Schema is itself specified in XML syntax, unlike DTDs

• More-standard representation, but verbose

▪ XML Scheme is integrated with namespaces

▪ BUT: XML Schema is significantly more complicated than DTDs.

XML Schema Version of Univ. DTD
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“university” type=“universityType” />

<xs:element name=“department”>

<xs:complexType>

<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“building” type=“xs:string”/>

<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

….

<xs:element name=“instructor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>

<xs:element name=“name” type=“xs:string”/>

<xs:element name=“dept name” type=“xs:string”/>

<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

… Contd.

XML Schema Version of Univ. DTD (Cont.)

….

<xs:complexType name=“UniversityType”>

<xs:sequence>

<xs:element ref=“department” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“course” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“instructor” minOccurs=“0” maxOccurs=“unbounded”/>

<xs:element ref=“teaches” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

▪ Choice of “xs:” was ours -- any other namespace prefix could be chosen

▪ Element “university” has type “universityType”, which is defined separately

• xs:complexType is used later to create the named complex type

“UniversityType”

More features of XML Schema

▪ Attributes specified by xs:attribute tag:

• <xs:attribute name = “dept_name”/>

• adding the attribute use = “required” means value must be specified

▪ Key constraint: “department names form a key for department elements

under the root university element:

<xs:key name = “deptKey”>

<xs:selector xpath = “/university/department”/>

<xs:field xpath = “dept_name”/>

<\xs:key>

▪ Foreign key constraint from course to department:

<xs:keyref name = “courseDeptFKey” refer=“deptKey”>

<xs:selector xpath = “/university/course”/>

<xs:field xpath = “dept_name”/>

<\xs:keyref>

Querying and Transforming XML Data

▪ Translation of information from one XML schema to another

▪ Querying on XML data

▪ Above two are closely related, and handled by the same tools

▪ Standard XML querying/translation languages

• XPath

▪ Simple language consisting of path expressions

• XSLT

▪ Simple language designed for translation from XML to XML and

XML to HTML

• XQuery

▪ An XML query language with a rich set of features

Tree Model of XML Data

▪ Query and transformation languages are based on a tree model of XML

data

▪ An XML document is modeled as a tree, with nodes corresponding to

elements and attributes

• Element nodes have child nodes, which can be attributes or

subelements

• Text in an element is modeled as a text node child of the element

• Children of a node are ordered according to their order in the XML

document

• Element and attribute nodes (except for the root node) have a single

parent, which is an element node

• The root node has a single child, which is the root element of the

document

XPath

▪ XPath is used to address (select) parts of documents using

path expressions

▪ A path expression is a sequence of steps separated by “/”

• Think of file names in a directory hierarchy

▪ Result of path expression: set of values that along with their containing

elements/attributes match the specified path

▪ E.g., /university-3/instructor/name evaluated on the university-3 data

we saw earlier returns

<name>Srinivasan</name>

<name>Brandt</name>

▪ E.g., /university-3/instructor/name/text()

returns the same names, but without the enclosing tags

XPath (Cont.)

▪ The initial “/” denotes root of the document (above the top-level tag)

▪ Path expressions are evaluated left to right

• Each step operates on the set of instances produced by the previous

step

▪ Selection predicates may follow any step in a path, in []

• E.g., /university-3/course[credits >= 4]

 returns account elements with a balance value greater than 400

 /university-3/course[credits] returns account elements containing

a credits subelement

▪ Attributes are accessed using “@”

• E.g., /university-3/course[credits >= 4]/@course_id

 returns the course identifiers of courses with credits >= 4

• IDREF attributes are not dereferenced automatically (more on this

later)

Functions in XPath

▪ XPath provides several functions

• The function count() at the end of a path counts the number of
elements in the set generated by the path

▪ E.g., /university-2/instructor[count(./teaches/course)> 2]

• Returns instructors teaching more than 2 courses (on
university-2 schema)

• Also function for testing position (1, 2, ..) of node w.r.t. siblings

▪ Boolean connectives and and or and function not() can be used in
predicates

▪ IDREFs can be referenced using function id()

• id() can also be applied to sets of references such as IDREFS and
even to strings containing multiple references separated by blanks

• E.g., /university-3/course/id(@dept_name)

▪ returns all department elements referred to from the dept_name
attribute of course elements.

