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Abstract

In this dissertation we posit a coherent area of research called Internet

Algorithmics. We study a number of different algorithmic problems which

are motivated by or are relevant to the various processes which activate the

Internet or are activated by it.

The first problem is that of auctioning. We investigate algorithmic strate-

gies that allow sellers to maximize their profits without compromising fairness.

We give simple online algorithms to maximize seller profits and give bounds

on their competitive ratios, also proving that these competitive ratios are the

best achievable by any randomized algorithm.

Subsequently we address the problem of online dictionaries in all its gener-

ality. We propose biased skiplists, deterministic and randomized, as an efficient

solution to this problem. These structure are easy to implement and can be

efficiently updated for storing sorted lists of items. We prove bounds on the

update times of these structures which are comparable to the best known times

for solutions to the dictionary problem.

Finally we study fault-tolerant routing in interconnection networks. We

present a model of fault-tolerance given a bounded number of edge failures and

define a set of flow problems which formalize this model. The main problem

we study is the k-Disjoint Flows Problem in which we are given an undirected

network G = (V, E) with edge capacities and a set of terminal pairs T with

demands di, 1 ≤ i ≤ |T |. The problem is to find a subset of the pairs of

maximum total demand such that each chosen pair can be connected by k
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disjoint paths, each path carrying di/k units of flow and no capacity constraint

is violated. For this problem, and its variants, we present simple online greedy

algorithms. Further, we prove that these algorithms are competitive.

Advisor: Michael T. Goodrich

Reader: Christian Scheideler
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Chapter 1

Introduction

At the time of writing of this first sentence of this first paragraph of this

thesis, the number of active Internet hosts 1 is 185,057,967 according to Tel-

cordia Technologies’ Netsizer project [87]. To put this number in context, the

United States was home to an estimated 284,796,887 people on July 1, 2001

according to the US Government’s Census Bureau [88]. Samuel Morse, had

he been alive today, might have exclaimed, “What hath Man wrought!”

The growth of the Internet from a modest sized research project into a

major economic, cultural, social and political force that touches the life of a

large fraction of the earth’s population is a part of contemporary folklore. The

extensively distributed nature of the Internet, the anarchic and libertarian

ideas that underlie it, the economic forces that seek to mold it, the varied

nature of the engineering challenges it poses, all these come together to form a

dazzlingly complex mass of issues which need to be addressed by the research

community. In this thesis we posit the existence of a diverse but coherent

subset of these issues: the problems that can be formulated in algorithmic

terms, solutions for which can be developed and analyzed using the methods

developed by algorithm design community. We name the study of this subset

of issues Internet Algorithmics, a term that has been in use for the last couple

of years.

1defined as computer devices with IP addresses
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1.1 Algorithmic Beginnings

In an interview given in 1990, Paul Baran, the central figure in the de-

velopment of the packet switching technology that is arguably the foundation

of the modern Internet, talks about the imperatives driving his research at

the RAND corporation under the shadow of the hair-trigger nuclear ballistic

missile systems of the Cold War near the end of the 1950s:

“... long-distance communications networks at that time were
extremely vulnerable and not able to survive attack. That was the
issue. ... a most dangerous situation was created by the lack of a
survivable communication system.” (quoted in [1], pp. 10)

In view of this statement consider the following simple definitions taken

from Douglas West’s text book on Graph Theory [91]:

Definition 1.1.1 A graph G with n vertices and m edges consists of a vertex

set V (G) = {v1, . . . , vn} and an edge set E(G) = {e1, . . . , em}, where each

edge consists of two vertices called its endpoints.

Definition 1.1.2 A graph G is connected if it has a u, v-path for each pair

u, v ∈ V (G).

Definition 1.1.3 A vertex cut of a graph G is a set S ⊆ V (G) such that G\S
is not connected. A graph G is k-connected if every vertex cut has at least k

vertices. The connectivity of G is the maximum k such that G is k-connected.

Baran’s problem, formulated in these terms, was two-fold:

• How to design a communication network with high connectivity that

spans the United States.

• How to ensure that communications do not fail when the nodes of this

network are destroyed.
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Both these problems fall under the rubric of Algorithmic Graph Theory,

and it is their solution, packet switching, that essentially gave birth to the

Internet as we know it today.

This example shows us how, not unlike other fields of technological en-

deavor, the development of the Internet has been grounded in sound math-

ematical formulations and made possible by algorithmic realizations of those

formulations. The formulation of political concerns in mathematical terms,

like the Internet, has outlived the Cold War. Today, more than ever before,

there is a need to understand the processes that surround the Internet in sound

mathematical terms, and to devise provably efficient and optimal solutions, to

the extent possible, of the algorithmic problems which they represent. In this

thesis we present three such solutions.

Before we proceed however, it is necessary to understand the nature of the

beast.

1.2 Design Principles and Design Features of

the Internet

The evolution of the Internet appears to be an anarchic process. Nev-

ertheless, certain design principles have been at the basis of this evolution.

Theoretical models for studying the Internet will have to incorporate these

principles, or at least the features they seek to provide. The principles enun-

ciated here are taken from the National Research Council’s insightful stock

taking exercise “The Internet’s Coming of Age” published in 2001 [26].

1.2.1 Design Principle 1: Hourglass Architecture

The International Standards Organization’s (ISO) Open Systems Inter-

connection (OSI) Reference Model has been tremendously influential in the

development of the Internet. It is pictured in Figure 1.1.2

2For a clear exposition of this model see, for example, [86].
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Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data link Layer

Physical Layer

Figure 1.1: The seven layers of the ISO OSI Reference Model.

The key insight of this model is the notion of abstracting away from the

underlying transport infrastructure. It allows several different research com-

munities to interact. In a manner of speaking, it allows the Tower of Babel to

be built.

The uniform width of the layers depicted in Figure 1.1 hide an important

principle of the Internet’s Architecture, the so called “Hourglass” principle.

Simply stated, this means that at the network layer there should be just one

protocol while above and below this level the space of applications, middle-

ware and transport, on one side, and the space of network communication

technologies, on the other side, is allowed to grow, pushed forward by research

and innovation. This principle is succinctly stated in RFC 1958:

“It is generally felt that in an ideal situation there should be one,
and only one, protocol at the Internet level. This allows for uni-
form and relatively seamless operations in a competitive, multi-
vendor, multi-provider public network. There can of course be
multiple protocols to satisfy different requirements at other levels,
and there are many successful examples of large private networks
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with multiple network layer protocols in use.” [44]

Substrate

Network 
Technology

Internet Protocol

Transport
Services

Middleware

Applications
email remote

login

image
server

security DNS

NFS

LANs

wireless

ATM

dial-up
modems

Figure 1.2: The Hourglass Principle. Based on a figure from [26]

Figure 1.2, based on a figure from [26], clarifies this principle further.3

There are debates about what should lie at the waist of the hourglass. But

the notion of keeping this central portion lightweight is an almost uniform

consensus.

1.2.2 Design Principle 2: End-to-End Architecture

In any network it is essential to decide what part of the communication

function will be performed by the communication subsystem and what part

will be done at the communicating ends. The importance of making this

differentiation, the “end-to-end argument,” was first highlighted by Saltzer

and others [76].

The communication layer of the Internet essentially functions as a delivery

network, it’s only job being transmitting packets from one computer to the

3Figure 1.2 also hints at the fact that four layers above the Transport layer are, in effect,
actually seen as two layers, Applications and Middleware.
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other as efficiently and flexibly as possible. All other functions are done at the

edges of the network, in the hosts themselves.

One of the most important consequences of this design feature is that appli-

cations do not suffer because of network failures. By keeping the functionality

of the communication subnet to a minimum, this design principle also facili-

tates scalability.

1.2.3 Design Feature 1: Scalability

The design principles listed above have made adding more and more ma-

chines to the Internet a relatively easy and decentralized process, quite unlike

the expansion of a telephone network. Perhaps an apt analogy would be to

a road network, simply making a road from a village to the nearest town or

village which has a road, or to the nearest road, successfully adds that village

to the entire network.

Despite this there are several pressures which make scaling up the Internet

a challenge. We will discuss these in more detail in a subsequent section.

1.2.4 Design Feature 2: Distributed Design and Decen-

tralized Control

To a great extent, individual entities of the Internet have the freedom to

interact with the network as they wish. Routing decisions are not controlled

centrally. The network itself is hierarchical but relatively democratic in its

functioning. Additionally, control of the running and development of the In-

ternet does not reside with any single entity. In its ingenuous but lucid style,

RFC 1958 captures this feature the best:

“Fortunately, nobody owns the Internet, there is no centralized
control, and nobody can turn it off.” [44]

This decentralization was not a given in the early years of the Internet

and has been defended against many attacks (e.g. [1], Chap. 5). However,
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the Internet as we now know it has probably grown beyond the point where

any single entity can control it. Additionally, the processes for designing new

protocols, established by the Internet Engineering Task Force, are open to

anybody and designed to be vendor-neutral.4

As the Internet continues to grow, some of these principles themselves have

come under severe pressure from market forces and competing ideologies. A

theoretical perspective could be useful in underscoring the validity of these

principles or helping debunk them in the face of new ways of thinking about

the Internet. Although this thesis does not encapsulate any such research, we

feel that the theory of computing community in general, not just the algorithms

community, can have a telling impact in this area.

Preliminary to describing the various areas in which the theoretical research

could contribute, let us attempt to classify the issues which arise in the area

of Internet research.

1.3 Taxonomy of Internet Algorithmics

The study of Internet Algorithmics can be broadly classified under three

rubrics:

• Growth: Managing and facilitating the increase in the size and quality

of the Internet. Size includes number of users, amount of data trans-

ferred, transfer speeds etc.

• Diversification: Enhancing the quality of the current uses of the Inter-

net and increasing the number of uses of the Internet.

4While vendor-neutrality is a desired goal, in practice this is sometimes compromised by
the clout certain big players wield.
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• Security and Abuse Prevention: Making the Internet and its content

and processes provably resistant to different kinds of attack. Detecting

and helping prevent abuse or misuse.

