
DEPT. OF Comp Sc. and Engg., IIT Delhi

1. CSV888 - Distributed Systems

Three Models

1. Time Order

2. Distributed Algorithms

3. Nature of Distributed Systems
1

Index - Models to study [2]

 • 1. LAN based systems (in Distributed Systems)

 • 2. Web based systems

 • 1. −! uses synchronous communications

 • 2. −! uses Asynchronous communications

 - Time-Stamp order ?

 • Other Algorithms

 - Transaction Recovery ?

 - System Recovery ?

2

3

4

5

6

7

Ordering events in a distributed system

Lamport →

Ordering events in a Distributed System
(Lamport Clock)

Vector Clock

8

Agenda

• Physical Clock
• Logical Clock

• Logical Clock algorithm
Lamport’s logical clock

Vector clock

9

Physical Clocks

Need for physical clocks
Processors share a common bus → The entire system shares the

same understanding of time: It is consistent.

Physical clock - Multiple systems
In distributed systems, →

each system has its own timer that drives its clock.

Each timer might change with time, temperature, etc.
This implies each systems time will drift away from the true time

(at a different rate).

10

Logical Clocks

• Messages sent between machines may arrive zero or more times
at any point after they are sent.

• If two machines do not interact, no need to synchronize them

Can we order the events on different machines using local time?

Causality →

The purpose of a logical clock is not necessarily to maintain the
same notion of time as a reliable watch !
Aim, is to keep track of information about the order of events

11

Lamport’s logical clock

Key Ideas

• Processes exchange messages
• Message must be sent before received
• Send/receive are used to order events and to

synchronize clocks

• Happened before relation
• Causally ordered events
• Concurrent events
• Implementation
• Limitation of Lamport’s clock

12

Lamport’s logical clock
Happened before relation

• a -> b : Event a occurred before event b. Events in the same process p1.
• b -> c : If b is the event of sending a message m1 in a process p1 and c

is the event of receipt of the same message m1 by another process p2.
• a -> b, b -> c, then a -> c; “->” is transitive.

13

Lamport’s logical clock

Causally Ordered Events
a -> b : Event a “causally” affects event b

Concurrent Events
a || e: if a !-> e and e !-> a

14

Lamport’s logical clock

Algorithm

Sending end

time = time+1;
time_stamp = time;
send(message, time_stamp);

Receiving end

(message, time_stamp) = receive();
time = max(time_stamp, time)+1;

15

Lamport’s logical clock

a -> b C(a) < C(b)

b -> c C (b) and C(c) must be assigned in such a way that C(b) < C(c) and the
clock time, C, must always go forward (increasing), never backward
(decreasing). Corrections to time can be made by adding a positive value,
never by subtracting one.

16

Lamport’s logical clock

An illustration: Three processes, each with its own clock. The clocks run at
different rates and Lamport's algorithm corrects the clocks.

17

18

Lamport’s logical clock

Limitations
• m1−>m3

C(m1)<C(m3)

• m2−>m3
C(m2)<C(m3)

m1 or m2 caused
m3 to be sent?

19

Lamport’s logical clock

• Lamport’s logical clocks → all events in a distributed system are totally ordered.

That is, if a -> b, then we can say C(a)<C(b).

• Lamport’s clocks → nothing can be said about the actual time of a and b.

logical clock says a -> b, that does not mean in terms of real time.

• Lamport clocks → do not capture causality.

• If a -> c and b -> c we do not know which action initiated c.

• → Problems : when trying to replay events in a distributed system

(such as when trying to recover after a crash).

• The theory goes that if one node goes down, if we know the causal relationships between
messages, then we can replay those messages and respect the causal relationship to get that
node back up to the state it needs to be in.

→ Piece-wise Deterministic (PWD) ?
20

Vector clocks

Vector clocks allow causality to be captured

• Rules of Vector Clocks

• Properties of a process
• Implementation

21

Vector clocks

Rules and properties

•A vector clock VC(i) is assigned to an event i.