More XPath Features

▪ Operator “|” used to implement union

• E.g., /university-3/course[@dept name=“Comp. Sci”] |

/university-3/course[@dept name=“Biology”]

 Gives union of Comp. Sci. and Biology courses

 However, “|” cannot be nested inside other operators.

▪ “//” can be used to skip multiple levels of nodes

• E.g., /university-3//name

 finds any name element anywhere under the /university-3
element, regardless of the element in which it is contained.

▪ A step in the path can go to parents, siblings, ancestors and descendants
of the nodes generated by the previous step, not just to the children

• “//”, described above, is a short from for specifying “all descendants”

• “..” specifies the parent.

▪ doc(name) returns the root of a named document

XQuery

▪ XQuery is a general purpose query language for XML data

▪ Currently being standardized by the World Wide Web Consortium (W3C)

• The textbook description is based on a January 2005 draft of the
standard. The final version may differ, but major features likely to stay
unchanged.

▪ XQuery is derived from the Quilt query language, which itself borrows from
SQL, XQL and XML-QL

▪ XQuery uses a
for … let … where … order by …result …

syntax
for SQL from
where SQL where
order by SQL order by

result SQL select
let allows temporary variables, and has no equivalent in SQL

FLWOR Syntax in XQuery

▪ For clause uses XPath expressions, and variable in for clause ranges over
values in the set returned by XPath

▪ Simple FLWOR expression in XQuery

• find all courses with credits > 3, with each result enclosed in an

<course_id> .. </course_id> tag

for $x in /university-3/course

let $courseId := $x/@course_id

where $x/credits > 3

return <course_id> { $courseId } </course id>

• Items in the return clause are XML text unless enclosed in {}, in which
case they are evaluated

▪ Let clause not really needed in this query, and selection can be done In
XPath. Query can be written as:

for $x in /university-3/course[credits > 3]
return <course_id> { $x/@course_id } </course_id>

▪ Alternative notation for constructing elements:

return element course_id { element $x/@course_id }

Joins

▪ Joins are specified in a manner very similar to SQL

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches

where $c/course_id= $t/course id and $t/IID = $i/IID

return <course_instructor> { $c $i } </course_instructor>

▪ The same query can be expressed with the selections specified as XPath

selections:

for $c in /university/course,

$i in /university/instructor,

$t in /university/teaches[$c/course_id= $t/course_id

and $t/IID = $i/IID]

return <course_instructor> { $c $i } </course_instructor>

Nested Queries

▪ The following query converts data from the flat structure for university
information into the nested structure used in university-1

<university-1>

{ for $d in /university/department

return <department>

{ $d/* }

{ for $c in /university/course[dept name = $d/dept name]

return $c }

</department>

}

{ for $i in /university/instructor

return <instructor>

{ $i/* }

{ for $c in /university/teaches[IID = $i/IID]

return $c/course id }

</instructor>

}

</university-1>

▪ $c/* denotes all the children of the node to which $c is bound, without the

enclosing top-level tag

Grouping and Aggregation

▪ Nested queries are used for grouping

for $d in /university/department

return

<department-total-salary>

<dept_name> { $d/dept name } </dept_name>

<total_salary> { fn:sum(

for $i in /university/instructor[dept_name = $d/dept_name]

return $i/salary

) }

</total_salary>

</department-total-salary>

Sorting in XQuery

▪ The order by clause can be used at the end of any expression.
E.g., to return instructors sorted by name

for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

▪ Use order by $i/name descending to sort in descending order

▪ Can sort at multiple levels of nesting (sort departments by dept_name,
and by courses sorted to course_id within each department)

<university-1> {
for $d in /university/department
order by $d/dept name
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]

order by $c/course id
return <course> { $c/* } </course> }

</department>
} </university-1>

Functions and Other XQuery Features

▪ User defined functions with the type system of XMLSchema
declare function local:dept_courses($iid as xs:string)

as element(course)*
{

for $i in /university/instructor[IID = $iid],
$c in /university/courses[dept_name = $i/dept name]

return $c
}

▪ Types are optional for function parameters and return values

▪ The * (as in decimal*) indicates a sequence of values of that type

▪ Universal and existential quantification in where clause predicates

• some $e in path satisfies P

• every $e in path satisfies P

• Add and fn:exists($e) to prevent empty $e from satisfying every
clause

▪ XQuery also supports If-then-else clauses

XSLT

▪ A stylesheet stores formatting options for a document, usually separately

from document

• E.g. an HTML style sheet may specify font colors and sizes for

headings, etc.