• Analysis: Studying the Internet as a system.

These categories are not exclusive. As we will see later, each class of

problems has implications for the other and it is sometimes difficult to decide

which of these categories best defines a particular problem. The thrust of this

thesis is in the first two areas. In the Sections 1.4 and 1.5 we will endeavor to

elaborate on what kind of problems fall under these two rubrics. We will try

and investigate one set of issues under each of these heads in some detail and

try to point out the sort of theoretical work needed to address them. We will

also tie in these issues with the technical contribution of this thesis, described

in detail in Chapters 2, 3 and 4.

1.4 Growth

Internet traffic is estimated by some to double every six months through the

first decade of the 21st century [70]. Other’s feel that the doubling period is

closer to one year [65]. The numbers of active hosts is also estimated differently

by different sources [87, 45, 57]. Given the complexity and the international

spread of the Internet, perhaps the most accurate statement that can be made

is the following:

“The Internet is getting big, and it’s happening fast.” [9]

No growth is free of pain. The exponential growth of the Internet is no

exception to this rule. We do not intend to give a comprehensive survey of

all the issues which need to be addressed if the growth of the Internet is to

be realized in a smooth manner. We discuss two major problems, the need

for more capacity and the need to scale naming systems, pointing out the

relevance of this thesis’ technical contribution to their solutions.
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1.4.1 Growing Pains 1: The Need for More Capacity

We have discussed earlier how the open and layered design of the Internet

makes it a naturally scalable system. However, there are a number of pressures

which oppose untrammeled growth.

The most obvious concern that accompanies the growing number of hosts

and users is the demand for more capacity. Some see the increase in the kinds of

devices attached to the Internet as a major driver on demand for capacity. The

growing popularity of Digital Subscriber Line (DSL) connections is another

source of demand. It is also worth pointing out that the large populations

of developing countries are for the most part not connected to the Internet

currently. But the social potential of the Internet is clearly recognized in most

of these nations and when they surmount the infrastructural issues they are

facing (see e.g. [28, 6]), they will join the Internet community in tremendous

numbers.

Whatever the source might be, the growth in demand for capacity threatens

to outstrip the growth in providers capabilities to provide it. Better use of

bandwidth plays a key role in keeping pace with demand. That this engenders

a rich problem space for Algorithms researchers needs no repetition. Innovative

solutions to this problem have been driven by the Algorithms community, the

most notable being the example of Akamai [46].

1.4.2 Easing the Pain 1: Traffic Engineering and MPLS

As the capacity and the bandwidth of the Internet increases, the protocols

at work need to scale accordingly. There is a move in the networks commu-

nity towards “Traffic Engineering” for improving resource management. A

definition of this term is given in RFC 2702:

“In general, [Traffic Engineering] encompasses the application of
technology and scientific principles to the measurement, modeling,
characterization, and control of Internet traffic, and the application
of such knowledge and techniques to achieve specific performance
objectives.” [10]
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Almost hidden among the sequence of adjectives in this definition, the

word “control” signifies that the move towards Traffic Engineering is a direct

challenge to the end-to-end nature of the Internet discussed in Section 1.2.2.

As a result, it throws up a number of algorithmic problems not previously

considered in the context of Internet routing.

The Multiprotocol Label Switching (MPLS) standard ( [17, 71]) provides

a powerful framework for the implementation of Traffic Engineering based

schemes to tailor services based on quality of service (QOS) needs. With

label switching allowing senders to determine what kinds of routes they want

to take through the network, route computation problems have taken on a

new importance. However, the robustness to link failure that traditional IP

routing encapsulated is lost. In Chapter 4 we address the problem of building

fault-tolerance into routing in a circuit-switched environment. The problems

addressed in that chapter are just the tip of the iceberg of algorithmic issues

brought to light by the move towards label switching networks and Traffic

Engineering.

1.4.3 Growing Pains 2: Scaling the Naming Systems

A common naming system is essential for any communications system. In

the case of the Internet, despite its decentralized nature, there is a broad

consensus on this point (see e.g. [43]). The Domain Name System (DNS,

introduced in [60]) performs the role of identifying each host on the Internet

by a unique name.

Using the names provided by DNS hides the internal complexity of the

Internet from the users. It also allows greater flexibility in changing around

IP addresses (which are the unique name used by the network to identify indi-

vidual hosts), making it possible for organizations to change Internet Service

Providers (ISPs) without having to change their advertised “names.”

The DNS is hierarchically designed. At the top are the “root servers”

containing the address of the top-level domains such as .com, .edu, .uk and so

10



Top Level

Level 2
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Figure 1.3: The DNS Hierarchy. Based on a figure from [26].

forth (see Figure 1.3). The top-level domain servers in turn record the names

of the second level domain name servers, for example, the .edu domain server

keeps a record of jhu.edu’s DNS server. These second level servers are finally

responsible for the mapping from DNS names to IP addresses.

The hierarchical system is in tune with scaling demands but it means that

up to three DNS lookups are required for every name resolution operation.

As the Internet expands to fill the name space (which can potentially accom-

modate billions of names), there is a danger that DNS querying will become

slower and slower and hence form a bottleneck in communication. Addition-

ally, in practice certain names are requested much more frequently than others

and could potentially slow down things for the whole system if they are not

handled extremely efficiently.

The way this is dealt with in practice is by using application-side DNS

caching, in web browsers for example. The obvious disadvantage being that

as the number of active names becomes larger, the application has to manage

an increasingly unwieldy cache. Another approach is replication i.e. the dis-

tribution of the name database to several servers. The name query load can

then be split across the various servers. The problem with this is that it adds

another level of indirection to the name resolution process. The limitations

of both the methods used brings us back to the fact that efficient querying
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algorithms are essential if name space expansion is to be managed without

slowing the Internet to a crawl.

1.4.4 Easing the Pain 2: Biased Skip Lists for DNS

Querying

In Chapter 3 we propose a new structure called Biased Skip Lists as an

efficient and easy to implement solution for directory services in general and

DNS querying in particular. We give a quick overview of this structure in

Section 1.7 but we will leave a more detailed discussion of the advantages of

biased skip lists in the specific domain of DNS querying for Chapter 3. We

would like to note that the main advantage of skip lists over other search

structures is that iterating over the entire data set is very easy, amounting to

little more than a list traversal. This advantage was cited [79, 78] for the use

of skip lists in the Spread Project [83] for group communications developed

by the Center for Networking and Distributed Systems in the CS department

at Johns Hopkins.

It is our belief that the Internet will continue to experience a very high rate

of growth in the years to come, eventually meeting, and perhaps exceeding,

the expectations that fueled the ill-conceived economic euphoria of the late

1990s. But that process of growth will be a difficult and contentious one. The

bursting of the Internet bubble has also meant that the mad rush to devise

standards and technologies has slowed down to some extent. The time is at

hand for taking a deeper theoretical look at some of the relatively ad hoc

decisions that were taken in the course of the last few years. It is also time

to ensure that theoretically sound models are placed at the centre of future

development.
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1.5 Diversification

The Internet has come a long way from its beginnings as a network of

research institutions sharing scientific data. The innovation of hypertext tech-

nology had been made at the European Center for Nuclear Research (CERN)

by Tim Berners-Lee in 1980 (see [64], Chap 15) but it was the development

of web browsers in the 1990s, the most prominent being Mosaic developed at

the University of Illinois by Marc Andreessen, that signaled the beginning of

the explosion in the popularity of the Internet, driven mainly by the rise of

the World Wide Web.

With the World Wide Web as its public face, the Internet increasingly at-

tracted the attention of various communities that had never used any telecom-

munication technology more sophisticated than a fax machine. The business

community, for instance, was quick to recognize the tremendous potential of

the Internet. This recognition was quickly translated into a buzzword: e-

commerce.

E-commerce, however, is just a small part of a larger picture of economic

activity the Internet has fostered. The most notable economic mechanism to

gain success on the Internet was auctioning. In Section 1.5.3 we will discuss

the implications of this success. But before we do, let us take a brief look at

a few of the other ways in which the Internet is being used, and some of the

issues that get raised in the process. Once again, this survey is not meant to

be exhaustive. It is essentially meant to illustrate that there is tremendous

scope for input by the theory of computing community in helping diversify the

Internet’s usage.

1.5.1 Case Study 1: Peer to Peer Networking

The term “Peer-to-Peer Networking” seems to be another name for the

Internet at first glance. However, the name specifically refers to a class of

file-sharing networks that gained popularity, and notoriety, through the music
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sharing system Napster [63]. The reason for the development of peer-to-peer

networks was that file sharing on the Internet was difficult to do and largely

restricted to Local Area Networks (LANs) [54]. The limited amount of file

sharing that did go on required the users to know each other. Sharing files

with new or unknown users was relegated to bulletin boards or Internet Relay

Chat, both of which were not particularly easy to use.

Napster changed this scenario by providing a “killer app” for file sharing

systems on the Internet. It provided a simple interface that would allow any

user connected to the system to share his or her own files and download files

from any other user currently logged on. The architecture had an element of

centralization, a single server stored a database of the files currently available

and their locations, making searches very efficient.

It is easy to see how even in this centralized database model the question

of how to manage the load on different peer machines hosting a given file in

view of large number of requests for that file is not a trivial one. If we add

to this the fact that different machines can provide different upload speeds

to the network, then the complexity of the problem increases. Deciding the

criteria one needs to consider would give rise to a set of well-stated algorithmic

problems.