•If VC(i)<VC(j) for events i and j, then event i is known to causally
precede j.

•Each process i maintains a vector V such that
– Vi [i] : number of events that have occurred at i
– Vi [j] : number of events I knows have occurred at
process j

22

Vector clocks

Implementation
Before executing an event (i.e., sending a message over the network,

delivering a message to an application, or some other internal event),

1. Pi executes VCj [i] ~ VCj [i] + 1.

2. When process Pi sends a message m to Pj, it sets m's (vector) timestamp ts
(m) equal to VCj after having executed the previous step.

3. Upon the receipt of a message m, process lj adjusts its own vector by
setting VCj [k] ~ max{VCj [k], ts (m)[k]} for each k, after which it
executes the first step and delivers the message to the application.

23

Vector clocks

24

Sum Up: for Checkpoints and Recovery
→ To Prevent Orphan process

Lamport’s timestamps
• Integer clocks assigned to events
• Obeys causality
• Cannot distinguish concurrent events

Vector timestamps
• Obeys causality
• By using more space, can also identify concurrent

events 25

Model 2 – Fully Distributed Algorithm

 Web Services: (Web Services – Business Applications)

 No central coordination (except UDDI)

 Fully Distributed (LAN based systems ?): ex: 2-phase commit ?

 Pair-wise interaction

 Peer – to - peer
26

27

28

29

30

31

32

33

Three Undesirable Problems

 Problem 1: Identity of the participating processes

a) 2-phase commit ?

b) Distributed deadlocks ?

Problem 2: Network Status ? Delay in the process OR Failure ?

Block-chain

Problem 3: Slow processes ! Scalability …

34

Model 3: Nature of Distributed Systems -

Complexity in Distributed Systems
Multiple Nodes

Messages

Modes of Communication: Sync / Async

Consider: ebay (cart) dealing with, a customer,
booking a HP notebook, Sony Camera, Cannon color
printer/scanner, UPS, ..

Requires a 2-phase commit

35

Problems: Long Running Process

 Blue Gene – (1999) parallel computer, for the study of bio-molecular

phenomena such as protein folding

 P1 Process Failure

 Checkpoint 1

 Checkpoint (1, …., n) : STABLE STORE Data, threads, register

values

 Run-time overhead; Failure → most recent checkpoint

 64 x 64 grid of parallel computers → middleware for

checkpoints
36

https://en.wikipedia.org/wiki/Parallel_computer
https://en.wikipedia.org/wiki/Protein_folding

Cooperating Processes →Distributed System

P0 P1

m0

C0,0

C1,0

C2,0

C3,0

m2

m4

m3

m7

m5

m6

m8

P2 P3
m1

C0,1

C1,1

Crashed

C2,1

C2,2

C3,1

37

Middleware → Distributed System

 Distributed system → a collection of processes that

communicate through messages in a network

 Fault tolerance → periodically using stable storage to

save the processes’ states during the failure-free

execution.

 After a failure → a failed process restarts from one of

its saved states,

→ reducing the amount of lost computation.

 Each of the saved states is called a checkpoint
38

Checkpont → Cascading Rollback Problem

P0 P1

m0

C0,0

C1,0

C2,0

C3,0

m2

m4

m3

m7

m5

m6

m8

P2 P3
m1

C0,1

C1,1

Crashed

C2,1

C2,2

C3,1

 Last checkpoint: C1,1 by P1,

before P1 crashed

 Cannot use C0,1 at P0

because it is inconsistent

with C1,1

=> P0 rollbacks to C0,0

 Cannot use C2,1 at P2

because it fails to reflect the

sending of m6

=> P2 rollbacks to C2,0

 Cannot use C3,1 and C3,0 as a result => P3 rollbacks to

initial state 39

Checkpoint based Recovery: Overview

 Uncoordinated checkpointing: →

Processes take checkpoints independently

 Coordinated checkpointing: Process coordinate their
checkpoints → to save a system-wide consistent state.