▪ The XML Stylesheet Language (XSL) was originally designed for

generating HTML from XML

▪ XSLT is a general-purpose transformation language

• Can translate XML to XML, and XML to HTML

▪ XSLT transformations are expressed using rules called templates

• Templates combine selection using XPath with construction of results

Application Program Interface

▪ There are two standard application program interfaces to XML data:

• SAX (Simple API for XML)

▪ Based on parser model, user provides event handlers for parsing

events

• E.g., start of element, end of element

• DOM (Document Object Model)

▪ XML data is parsed into a tree representation

▪ Variety of functions provided for traversing the DOM tree

▪ E.g.: Java DOM API provides Node class with methods

getParentNode(), getFirstChild(), getNextSibling()

getAttribute(), getData() (for text node)

getElementsByTagName(), …

▪ Also provides functions for updating DOM tree

Storage of XML Data

▪ XML data can be stored in

• Non-relational data stores

▪ Flat files

• Natural for storing XML

• But has all problems discussed in Chapter 1 (no concurrency,

no recovery, …)

▪ XML database

• Database built specifically for storing XML data, supporting

DOM model and declarative querying

• Currently no commercial-grade systems

• Relational databases

▪ Data must be translated into relational form

▪ Advantage: mature database systems

▪ Disadvantages: overhead of translating data and queries

Storage of XML in Relational Databases

▪ Alternatives:

• String Representation

• Tree Representation

• Map to relations

String Representation

▪ Store each top level element as a string field of a tuple in a relational

database

• Use a single relation to store all elements, or

• Use a separate relation for each top-level element type

▪ E.g., account, customer, depositor relations

• Each with a string-valued attribute to store the element

▪ Indexing:

• Store values of subelements/attributes to be indexed as extra fields of

the relation, and build indices on these fields

▪ E.g., customer_name or account_number

• Some database systems support function indices, which use the

result of a function as the key value.

▪ The function should return the value of the required

subelement/attribute

String Representation (Cont.)

▪ Benefits:

• Can store any XML data even without DTD

• As long as there are many top-level elements in a document, strings

are small compared to full document

▪ Allows fast access to individual elements.

▪ Drawback: Need to parse strings to access values inside the elements

• Parsing is slow.

Tree Representation

▪ Tree representation: model XML data as tree and store using relations

nodes(id, parent_id, type, label, value)

▪ Each element/attribute is given a unique identifier

▪ Type indicates element/attribute

▪ Label specifies the tag name of the element/name of attribute

▪ Value is the text value of the element/attribute

▪ Can add an extra attribute position to record ordering of children

university (id:1)

course (id:2) department (id: 5)

course_id

(id: 3)

dept_name

(id: 7)

Tree Representation (Cont.)

▪ Benefit: Can store any XML data, even without DTD

▪ Drawbacks:

• Data is broken up into too many pieces, increasing space overheads

• Even simple queries require a large number of joins, which can be

slow

Mapping XML Data to Relations

▪ Relation created for each element type whose schema is known:

• An id attribute to store a unique id for each element

• A relation attribute corresponding to each element attribute

• A parent_id attribute to keep track of parent element

▪ As in the tree representation

▪ Position information (ith child) can be store too

▪ All subelements that occur only once can become relation attributes

• For text-valued subelements, store the text as attribute value

• For complex subelements, can store the id of the subelement

▪ Subelements that can occur multiple times represented in a separate table

• Similar to handling of multivalued attributes when converting ER

diagrams to tables

Storing XML Data in Relational Systems

▪ Applying above ideas to department elements in university-1 schema, with

nested course elements, we get

department(id, dept_name, building, budget)

course(parent id, course_id, dept_name, title, credits)

▪ Publishing: process of converting relational data to an XML format

▪ Shredding: process of converting an XML document into a set of tuples to

be inserted into one or more relations

▪ XML-enabled database systems support automated publishing and

shredding

▪ Many systems offer native storage of XML data using the xml data type.