The legal wrangles between Napster and Recording Industry Association

of America have not diminished the popularity of peer-to-peer networking. If

anything they have drawn attention to the fact that a centralized design is

susceptible to regulation. A more decentralized design is the Gnutella struc-

ture [54] in which when a computer joins the network it informs its “neigh-

bours” that it is alive. The neighbours then propagate this information to

their neighbours and so on. Searches too propagate through the system in the

same way, moving from host to host until the required file is found. Efficiently

locating a particular file is an intriguing theoretical problem in this context

and some attempts have been made to solve it [85]. In [69], this decentralized

model is formulated as a “Content Addressable Network,” a distributed infras-

tructure that provides “hash table-like functionality on Internet-like scales.”
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The obvious advantages of such a decentralized system is its robustness

to failure, a harking back to the fundamentals of the Internet. However, this

advantage is just a side effect of the political impulse to create a system that

no one can shut down. A logical extension of this notion is to add anonymity

into the system. This was proposed by Ian Clarke in [24] (see also [25]). The

system is called Freenet. In this system, when an individual user decides to

share a file, it is encrypted and then moved over the network to a location

that the user does not control. Similarly, the host computer does not know

what files reside on it, and hence bears no responsibility for them. The end

result is that the file gets shared, but no one really knows where it is or who

put it there. Other systems like Publius [89] place primary importance on

resistance to censorship in web publishing, providing a “tamper-evident” kind

of functionality.

Publius and Freenet provide fascinating examples of political ideology being

translated into computer science terms, formulated as system design problems

and then solved. While there are concerns about the ethical and political

implications of these systems, it is undeniable that the algorithmic concerns

that come to light form a rich space for investigation. The continued develop-

ment of new peer-to-peer systems seems to be a given despite the alarm bells

they seem to set off in some quarters. But those alarm bells might well be

temporary. As the Urdu poet Ahmed Faraaz said5

The things I say today
have made me gallows bound

What a shock! in tomorrow’s textbooks
if they were to be found

1.5.2 Case Study 2: Information Integration

The World Wide Web is home to several databases, most of them reason-

ably specific in terms of the data they contain. Often a user needs information

5Original Urdu version available at [34]. Reference courtesy Raj Kumar Pathria.
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that cannot be obtained in its entirety from any one database. A web Informa-

tion Integration system attempts to answer such queries, which may require

extracting and combining data from multiple web sources. There are several

important applications that need to deploy such systems, Geographical Infor-

mation Systems for instance [90]. For a survey on Information Integration

systems see [36].

Very little attention is paid in the development of such systems to opti-

mizing querying times and latencies. At most attempts are made to ensure

that delay is hidden [8]. In our view this area is ripe for intervention from

experts in data structures, scheduling and online algorithms. Sophisticated

Information Integration systems that incorporate the varying latencies of dif-

ferent databases, the transmission times of different sized query returns, and

other such criteria, will definitely give better performance than some of the

systems available today.

The advantages of a decentralized information structure on the Internet

echo the advantages of the Internet itself: fault-tolerant, democratic, the prop-

erty of the community as a whole. As we move forward making better use of

this distributed wealth will become more and more important, and it will in

turn be a greater load on network resources. It is important that in the rela-

tive infancy of the area of Information Integration, adequate attention be paid

to making efficient systems that provide quick answers to involved questions

while making judicious use of precious network resources.

1.5.3 A Different Case: Internet Auctions

In Sections 1.5.1 and 1.5.2 we discussed two examples of new kinds of

systems overlaid on the Internet and emphasized the novelty of the algorithmic

problems that designing such systems engendered. The issues essentially deal

with different notions of network performance or resource management in new

scenarios. However, the popularity of the Internet has also led to a revolution

in traditional ways of doing a number of different things, like distributing
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movies and music for example, giving rise to new ways of thinking about the

economics of these and other old6 areas. The particularly striking case has

been that of auctioning.

The democratic potential of the Internet has been a recurring theme of this

chapter. The case of auctioning on the Internet reinforces this theme. Folklore

has it that Pierre Omidyar, the founder of the first successful auctioning site

on the World Wide Web, eBay, was inspired to start his company because

his girlfriend (and subsequently, wife) wanted to collect Pez dispensers [21].

While this may or may not be the case, the fact of the matter is that according

to a study conducted in 1998, 75% of all auctions on the Internet are for small

collectible items with median prices well below $100 and almost no item above

$1000 [56].

The prohibitive commissions charged by established auction houses (up to

a net of 30% of the price divided between the buyer and the seller at Sotheby’s

and Christie’s) as opposed to the reasonable commissions charged by online

auction houses (in the range of 10% for most auction houses, all figures taken

from [56]) have meant that it has become affordable to bid for goods and

put items up on sale. But, most importantly, it is the ability to enter into

an auction, as a buyer or seller, from the comfort of one’s own home that

has propelled Internet auctioning to the prominence it has today and made

household names of companies like eBay, uBid and others. In the public

imagination the word auction no longer connotes rich people in dinner jackets

and evening gowns paying millions of dollars for a Van Gogh painting as they

sip wine. It is more likely to conjure up an image of a baseball cap-wearing

beer drinker making a few hundred thousand dollars on eBay for one of Barry

Bonds’ record breaking 73 home run balls.

Despite the proliferation of auction houses on the Internet, the number of

ways of auctioning items has remained quite limited. The most popular kinds

of auctions are ascending-bid auctions, which close at a certain time. Given

6We use this word to mean “predating the Internet.”
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the fact that there is no incentive to bid early in such an auction (it reveals

information to other bidders), it was found that most people would wait till

the end of the auction to enter their bids, making it, in effect, a sealed bid

auction. Since then, most auction sites have instituted a practice of having

automated bidding agents that each bidder can instruct to keep raising their

bid till a certain value. However, this does not encourage bidders to bid their

true valuation for an item like the so-called Vickrey auction might.7

The point is that there is a need to design sophisticated auctions that keep

various considerations in mind. The closing time featured by most auctions

is essential in the Internet scenario which is populated by “absentee bidders”

who register a bid and then go about their work. They have to be given a

time by when they will know whether they won the auction or not. This

important requirement changes the rules of bidding for ascending bid auctions

that were earlier conducted by a live auctioneer in room where all the bidders

were present. This specific example illustrates the more general point that

there is a need to reexamine the hoary discipline of auctioning in view of its

having made the transition to the Internet.

In conclusion, let us highlight the fact that not just the way people bid or

the way they sell has changed, the very nature of what they sell has changed.

Consider for example the case of music being sold online in mp3 form: a digital

item with potentially unlimited supply. The science of auctioning has to evolve

to meet these challenges, and the tools and techniques of computer science can

help. How they can help will be the subject of Chapter 2.

In the excitement of the last few years there has been a rush to develop

new systems that can benefit from all the Internet has to offer. Much of the

research done to this end has been is devising architectures of such systems,

7In the Vickrey auction, the highest bidder wins but pays the amount of the second
highest bid.
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an emphasis on how to do things without enough emphasis on how to do them

well. The results of this resource thirsty expansion cannot but be adverse in

the long term. On the other hand, the innovation signalled by this process is

something worth nurturing and facilitating.

Innovation is also required in designing new processes for the economic

interactions that the Internet fosters. Traditionally areas like auctioning have

been the preserve of economists. This is the opportunity for the computer

science algorithms community to enter the larger world of financial algorithms

and make an impact on it.

1.6 Other Issues

It might well be felt that the area of Internet Security should be classified

as one of the key areas that will facilitate the diversification of the Internet.

And, indeed, without Public Key Cryptography (see e.g. [59]), a whole range

of financial transactions could not take place on the Internet. However we feel

that the techniques used in this area area are coherent and distinct enough

to set it apart from the general run of Algorithmics. We will not undertake

a discussion of this vast and very popular area here because the technical

contribution of this thesis does not venture into it and there are several others

better qualified to write about it than this author.

However, seeing that through the course of this chapter we have highlighted

positively the democratic possibilities of the decentralized nature of the Inter-

net, we feel it is only fitting we point out some of the negative consequences of

this feature. In Section 1.6.1 we discuss a well-known and simple phenomenon

whose solution is notoriously hard to formulate: Denial-of-Service attacks.

Another problem with the lack of a single controlling entity is the diversity of

essentially selfish objectives that various users hold. In Section 1.6.2 we talk

about some of the attempts being made to understand the consequences of

selfish individual behaviours on the Internet as a whole.
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1.6.1 Combating Misuse: IP Traceback for Denial-of-

Service Attacks

One of the problems with the End-to-End design of the Internet (See Sec-

tion 1.2.2) coupled with the concept of packet switching, is that it is susceptible

to various kinds of mischief. To understand what a Denial-of-Service (DoS)

attack is, consider this analogy from an article in Linux Journal:

“Our analogy begins on a college campus with a studious student
(SS) who has the misfortune of being placed in a “party” dorm.
On a typical evening, SS is studying at his desk trying to master
some dry material on data link protocols for his computer networks
class. Someone knocks at his door. Upon opening the door, he gets
hit with a water balloon from his rowdy neighbors. . . .

He decides on a “secret knock”– his friends announce themselves
with a one to five knock code. SS hears the knock and goes to
the door; however, he does not open it. Instead, he repeats the
original knock and adds his own one to five knock code. Now the
visitor knocks the next “sequence” of his code and repeats SS’s
knocks. . . . we can see that the knock code is able to defeat SS’s
rambunctious neighbors, but what if they decide to knock once an
hour or once every five minutes? What is our studious student to
do? The knocks distract him from his homework, but if he ignores
the knocks he misses any friends who come by. In other words,
frequent knocks deny service to SS’s friends.” [84]

A Denial-of-Service attack occurs when a large number of irrelevant packets

are directed at a host. Informally, the amount of time spent in checking these

packets to see if they are useful traffic or garbage means that useful traffic

cannot get through. For a description of different kinds of DoS attacks see

[23]. For a gripping tale of one man’s courage in the face of a Distributed DoS

attack (an attack where the malicious packets come from numerous sources)

see [37].

The mechanism employed by DoS attacks is so simple and basic that there

does not currently seem to be any way to combat it apart from relying on

the long arm of the law to bring the perpetrators to book. Even this is not
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a simple task, given that attackers normally send packets pretending to come

from other locations, a technique known as “IP Spoofing.” The first research

effort in this area has been to find ways to trace the DoS packets back to

their source. This is what the Internet community, known for its facility with

nomenclature, refers to as IP Traceback.