→ Such checkpoints can be used to bound the rollback

 Communication-induced checkpointing: It forces each
process to take checkpoints based on information
piggybacked on the application messages it receives from
other processes.

40

Outline: Checkpoints

◼ Checkpointing and logging

❑ Checkpoint-based protocols

◼ Uncoordinted checkpointing

◼ Coordinated checkpointing

❑ Logging-based protocols

◼ Pessimistic logging

◼ Optimistic logging

◼ Causal logging

41

Uncoordinated Checkpointing

◼ Uncoordinated checkpoints:

→ full autonomy, and simple.

◼ Problems

❑ Most Checkpoints are not be useful

◼ Cascading rollback to the initial state (domino effect)

❑ To select a set of consistent checkpoints during a

recovery, the dependency of checkpoints has to be

determined and recorded together with each checkpoint

◼ Extra overhead and complexity => not simple after all

42

Disadvantages of Uncoordinated Checkpointing

◼ Susceptible to the domino effect

◼ Checkpoints that will never be part of a global
consistent state are recorded
❑ Stable Storage overhead

❑ do not advance the recovery line

◼ A process needs to maintain multiple
checkpoints and to use garbage collector to
reclaim checkpoints

◼ Not suitable for output commit, because output
commit requires global coordination to compute
the recovery line

43

Different Rollback Recovery Schemes

Rollback Recovery Schemes

Checkpoint based Log based

Uncoordinated

check pointing

Coordinated

check pointing

Comm. induced

check pointing

Pessimistic

Logging

Optimistic

Logging

Casual

Logging

44

Coordinated Blocking

◼ Processes are coordinated to form a consistent global state,

and …

initiator
Ready! Go!

p1

p2

p3

*

*
*

* okay,
channels flushed

Next: Coordinated Blocking Chkpnt (cont’) 45

Coordinated Blocking (cont’)

◼ Advantage

❑ Always consistent

❑ No Domino Effect

❑ Less storage overhead

◼ Disadvantage

❑ Large latency to chkpnt!

Next: Coordinated Non-blocking Chkpnt 46

Log Based Protocols

◼ Work might be lost upon recovery using checkpoint-

based protocols

◼ By logging messages, we may be able to recover the

system to where it was prior to the failure

◼ System mode: the execution of a process is modeled as

a set of consecutive state intervals

❑ Each interval is initiated by a nondeterministic state or initial state

❑ We assume the only type of nondeterministic event is receiving of

a message

m3 m5

P i

m1

1st State Interval 2nd State Interval 3rd State Interval

m0 m2 m4

47

Log Based Protocols

◼ In practice, logging is always used together with

checkpointing

❑ Limits the recovery time: start with the latest checkpoint instead

of from the initial state

❑ Limits the size of the log: after taking a checkpoint, previously

logged events can be purged

◼ Logging protocol types:

❑ Pessimistic logging: msgs are logged prior to execution

❑ Optimistic logging: msgs are logged asynchronously

❑ Causal logging: nondeterministic events that not yet logged (to

stable storage) are piggybacked with each msg sent

◼ For optimistic and causal logging, dependency of

processes has to be tracked => more complexity, longer

recovery time
48

Pessimistic Logging

◼ Synchronously log every incoming message to stable storage prior to

execution

◼ Each process periodically checkpoints its state: no need for coordination

◼ Recovery: a process restores its state using the last checkpoint and replay all

logged incoming msgss

49

Different Rollback Recovery Schemes

Rollback Recovery Schemes

Checkpoint based Log based

Uncoordinated

check pointing

Coordinated

check pointing

Comm. induced

check pointing

Pessimistic

Logging

Optimistic

Logging

Casual

Logging

50

Dependency Tracking: System Model

 A constant number of processes (N)

 Communicate through messages to Cooperate

 Interact with outside world through messages

51

Adoption of Blockchains

 Asynchronous Communication

 Unpredicable Network Delays

 Complexity in Distributed systems- Backup and
recovery

 No recent study

- Studies consider reliable LAN based networks

52

53