Special internal data structures and indices are used for efficiency

SQL/XML

▪ New standard SQL extension that allows creation of nested XML output

• Each output tuple is mapped to an XML element row

<university>

<department>

<row>

<dept name> Comp. Sci. </dept name>

<building> Taylor </building>

<budget> 100000 </budget>

</row>

…. more rows if there are more output tuples …

</department>

… other relations ..

</university>

SQL Extensions

▪ xmlelement creates XML elements

▪ xmlattributes creates attributes

select xmlelement (name “course”,

xmlattributes (course id as course id, dept name as dept name),

xmlelement (name “title”, title),

xmlelement (name “credits”, credits))

from course

▪ Xmlagg creates a forest of XML elements

select xmlelement (name “department”,

dept_name,

xmlagg (xmlforest(course_id)

order by course_id))

from course

group by dept_name

XML Applications

▪ Storing and exchanging data with complex structures

• E.g., Open Document Format (ODF) format standard for storing Open

Office and Office Open XML (OOXML) format standard for storing

Microsoft Office documents

• Numerous other standards for a variety of applications

▪ ChemML, MathML

▪ Standard for data exchange for Web services

• remote method invocation over HTTP protocol

• More in next slide

▪ Data mediation

• Common data representation format to bridge different systems

Web Services

▪ The Simple Object Access Protocol (SOAP) standard:

• Invocation of procedures across applications with distinct databases

• XML used to represent procedure input and output

▪ A Web service is a site providing a collection of SOAP procedures

• Described using the Web Services Description Language (WSDL)

• Directories of Web services are described using the Universal

Description, Discovery, and Integration (UDDI) standard

End of Chapter 30

	Slide 1: Chapter 30: XML
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: XML Introduction (Cont.)
	Slide 5: XML: Motivation
	Slide 6: XML Motivation (Cont.)
	Slide 7: Comparison with Relational Data
	Slide 8: Structure of XML Data
	Slide 9: Example of Nested Elements
	Slide 10: Motivation for Nesting
	Slide 11: Structure of XML Data (Cont.)
	Slide 12: Attributes
	Slide 13: Attributes vs. Subelements
	Slide 14: Namespaces
	Slide 15: More on XML Syntax
	Slide 16: XML Document Schema
	Slide 17: Document Type Definition (DTD)
	Slide 18: Element Specification in DTD
	Slide 19: University DTD
	Slide 20: Attribute Specification in DTD
	Slide 21: IDs and IDREFs
	Slide 22: University DTD with Attributes
	Slide 23: XML data with ID and IDREF attributes
	Slide 24: Limitations of DTDs
	Slide 25: XML Schema
	Slide 26: XML Schema Version of Univ. DTD
	Slide 27: XML Schema Version of Univ. DTD (Cont.)
	Slide 28: More features of XML Schema
	Slide 29: Querying and Transforming XML Data
	Slide 30: Tree Model of XML Data
	Slide 31: XPath
	Slide 32: XPath (Cont.)
	Slide 33: Functions in XPath
	Slide 34: More XPath Features
	Slide 35: XQuery
	Slide 36: FLWOR Syntax in XQuery
	Slide 37: Joins
	Slide 38: Nested Queries
	Slide 39: Grouping and Aggregation
	Slide 40: Sorting in XQuery
	Slide 41: Functions and Other XQuery Features
	Slide 42: XSLT
	Slide 43: Application Program Interface
	Slide 44: Storage of XML Data
	Slide 45: Storage of XML in Relational Databases
	Slide 46: String Representation
	Slide 47: String Representation (Cont.)
	Slide 48: Tree Representation
	Slide 49: Tree Representation (Cont.)
	Slide 50: Mapping XML Data to Relations
	Slide 51: Storing XML Data in Relational Systems
	Slide 52: SQL/XML
	Slide 53: SQL Extensions
	Slide 54: XML Applications
	Slide 55: Web Services
	Slide 56: End of Chapter 30