For a survey of different techniques used for IP Traceback see [4]. The ap-

proaches range from those relying on system level pragmatism [15] to those in-

volving sophisticated mathematics [29]. Probabilistic Packet Marking (PPM)

seems to be a promising technique for IP Traceback. Simply stated, it involves

routers along the way stamping a packet with their name some of the time

i.e. with some low probability. The idea is that when a DoS occurs, a huge

number of packets are received and it should be possible to reconstruct the

path to the attackers using the markings on these packets. There has been

some work on this technique [4, 66] already but the problem of DoS attacks

remains.

DoS attacks dramatically highlight the weaknesses of the Internet. Para-

doxically, these same weaknesses are also strengths. To eliminate the attacks

by trying to change the open and transparent nature of the Internet would

be like cutting off the nose to spite the face. DoS is a knotty problem, to

which IP Traceback provides just one as yet incomplete solution. Research

that helps solve this problem would, in effect, be helping save the freedom of

the Internet.

1.6.2 Analysis: Game-Theoretic Views of Internet Be-

haviour

The Internet can be viewed as an interrelationship of a set of autonomous

agents. Each entity needs to interact with others while optimizing a set of

goals that might conflict with the goals of others. This is a direct consequence

of the decentralized nature of the Internet. The kind of global optimizations

possible in a system like the telephone network are simply infeasible on the
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Internet. This leads to the question, first posed in algorithmic terms in a

slightly different form in [51]: What is the price of freedom? A question that

might be posed in slightly harsher terms as: What is the price of selfishness?

Game Theory provides interesting insights into the behaviour of selfish

players working to optimize their benefit. The well-known Nash equilibrium

and the lesser known Stackelberg equilibrium (in which one player has an

altruistic motive, see [73] for details) provide a manageable handle on the

exponential behavioural possibilities.

In an interesting sequence of papers, Tim Roughgarden has taken this

line of questioning forward (See e.g. [74].) As the authors point out in [51],

scenarios where algorithms cope with lack of information (online algorithms) or

lack of unbounded resources (approximation algorithms) have been formalized.

Analyzing the Internet in these game-theoretic terms gives rise to a field of

problems where we have to cope with a lack of coordination.

We have attempted to demonstrate in this chapter that the Internet is at

a stage where it requires input from the theory of computing community for

its continued wellbeing and growth. It provides an unprecedented opportunity

to bridge the long bemoaned gap between theory and practice in Computer

Science [7]. The reward for the theory community will not just be funding

and gratitude, but, most importantly, a rich set of interesting problems that

will push forward our understanding of the fundamental natural phenomenon

that is computing.

1.7 Organisation and Overview

We now present an overview of the technical contributions of this thesis,

which occupy Chapters 2, 3 and 4.

In Chapter 2 we provide an algorithmic approach to the study of online
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auctioning. From the perspective of the seller, we formalize the auctioning

problem as that of designing an algorithmic strategy that fairly maximizes the

revenue earned by selling n identical items to bidders who submit bids online.

We give a randomized online algorithm that is O(log B)-competitive against

an oblivious adversary, where the bid values vary between 1 and B per item.

We show that this algorithm is optimal in the worst-case and that it performs

significantly better than any worst-case bounds achievable via deterministic

strategies. Additionally we present experimental evidence to show that our

algorithm outperforms conventional heuristic methods in practice. And finally

we explore ways of modifying the conventional model of online algorithms

to improve competitiveness of other types of auctioning scenarios while still

maintaining fairness. This work was done jointly with Amitabh Chaudhary

and Michael T. Goodrich of Johns Hopkins University and Vijay Kumar and

Rahul Garg of IBM’s India Research Lab (IRL) in New Delhi. A significant

portion of this work was done while the author was visiting the IRL in the

summer of 1999.

Pugh [67] introduced skip lists as an alternative to such tree based search

structures. Skip lists represent each item by a linked list of nodes; the lists are

themselves linked together in a leveled fashion. In Chapter 3 we show how to

provide biased access in skip lists. In our deterministic approach a node gets an

initial height based on its weight; invariants analogous to those governing (a, b)-

trees govern promotion and demotion of node heights to ensure the desired

access time. We also describe a randomized variation of this idea, which gives

the same, although expected, bounds, and is much simpler to implement.

This is joint work with Michael T. Goodrich and Adam Buchsbaum of AT&T

Research.

In Chapter 4 we consider the k edge-disjoint paths problem (k-EDP), which

is a generalization of the well-known edge-disjoint paths problem: given a

graph G = (V, E) and a set of terminal pairs (or requests) T , the problem is

to find a maximum subset of the pairs in T for which it is possible to select

disjoint paths so that each pair is connected by k edge disjoint paths. To the
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best of our knowledge, nothing nontrivial is known for this problem so far for

k > 1. In order to measure the performance of our algorithms we will use the

recently introduced flow number F of a graph [50]. This parameter is known to

fulfill F = O(∆α−1 log n), where ∆ is the maximum degree and α is the edge

expansion of G. We show with the help of a simple, greedy online algorithm

that it is possible to achieve a competitive ratio of O(k3 · F ), which naturally

extends the best known bound of O(F ) for the case that k = 1 to higher k. In

order to achieve this competitive ratio, we introduce a new method to convert

a system of k disjoint paths into a system of k short disjoint paths. We also

show that our all deterministic online algorithms have a competitive ratio of

Ω(k · F ).

In addition, we study the k disjoint flows problem (k-DFP), which is a

generalization of the well-known unsplittable flow problem (UFP): the k-DFP

is similar to the k-EDP with the difference that now the graph has edge ca-

pacities and the requests can have arbitrary demands di. The aim is to find a

subset of requests of maximum total demand for which it is possible to select

flow paths so that all the capacity constraints are kept and each selected re-

quest with demand di is connected by k disjoint paths of flow value di/k. This

work was done jointly with Christian Scheideler and Amitabh Chaudhary of

Johns Hopkins and Petr Kolman of Charles University, Prague.
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Chapter 2

Auctioning

Auctions are among the oldest forms of economic activity known to mankind.

Of late there has been a renewed interest in auctioning as the Internet has

provided a forum for economic interaction on an unprecedented scale. A

number of web sites have been created for supporting various kinds of auc-

tioning mechanisms. For example, at www.priceline.com, users present bids

on commodity items without knowledge of prior bids, and the presented bids

must be immediately accepted or rejected by the seller. Alternately, web sites

such as www.ebay.com and www.ubid.com allow bidding on small lots of non-

commodity items, with deadlines and exposure of existing bids. The rules for

bidding vary considerably, in fact, even in how equal bids for multiple lots are

resolved. Interestingly, it is a simple exercise to construct bidding sequences

that result in suboptimal profits for the seller. For example, existing rules at

www.ubid.com allow a $100 bid on 10 of 14 items to beat out two $70 bids on

7 items each. Thus, we feel there could be considerable interest in algorithmic

strategies that allow sellers to maximize their profits without compromising

fairness.

Since Internet auctioning requires a great deal of trust, notions of fair-

ness and legitimacy are fundamental properties for an auction [82]. Indeed,

there is considerable previous mathematical treatments of auctioning that clas-

sify various types of auctions, together with evolving criteria of fairness (e.g.,
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see [92, 72, 30]). Still, the algorithmic aspects of auctioning have been largely

neglected.

2.1 Preliminaries

Given the interactive nature of Internet auctioning today, we feel it most

appropriate to study auctioning strategies from an online algorithms perspec-

tive. That is, algorithms must make immediate decisions based on existing,

incomplete information, and are not allowed to delay responses to wait for

future offers. This has the additional advantage of obviating the requirement

for a closing time which leads to various inefficiencies (see Section 1.5.3.)

Moreover, given that existing auctioning web sites must implement what

are essentially algorithmic rules for accepting or rejecting bids, in this paper

we focus on algorithmic strategies for sellers. Even so, we restrict our study to

strategies that are honest and fair to buyers. For example, we would consider

as unacceptable a strategy that uses a fictitious external bidder that causes a

real bidder to offer more than he would had there been less bidding compe-

tition. Besides being unethical, dishonest or unfair strategies are ultimately

detrimental to any Internet auction house anyway, since their discovery drives

away bidders.

2.1.1 Related Work

Offline scenarios for auctioning, where all bids are collected at one time,

such as in sealed bid auctions, have been studied and understood in terms of

knapsack problems, for which the algorithms community has produced con-

siderable previous work [75, 42, 52]. We are not aware of much previous work

on online auctioning strategies, however.

The general area of online algorithms [20] studies combinatorial optimiza-

tion problems where the problem instance is presented interactively over time

but decisions regarding the solution must be made immediately. Even though
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such algorithms can never know the full problem instance until the end of the

sequence of updates, it might not even know when the sequence has ended,

online algorithms are typically compared to optimal offline algorithms. We say

that an online algorithm is c-competitive with respect to an optimal offline al-

gorithm if the solution determined by the online algorithm differs from that of

the offline algorithm by at most a factor of c in all cases.1 The goal, therefore,

in online algorithm design is to design algorithms that are c-competitive for

small values of c. Often, as will be the case in this chapter, we can prove

worst-case lower bounds on the competitive ratio, c, achievable by an online

algorithm. Such proofs typically imply an adversary who constructs input se-

quences that lead online algorithms to make bad choices. In this paper, we

restrict our attention to oblivious adversaries, who can have knowledge of the

online algorithm we are using, but cannot have access to any random bits that

it may use.

In work that is somewhat related to online auctioning, Awerbuch, Azar

and Plotkin [12] study online bandwidth allocation for throughput competi-

tive routing in networks. Their approach can be viewed as a kind of bidding

strategy for bandwidth. Leonardi and Marchetti-Spaccamela [53] generalize

the result of Awerbuch et al..

Work for online call control [5, 13, 55] is also related to the problems we con-

sider. In online call control, bandwidth demands made by phone calls must be

immediately accepted or rejected based on their utility and on existing phone

line usage. In fact, our work uses an adaptation of an algorithmic design

pattern developed by Awerbuch et al. [13] and Lipton [55], which Awerbuch

et al. call “classify-and-select.” In applying this pattern to an online problem,

one must find a way to partition the optimization space into q classes such

that, for each class, one can construct a c-competitive algorithm (all using

the same value of c). Combining all of these individual algorithms gives an

online algorithm with a competitive ratio that is O(cq). Ideally, the individual

1As a matter of convention we can never have a c-competitive algorithm for c < 1 (such
algorithms would instead be called 1/c-competitive)
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c-competitive algorithms should be parameterized versions of the same algo-

rithm, and the values c and q should be as small as possible. Indeed, the

classify-and-select pattern is best applied to problems that can be shown to

require competitive ratios that are Ω(cq) in the worst case against an oblivious

adversary.

2.1.2 Our Results

We consider several algorithmic issues regarding online auctioning, from

the viewpoint of the seller, in this paper. We begin, in Section 2.2, by defining

the multiple-item B-bounded online auctioning problem in which bidders bid

on multiple instances of a single item with each bidder allowed to bid on as

many items as he or she wants to. We present an online algorithm for this

problem that is θ(log B)-competitive with an oblivious adversary. The upper

bound result presented in this sections is based on adaptations of the classify-

and-select design pattern [13] to the specific problem of online auctioning.

In Section 2.3 we show that it is not possible for any deterministic algorithm

to provide a satisfactory competitive ratio for this problem. Moreover, we

show that the algorithm we give in Section 2.2 is “optimal” in the sense that

no randomized algorithm can achieve a competitive ratio of o(log B). To do

this we derive lower bounds, based on novel applications of Yao’s “randomness

shifting” technique [93] , that show the competitive ratios for our algorithm is

worst-case optimal.

In order to show that our algorithm performs well in practice we undertook

a number of experiments. The results, detailed in Section 2.4, demonstrate

that our algorithm handles different types of input sequences with ease and is

vastly superior to other online strategies in the difficult case where the bids

vary greatly in size and benefit.

Finally, in Section 2.5 we discuss a possible modification of our model with

an eye towards making it more flexible as regards its online nature so as to

gain in terms of competitiveness. In particular, we allow the algorithm to
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“buffer” a certain number of bids before making a decision. We show that by

buffering only O(log B) bids it is possible to be c-competitive with an oblivious

adversary for the case in which we are selling a single item, for a constant c.

2.2 Multiple-Item B-Bounded Online Auction-

ing.

In this section we introduce the multiple-item B-bounded online auctioning

problem. We have n instances of the item on sale and the bids which come

in for them offer varying benefit per item. Each bid can request any number

of items and offer a given benefit for them. The objective is to maximize

the profit that can be earned from the sequence of bids with the additional

requirement that the seller accept or reject any given bid before considering

any future bids, if they exist.

The price density of a bid is defined as the ratio of the benefit offered by

the bid to the number of instances of the item that the bid wants to buy. In

other words the price density is the average price per item the bidder is willing

to pay. The range of possible price densities that can be offered is between 1

and B, inclusively. This restriction is made without loss of generality in any

scheme for single-item bidding that has bounded bid magnitude, as we can

alternately think of B as the ratio of the highest and lowest bids that can

possibly be made on this item. A sequence of bids need not contain the two

extreme values, 1 and B, and any bid after the first need not be larger than

or equal to the previous bid.

We assume that the algorithm knows the value of B. We discuss at the

end of this section how this assumption can be dispensed with.

For this problem we propose an algorithm that uses an adaption of a ran-

dom choice strategy of Awerbuch and Azar [11] together with the “classify

and select” technique of [13], where we break the range of possible optimiza-

tion values into groups of ranges and select sets of bids which are good in
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a probabilistic sense based on these ranges. Our algorithm is described in

Figure 2.1.

Algorithm Price And Pack

• Select i uniformly at random from the integers 0 to log B − 1.

• If i is 0 then set pdr = 1 else set pdr = 2i−1.

• Define a bid as legitimate if it has a price density of at least pdr

– Toss a fair coin with two outcomes before any bid comes in.

– If the coin has landed heads then wait for a legitimate bid on more than

n/2 items to come in rejecting all smaller bids and all illegitimate bids.

– Else keep accepting legitimate bids till there is capacity to satisfy them.

Reject all illegitimate bids.

Figure 2.1: Auctioning multiple items with bids of varying benefit.

Theorem 2.2.1 Price And Pack is an O(log B) competitive algorithm for the

multiple item B-bounded online auctioning problem.

Proof. Let the optimal offline algorithm OPT achieve profit density p on a

given input sequence I. So if the optimal algorithm sells n′ ≤ n items, its total

profit is n′p. Let j be the largest integer such that 2j ≤ 4p/5. Define α = 2j

p
.

We say that Price And Pack chooses i correctly, if the chosen value of i equals

j. It is easy to see that i is chosen correctly with probability 1/ log B. In that

event, bids of price density greater than pα are legitimate while the rest are

not. Note that α ∈ (2/5, 4/5].

Let Ip be a subset of I, comprising all bids in I which have price density

greater than pα.
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Lemma 2.2.2 The sum of the revenues obtained by the optimal algorithm

running on Ip is no less than n′p(1− α) where p is the profit density of OPT

on I and n′ is the number of items it sells.

Proof: Suppose that OPT sells some nlt ≤ n′ instances to bids in I − Ip, and

let revge be the revenue earned by OPT from items which were sold to bids

in Ip. Clearly,

revge + nlt.pα ≥ n′p

this gives us

revge ≥ n′p− nlt.pα

and since nlt ≤ n′ we get

revge ≥ n′p(1− α)

Since revge is the revenue obtained from a subset of the bids in Ip, the

result follows.

We consider the following three cases, and show that in each case the

expected revenue of Price And Pack is at least
np

10 log B
.

Case 1: There is a bid of size greater than n/2 in Ip.

With probability at least 1/ log B, Price And Pack chooses i correctly.

With probability 1/2 Price And Pack chooses to wait for a bid of size greater

than size n/2. Thus, with probability at least 1
2 log B

, Price And Pack will

accept a bid of size at least n/2 and price density at least αp.

So in this case the expected revenue of Price And Pack is at least
npα

4 log B
.

Since the revenue earned by OPT is np, and α > 2/5, in this case Price And Pack

is 10 log B competitive with OPT .
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Case 2: There is no bid of size greater than n/2 in Ip, and the total number

of items demanded by the bids in Ip is more than n/2.

With probability 1/2 Price And Pack will choose to accept bids of any size.

If it also chooses i correctly (the probability of which is 1/ log B), it will sell

at least n/2 instances 2, and earn a revenue of at least pα units for every item

sold.

Thus, with probability 1/2 log B, Price And Pack sells at least n/2 in-

stances to bids whose price densities are no smaller than pα. This means that,

in this case, the expected revenue of Price And Pack is at least
npα

4 log B
>

np
10 log B

, which makes it 10 log B competitive with OPT .

Case 3: There is no bid of size greater than n/2 in Ip, and taken together the

bids in Ip demand no more than n/2 instances.

Again, with probability 1/2 Price And Pack decides to accept all bids,

and with probability 1/ logB, i is chosen correctly. Thus, with probability

1/2 log B our algorithm accepts all bids in Ip, and, by Lemma 2.2.2, earns a

revenue no smaller than n′p(1 − α) where n′ is the number of items sold by

OPT. So its expected revenue is at least
n′p(1− α)

2 log B
≥ n′p

10 log B
, which makes

it 10 logB competitive with OPT in this case.

An important thing to note is that here the algorithm has to know the range

of the input i.e. the algorithm has to be aware of the value of B. It is possible

to dispense with this assumption to get a slightly weaker result following [13].

In other words, it is possible to give an O((log B)1+ε) competitive algorithm,

for any ε > 0, which does not know the value of B beforehand. We do not

detail it here because it does not provide any further insight into the problem

of auctioning.

In the next section we give lower bounds which will show that Price And Pack

gives the best possible competitive ratio for the this problem.

2If Price And Pack accepts all bids in Ip, it sells at least n/2 instances. If it rejects any
bid in Ip, it must not have enough capacity left to satisfy it. But then at least n/2 instances
must have been sold, since any bid in Ip — in particular the rejected bid — is of size no
more than n/2.
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2.3 Lower Bounds for the Online Auctioning

Problem.

We consider the version of the online auctioning problem in which there

is only one item to be auctioned and the range of possible prices that can be

offered for this item is between 1 and B, inclusively. We call this the single-

item B-bounded online auctioning problem. We give lower bounds for this

problem. Upper bounds for this problem are given in [20]. It is easy to see

that a lower bound on any algorithm for the single-item problem is a lower

bound for the multiple-item problem as well.

In this section we first prove that no deterministic algorithm can in the

worst case have a competitive ratio better than the maximum for the single-

item problem. More precisely, we show that every deterministic algorithm

must have a worst-case competitive ratio that is Ω(B). This lower bound is

based on the fact that a seller does not know in advance how many bids will

be offered. Even so, we also show that even if the seller knows in advance the

number of bids in the input sequence, any deterministic algorithm is limited

to a competitive ratio that is Ω(
√

B) in the worst case.

Theorem 2.3.1 Any deterministic algorithm for the single-item B-bounded

auctioning problem has a competitive ratio that is Ω(B) in the worst case.

Proof: For a given deterministic algorithm A we construct an adversarial

input sequence IA in the following way: Let the first bid in IA be of benefit

1. If A accepts this bid, then IA is the sequence {1, B}. In this case, on

the sequence IA, the deterministic algorithm A gets a benefit of 1 unit while

the offline optimal algorithm would pick up the second bid thereby earning a

benefit of B units.

If A does not accept this first bid, then IA is simply the sequence {1}. In

this case A earns 0 units of revenue while the optimal offline algorithm would

accept the bid of benefit 1.
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Of course, B is the worst competitive ratio that is possible for this problem,

so this theorem implies a rather harsh constraint on deterministic algorithms.

Admittedly, the above proof used the fact, perhaps unfairly, that the seller does

not know in advance the number of bids that will be received. Nevertheless,

as we show in the following theorem, even if the number of bids is known in

advance, one cannot perform much better.

Theorem 2.3.2 Any deterministic algorithm for the single-item B-bounded

online auctioning problem, where the number of bids is known in advance, has

a competitive ratio that is Ω(
√

B) in the worst case.

Proof: Consider the input sequence Ibase = {1, 2, 4, . . .2i . . . B/2, B}. For any

deterministic algorithm A we construct our adversarial sequence IA based on

what A does with Ibase.

We recall here that since we are considering the single-item problem, any

deterministic algorithm essentially picks at most one of the bids in the input

sequence.

Suppose A accepts some bid 2i ≤
√

B. Then we choose IA to be the

same as Ibase. In this case A’s benefit is less than
√

B, whereas an optimal

offline algorithm would earn B units thereby making A an Ω(
√

B) competitive

algorithm.

If A accepts some bid 2i >
√

B, on the other hand, then we choose IA

to be {1, 2, 4, . . . 2i−1, 1, 1, . . . }, i.e., we stop increasing the sequence just

before A accepts and then pad the rest of the sequence with bids of benefit 1.

3 This way A can get no more than 1 unit of benefit while the optimal offline

algorithm gets 2i−1 which we know is at least
√

B.

If A accepts none of the bids in Ibase then it is not a competitive algorithm

at all (i.e. it earns 0 revenue while the optimal offline algorithm earns B units)

and so we need not worry about it at all.

3Bids are not always increasing. For a single item there is no issue at all if the bids are
always increasing and the number of bids is known. Just wait for the last bid.
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It is easy to see that the deterministic algorithm that either picks up a bid

of benefit at least
√

B or, if it does not find such a bid, picks up the last bid,

whatever it may be, succeeds in achieving a competitive ratio of O(
√

B).

Theorem 2.3.1 tells us that no deterministic algorithm can effectively com-

pete with an oblivious adversary in the worst case, if the number of bids is not

known in advance. Indeed, although the proof used a sequence that consisted

of either one bid or two, the proof can easily be extended to any sequence that

is either of length n or n + 1. This bleak outlook for deterministic algorithms

is not improved much by knowing the number of bids to expect, however, as

shown in Theorem 2.3.2.

Furthermore we show that even randomization does not help us too much.

We can use Yao’s principle [93] to show that no randomized algorithm can be

more competitive against an oblivious adversary than Price and Pack.

Theorem 2.3.3 Any randomized algorithm for the single-item B-bounded on-

line auctioning problem is Ω(log B)-competitive in the worst case.

Proof. We use Yao’s Principle [93, 61] to show a lower bound for all random-

ized algorithms. To do this we give a probability distribution over the input

space and determine the expected benefit of the best possible deterministic

algorithm on this probabilistic input. The competitiveness of this expectation

against the expected benefit of the optimal offline algorithm for this proba-

bilistically distributed input will be, by Yao’s Principle, a lower bound on the

competitiveness of any randomized algorithm for this problem.

Consider the following input sequence which we will be calling the base

sequence or Ibase: {1, 2, 4, . . .B/2, B}. Our set of input sequences will be

derived from Ibase by truncating it at a given point and substituting bids of

revenue 1 for the tail of the input sequence. All other inputs occur with

probability 0. The set of inputs, I = {I1, I2 . . . Ilog B} ∪ {If} and associated

probabilities are described as:

• Ii = {1, 2, 4, . . .2i, 1 . . . 1} occurs with probability Pi = 1
2i+1 . Each Ii
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has log B + 1 bids.

• If = {1} occurs with probability Pf = B + 1
2B .

The expected benefit that an optimal offline algorithm would earn on this

probabilistically distributed input is:

E[OPT ] = Pf .OPT (If) +

log B
∑

i=1

Pi.OPT (Ii)

=
B + 1

2B
.1 +

log B
∑

i=1

1

2i+1
.2i

=
1

2
log B +

B + 1

2B
≥ log B

Now let us look at the expected benefit of the best possible deterministic

algorithm on this set of inputs. Consider any deterministic algorithm’s be-

haviour on Ibase. In general it will reject the first j bids and accept the j +1st

bid for some j. This algorithm will manage to earn a benefit of 2j on all the

input sequences Ii, i > j but will earn at most 1 unit of benefit on all the

Ii, i ≤ j. Of course, it will earn no more than 1 unit on If . Therefore the

expected benefit of this algorithm, call it Aj, will be:

E[Aj] ≤ Pf .1 +

j
∑

i=1

Pi.1 +

log B
∑

i=j+1

Pi.2
j

≤ B + 1

2B
+

j
∑

i=1

1

2i+1
+ 2j.

log B
∑

i=j+1

1

2i+1

≤ B + 1

2B
+ 1 + 1 ≤ 3
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This means that for any deterministic algorithm the expected benefit is less

than a constant, namely 3. Putting this together with the fact that E[OPT ]

is always greater than log B we get that the competitive ratio of the best

deterministic algorithm on our probabilistically distributed input, and hence

the competitive ratio of every randomized algorithm on any input, is lower

bounded by Ω(log B).

2.4 Experimental Results.

In order to give an idea of the efficacy of Price And Pack we present the

results of simulated auctions which use this algorithm.

The input sequences were generated by selecting each bid from a given

probability distribution. The three distributions used were: Normal, Poisson

and Uniform. Both the number of items being bid on and the price density

offered by the bid were chosen from the same distribution.

We chose three different combinations of n and B and generated 100 input

sequences for each combination. To get a good approximation to the average

benefit of Price And Pack we ran the algorithm 1000 times on each instance

and averaged the benefit over all these runs.

We determined a lower bound on the amount of revenue obtained by our

algorithm compared to the maximum possible revenue. To do this we imple-

mented an offline algorithm which has been shown to be a 2 approximation

[40]. By dividing the revenue obtained by Price And Pack by 2 times the rev-

enue obtained by the offline algorithm we were able to provide a number which

is effectively a lower bound on the actual ratio.

The numbers in Table 2.4 show that in practice Price And Pack performs

quite well compared to the optimal offline algorithm and significantly better

than the bound of O(log B) would suggest. We see that in the two distributions

which tend to cluster sample points near the mean, i.e. Normal and Poisson,
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(n, B) Distribution Expected ratio Ratio
(1/ log B)

Uniform .31
(50, 1024) Normal .1 .69

Poisson .61
Uniform .34

(2000, 1024) Normal .1 .62
Poisson .7
Uniform .34

(2000, 2048) Normal .09 .61
Poisson .69

Table 2.1: Price And Pack v/s the optimal offline algorithm.

the algorithm does especially well. However these distributions provide fairly

regular input instances. The real power of Price And Pack is on view when

the input instances have widely varying bids.

To demonstrate this we compared the performance of a simple Greedy

heuristic with the performance of Price And Pack. Greedy simply accepts

bids while it has the capacity to do so. In Table 2.4 we present the results in

terms of the percentage extra revenue Price And Pack is able to earn over the

Greedy heuristic.

Distribution (n, B) Average %
(50, 1024) 25

Uniform (2000, 1024) 28.5
(2000, 2048) 27.1
(50, 1024) 0.5

Normal (2000, 1024) 0.7
(2000, 2048) 0.5
(50, 1024) 1.4

Poisson (2000, 1024) 0.1
(2000, 2048) 0.3

Table 2.2: Price And Pack over Greedy: % advantage.
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Figure 2.2: Price And Pack over Greedy: % advantage in 100 individual runs.

We see that when the bids are comparable to each other (i.e. when they are

generated by the Normal or Poisson distribution) then Price And Pack does

not do significantly better than Greedy but when the bids vary widely in size

(i.e. when they are generated by the Poisson distribution) then Price And Pack

definitely outperforms Greedy.

In Figure 2.4 we graph the percentage extra revenue earned by Price And Pack

in 100 different input instances for a given choice of n and B. It is clear from

the graph that Price And Pack consistently outperforms Greedy.

2.5 Improving Competitiveness by Giving In-

termediate Information.

In this section we look at a way of modifying the auctioning model to

improve competitiveness. Taxonomies of auctions (for eg. [92], [72]) have clas-

sified auctions along three broad categories: bid types, clearance mechanisms

and intermediate information policies. We look at this lattermost classification

to help us improve competitiveness.

In the preceding sections we saw that in the conventional online model,

where every bid has to be accepted or rejected before the next bid comes in,
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we are limited to a competitive ratio of Ω(log B). However it is possible to do

better if we relax the online model slightly. In the model under consideration

so far every bid has to be accepted or rejected immediately, or, more precisely,

before the next bid comes in. However in real life auctions this is not always the

case. Most auctions do release some intermediate information. For example

in the outcry type of auction the current highest bid is announced. This

amounts to informing those who bid at that level that their bid is still under

consideration, although it might yet be beaten out by a better bid.

The problem with the outcry auction is that, in the case of a monotonically

increasing sequence of bids, each bid is asked to hold on and then rejected i.e.

O(B) bids are made to wait till a new bid comes in before being rejected. This

is clearly unacceptable since from the point of view of a bidder an intermediate

notification that the bid is still under consideration is tantamount to saying

that this bid has a reasonable chance of success. However if the bidder knows

that O(B) bids could be asked to hold then he might not consider this chance

of success reasonable.

So, the model we propose is that only a certain small number of bids can

be asked to wait without a definite notification of acceptance or rejection. We

can think of these bids being buffered in a buffer which will need to contain

only one item at a time and will not be allowed to hold more than a certain

small number of items in the course of the auction. We call this structure a

k-limited access buffer or a k-LAB. We denote the highest bid held in the LAB

by H(LAB).

That this relaxation is useful becomes immediately evident when we con-

sider that a log B-LAB allows us to become constant competitive determinis-

tically with the optimal algorithm in the case where we want to sell one item

and we know the number of bids. We give the algorithm for this in Figure 2.5.

We have to view this in light of the fact that in Theorem 2.3.2 we showed

that in a purely online setting it is not possible to do better than Ω(
√

B)

deterministically for this problem.
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Algorithm LAB Sell One N

• LAB ← b0

• For each bid bi for i going from 1 to N do

– if bi > 2.H(LAB) then LAB ← bi else reject bi

• Accept the bid in the LAB.

Figure 2.3: LAB Sell One N: Auctioning a single item with a buffer when the
number of bids is known.

Theorem 2.5.1 LAB Sell One N is 1
2 competitive with the optimal.

Proof: It is quite easy to see that the highest bid boff which is the benefit of

the offline algorithm would not be put in the buffer only if a bid which was

at least half its benefit were already in there. Since a bid of at least half its

benefit is already in the online algorithm’s buffer therefore its benefit will be

at least half of the online’s.

2.6 Future directions

There are a number of possible directions to extend this work. One in-

teresting project might be the investigation of buyer-focused online strategies

for purchasing commodity items from many possible Internet auctioning sites

or even the same auction site over time. Formulating strategies for selling

goods in infinite supply, like mp3 files for example, is another area where new

techniques need to be developed.
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Chapter 3

Biased Skip Lists

The need to perform a “dictionary lookup” occurs at several crucial points

in the process of end-to-end communication over the Internet. Routing is an

important example; each router maintains a table which helps it route packets

based on the final destinations. Another example is name resolution using

the Domain Name System (DNS). In Section 1.4.3 we talked about DNS and

the problems associated with the unfettered growth in the number of names

being used. There is a definite need to ensure that DNS lookups are made

as efficient as possible. One important aspect of this is to ensure that more

frequently looked up names are resolved quicker than less frequently requested

ones. For example, if the time taken to resolve www.branchdavidian.com is a

little higher than average it might not affect the performance of the network,

but if cnn.com is not resolved as fast as possible, it could bring the DNS

server to its knees. The popularity of certain hosts on the network normally

gets reflected in a skewed access pattern for any given DNS server. A structure

which captures this property, and hence helps us optimise DNS performance,

is the Biased Dictionary.
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3.1 Biased Dictionaries

3.1.1 Definition

A biased dictionary is a data structure that maintains an ordered set X,

each element i of which has a weight, wi; without loss of generality, we assume

wi ≥ 1. The operations are as follows.

Search(X, i). Determine if i is in X.

Insert(X, i). Add i to X.

Delete(X, i). Delete i from X.

Join(XL, XR). Assuming that i < j for each i ∈ XL and j ∈ XR, create a

new set X = XL ∪XR. The operation destroys XL and XR.

Split(X, i). Assuming without loss of generality that i 6∈ X, create XL =

{j ∈ X : j < i} and XR = {j ∈ X : j > i}. The operation destroys X.

FingerSearch(X, i, j). Determine if j in in X, beginning the search with a

handle in the data structure to element i ∈ X.

Reweight(X, i, w′
i). Change the weight of i to w′

i.

Biased dictionaries can improve on the Θ(m log n) time required to perform

m accesses on n items in classical, unbiased dictionaries such as AVL trees[3],

red-black trees [38], and (a, b)-trees [41]. Let wi be the number of times item

i is accessed. Define W =
∑n

i=1 wi. A biased dictionary with O
(

log W
wi

)

search time for the i’th item can perform m searches on n items in O(m(1−
∑n

i=1 pi log pi)) time, where pi = wi

m
, which is optimal [2].

3.1.2 A New Structure for the Biased Dictionary Prob-

lem

Many biased search-tree data structures have been developed to implement

biased dictionaries. All have optimal search time, but the times for the up-
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date operations vary slightly among them. Bent, Sleator, and Tarjan [16] and

independently Feigenbaum and Tarjan [35] designed biased trees, which offer

worst-case and amortized performance, albeit with complicated implementa-

tions. Sleator and Tarjan [81] showed how to achieve optimal amortized biased

access with a very simple data structure: the splay tree. Seidel and Aragon

[80] demonstrate randomized bounds with treaps.

All of the above are binary tree data structures, with updates based on

rotations. Pugh [68] introduced skip lists as an alternative to such structures.

Skip lists represent each item by a linked list of nodes; the lists are themselves

linked together in a leveled fashion. We provide details in Section 3.2. Pugh’s

original structure was randomized and very simple to implement. A node’s

linked list was assigned an initial random height with a geometrically decreas-

ing probability distribution; once assigned, the height never changed. Pugh

showed that search and updates take O(log n) expected time in this structure,

with no rotations or other rebalancing needed for updates. Munro, Papdakis,

and Sedgewick [62] later showed how to determinize Pugh’s structure.

We show how to provide biased access in skip lists. Our deterministic ap-

proach is simple: a node gets an initial height based on its weight; invariants

analogous to those governing (a, b)-trees govern promotion and demotion of

node heights to ensure the desired access time. We also describe a random-

ized variation of this idea, which gives the same, although expected, bounds,

and is much simpler to implement. Mehlhorn and Näher [58] anticipated our

approach but claimed only a partial result. Ergun et al. [32, 33] designed a

skip list that provides access to item i in O(log r(i)) time, where r(i) is the

number of accesses since the last time i was accessed.

In Section 3.2, we define skip lists and biased skip lists. Section 3.3 de-

scribes how to update biased skip lists, and Section 3.4 demonstrates a simple,

randomized variation.
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1 5 10 22 50 60 75 80−∞ ∞

Figure 3.1: A skip list for the set X = {1, 5, 10, 22, 50, 60, 75, 80}.

3.2 Biased Skip Lists

3.2.1 Definition

A skip list [68] S is a dictionary data structure, storing an ordered set X,

the items of which we number 1 through |X|. Each item i ∈ X has a key, xi,

and a corresponding node in the skip list of some integral height, hi ≥ 0. The

height of S is H(S) = maxi∈X hi. The depth, di, of item i is H(S)−hi. We use

the terms item, node, and key interchangeably where convenient; the context

clarifies any ambiguity. We assume without loss of generality that the keys in

X are unique: xi < xi+1, 1 ≤ i < |X|.
Each node i is implemented by a linked list or array of length hi +1, which

we refer to as the tower for that node. The level-j successor of a node i is

the least node ` > i of height h` ≥ j; i.e., no node i < k < ` has height

hk ≥ j. Symmetrically, the level-j predecessor of node i is the greatest node

` < i of height h` ≥ j. For node i and each 0 ≤ j ≤ hi, the j’th element of

the node contains pointers to the j’th elements of the level-j successor and

predecessor of i. Two distinct nodes x < y are called consecutive if and only

if hz < min(hx, hy) for all x < z < y. A plateau is a maximal sequence of

consecutive nodes of equal height.

For convenience we assume sentinel nodes of height H(S) at the beginning

(with key −∞) and end (with key ∞) of S; in practice, this assumption is

not necessary. We orient the pointers so that the skip list stores items in

left-to-right order, and the node levels progress bottom to top. See Figure 3.1.
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1 5 10 22 50 60 75 80−∞ ∞
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(a)

1 5 10 22 50 60 75 80−∞ ∞

21

3

4 5

(b)

Figure 3.2: (a) Searching for key 80 in the skip list of Figure 3.1. Numbers
over the pointers indicate the order in which they are traversed. (b) Similarly,
searching for key 65.

To search for an item with key K, we start at level H(S) of the left sentinel.

When searching at level i from some node, we follow the level-i links to the

right until we find a key matching K or a pair of nodes j, k such that k is the

level-i successor of j and xj < K < xk. We then traverse one level down and

continue the search at level i − 1 from node j. The search ends with success

if we find a node with key K, or failure if we find nodes j and k as above on

level 0. See Figure 3.2.

We describe a deterministic, biased version of skip lists. In addition to a

key, xi, each item i ∈ X has a weight, wi; without loss of generality, we assume

wi ≥ 1. We define the rank of item i as ri = bloga wic, where a is a constant

to be defined shortly.

Definition 3.2.1 For every a and b such that 1 < a ≤
⌊

b
2

⌋

, an (a, b)-biased

skip list is one in which each item has height hi ≥ ri and the following invari-

ants hold.

(I1) For all 0 ≤ i ≤ H(S), there are never more than b consecutive items of
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1 5 10 22 50 60 75 80−∞ ∞

Figure 3.3: The skip list of Figure 3.1 with the unnecessary level-0 pointers
between −∞ and 1 set to nil.

height i.

(I2) For each node x and all rx < i ≤ hx, there are at least a nodes of height

i− 1 between x and any consecutive node of height at least i.

To derive exact bounds for the case when an item does not exist in the

skip list we modify the structure to eliminate redundant pointers. For every

pair of adjacent items i, i + 1, we set the pointers between them on levels 0

through min(hi, hi+1)− 1 to nil. (See Figure 3.3.)

When searching for an item i 6∈ X, we assert failure immediately upon

reaching a nil pointer. It suffices, in fact, to ensure only that the pointers

between them on level min(hi, hi+1) − 1 are nil; the pointers below that level

remain undefined.

3.2.2 Analysis

Throughout the remainder of the paper, we define W =
∑

i∈X wi to be the

weight of S before any operation. For any key i, we denote by i− the item in X

with largest key less than i, and by i+ the item in X with smallest key greater

than i. The main result of our definition of biased skip lists is summarized by

the following lemma, which bounds the depth of any node.

Lemma 3.2.2 (Depth Lemma) The depth of any node i in an (a, b)-biased

skip list is O
(

loga
W
wi

)

.
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Before we prove the depth lemma, consider its implication on access time

for key i: the time it takes to find i in S if i ∈ X or to find the pair i−, i+ in

S if i 6∈ X.

Corollary 3.2.3 (Access Lemma) The access time for any key i in an (a, b)-

biased skip list is O
(

1 + loga
W
wi

)

if i ∈ X and O

(

1 + loga
W

min(w
i−

,w
i+)

)

if

i /∈ X.

Proof. By (I1), at most b + 1 pointers are traversed at any level during a

search. Because a search stops upon reaching the first nil pointer, the Depth

Lemma thus implies the result for constants a and b. ut

To prove the depth lemma, observe that the number of items of any given

rank that can appear at higher levels decreases geometrically by level. Define

Ni = |{x : rx = i}| and N ′
i = |{x : rx ≤ i ∧ hx ≥ i}|.

Lemma 3.2.4 N ′
i ≤

∑i
j=0

1
ai−j Nj.

Proof. We prove the lemma by induction. The base case, N ′
0 = N0, is true

by definition. For i > 0, (I2) implies that

N ′
i+1 ≤ Ni+1 +

⌊

1

a
N ′

i

⌋

≤ Ni+1 +
1

a
N ′

i

which, together with the induction hypothesis, proves the lemma. ut

Intuitively, this implies that a node promoted to a higher level is supported

by enough weight associated with items of equal rank at lower levels. Define

Wi =
∑

rx≤i wx.

Corollary 3.2.5 Wi ≥ aiN ′
i .
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Proof. By definition,

Wi ≥
i
∑

j=0

ajNj

= ai

i
∑

j=0

1

ai−j
Nj.

Lemma 3.2.4 yields the result. ut

Define R = maxx∈X rx. Any nodes with height exceeding R must have

been promoted from lower levels to maintain the invariants. (I2) thus implies

that H(S) ≤ R + loga N ′
R, and therefore the maximum possible depth of an

item i is di ≤ H(S)− ri ≤ R + loga N ′
R − ri.

By Corollary 3.2.5, W = WR ≥ aRN ′
R. Therefore loga N ′

R ≤ loga W − R.

Hence, di ≤ loga W − ri. The Depth Lemma follows, because loga wi − 1 <

ri ≤ loga wi. ut
(I2) is stronger than necessary to prove the Depth Lemma. It would suffice

for a node of height h exceeding its rank, r, to be supported by at least a items

to each side only at level h − 1, not at every level between the r and h − 1.

The stronger invariant is easier to maintain, however; the update procedures

in the next section rely on the support occurring at every level.

3.3 Updating Biased Skiplists

We present and analyze deterministic procedures to update biased skip

lists.

First, we define the profile of an item i. For hi− ≤ j ≤ H(S), let Li
j

be the level-j predecessor of i; for hi+ ≤ j ≤ H(S), let Ri
j be the level-j

successor of i. Define the ordered sets PL(i) =
(

j : hLi
j

= j, hi− ≤ j ≤ H(S)
)

and PR(i) =
(

j : hRi
j

= j, hi+ ≤ j ≤ H(S)
)

. PL(i) (rsp., PR(i)) is the set of

distinct heights of the nodes to the left (rsp., right) of i. We call the ordered
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set
(

Li
j : j ∈ PL(i)

)

∪
(

Ri
j : j ∈ PR(i)

)

the profile of i. We call the subset of

predecessors the left profile and the subset of successors the right profile of i.

For example, in Figure 3.1, PL(60) = (3); PR(60) = (2, 3); the left profile of

60 is (50); and the right profile of 60 is (75,∞).

The profile definitions assume i ∈ S, but they are also precise when i 6∈ S,

in which case they apply to the node that would contain key i. Given node i (if

i ∈ S) or nodes i− and i+ (if i 6∈ S), we can trace i’s profile back from lowest-

to-highest nodes by starting at i− (rsp., i+) and, at any node x, iteratively

finding its level-(hx + 1) predecessor (rsp., successor), until we reach the left

(rsp., right) sentinel.

3.3.1 Inserting An Item

The following procedure inserts a new item with key i into an (a, b)-biased

skip list S. We assume that i does not already exist in the skip list, or else we

discover that in Step 1.

Procedure Insert(S, i)

1. Search S for i to discover the pair i−, i+.

2. Create a new node of height ri to store i, and insert it between i− and

i+ in S, tracing through i’s profile to splice predecessors and successors

as in a standard skip list [68].

3. Restore (I2), if necessary. Any node x in the left (sym., right) profile

of i might need to have its height demoted, because i might interrupt a

sequence of consecutive nodes of height hx, leaving fewer than a to its

left (sym., right). In this case, x is demoted to the next lower height in

the profile (or rx, whichever is higher).

More precisely, for j in turn from hi− up through ri, if j ∈ PL(i), consider

node u = Li
j. If (I2) is violated at node u, then demote u to height ru

if u = i− and otherwise to height max(j ′, ru), where j ′ is the predecessor
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10 20 30 40 50 60 70 80

(a)

60 70 8010 20 30 40 50 55

(b)

60 70 8010 20 30 40 50 55

(c)

Figure 3.4: (a) A (2,4)-biased skip list. Nodes are drawn to reflect their
heights; hatch marks indicate ranks. Pointers between nodes are omitted. (b)
After the insertion of 55 with rank 3, node 40 violates (I2). (c) After the
demotion of node 40 and compensating promotion of node 30.

of j in PL(i); let h′
u be the new height of u. If the demotion violates

(I1) at level h′
u, then, among the k ∈ (b, 2b] consecutive items of height

h′
u, promote the bk

2
c’th node (in order) to height h′

u + 1. (See Figure

3.4.) Iterate at the next j. Symmetrically process right profile of i.

4. Restore (I1), if necessary. Starting at node i and level j = ri, if node i

violates (I1) at level j, then, among the b+1 consecutive items of height

j, promote the b b+1
2
c’th node (in order), u, to height j +1, and iterate at

node u and level j + 1. Continue until the violations stop. (See Figure

3.5.)

Lemma 3.3.1 Invariants (I1) and (I2) are true after Insert(S, i).

Proof. Assume the invariants were true before the insertion. To the left of

node i, (I2) can be violated at most once at each level j ∈ PL(i) ∩ [hi− , ri],

where node i might split a sequence of consecutive nodes of height less than
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10 20 30 40 50 60 70 80

(a)

65 80757010 20 30 40 50 60

(b)

80757010 20 30 40 50 60 65

(c)

Figure 3.5: (a) The (2,4)-biased skip list of Figure 3.4(a). (b) (I1) is violated
by the insertion of 65 and 75 with rank 1 each. (c) After promoting node 65.

j. Consider the least j and the associated node u = Li
j where such a violation

occurs. Demoting u in Step 3 restores (I2) at level j, by the assumption that

(I2) was true before the operation. The demotion might cause there to be

more than b consecutive nodes of height h′
u around u, however, in which case

the promotion of the node in the middle restores (I1). By definition of profile,

h′
u is the only height at which this demotion might incur a compensating

promotion. Since a ≤ b b
2
c, this compensating promotion cannot violate (I2).

By induction, iterating Step 3 up to level ri restores (I2) to the left of i.

Symmetrically argue for the nodes to the right of i.

Step 4 restores (I1) at level ri if it was violated by the insertion of node

i. Promoting the node in the middle cannot violate (I2), because a ≤ b b
2
c.

The promotion might violate (I1) at the next level, however, in which case

the iteration of Step 4 restores the invariant. ut

Theorem 3.3.2 Inserting an item i in an (a, b)-biased skip list takes time

O

(

1 + loga

W + wi

min(wi−, wi, wi+)

)

.

Proof. Lemma 3.3.1 proves correctness of Insert(S, i).
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By the Depth and Access Lemmas, Steps 1 and 2 take

O

(

1 + loga

W + wi

min(wi−, wi, wi+)

)

steps. For constants a and b, if min(hi− , hi+) ≤ ri, Step 3 performs constant

work at each level between min(hi− , hi+) and ri; Step 4 performs at most

constant work at each level from ri through H(S). Again applying the Depth

Lemma yields the result. ut

3.3.2 Deleting An Item

Deletion is the inverse of insertion.

Procedure Delete(S, i)

1. Search S to discover i.

2. Find the immediate neighbors i− and i+. Remove i, and splice prede-

cessors and successors as required.

3. Restore (I1), if necessary. (Removing i might unite sequences of con-

secutive nodes into sequences of length exceeding b.) For j in turn from

min(hi− , hi+) up through hi − 1, if removing i violates (I1) at level j,

consider the k ∈ (b, 2b] consecutive nodes of height j, and promote the

bk
2
c’th among them to height j + 1. Iterate at the next j.

4. Restore (I2), if necessary. (Removing i might decrease the length of the

sequence of consecutive nodes of height hi to a− 1, in which case one of

the delineating towers might need to be demoted, and so on from there.)

Starting at node i and the least j ∈ PL(i) greater than hi, if (I2) is

violated at node u = Li
j, then demote u to height max(hi, ru); let h′

u be

the new height of u. For each j ′ in turn from h′
u up through hu (the

old height of u), if the demotion violates (I1) at level j ′, then, among

the k ∈ (b, 2b] consecutive items of height j ′, promote the bk
2
c’th among

them to height j ′. Iterate, checking for an (I2) violation at the old height
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hu, continuing until the violations stop. Symmetrically process the right

profile of i,

Lemma 3.3.3 Invariants (I1) and (I2) are true after Delete(S, i).

Proof. Assume the invariants were true before the deletion. (I1) can be

violated at most once at each level min(hi−, hi+) ≤ j < hi, where the removal

of node i might unite two previously separate sequences of consecutive nodes

of height j. Step 3 restores (I1) at each such level j. Promoting the node

in the middle cannot violate (I2), because a ≤ b b
2
c, nor can the promotion

propagate to higher levels, because the previous existence of node i at level j

satisfied (I1).

(I2) can be violated by the removal of i or the subsequent demotion of

a predecessor (rsp., successor). By the assumption that (I2) held before the

operation, any node so violating (I2) need be demoted no farther than the

height of the preceding node in the left (rsp., right) profile of i (or i in the

case of i− (rsp., i+)). As in Step 3 of Insert, the demotion might require

compensating promotions, each of which cannot percolate higher. Step 4 thus

restores (I2). ut

Theorem 3.3.4 Deleting an item i from an (a, b)-biased skip list takes time

O

(

1 + loga

W

min(wi−, wi, wi+)

)

.

Proof. Lemma 3.3.3 proves correctness of Delete(S, i).

By the Depth and Access Lemmas, Steps 1 and 2 take

O

(

1 + loga

W

min(wi−, wi, wi+)

)

steps. For constants a and b, if min(hi−, hi+) ≤ hi, Step 3 performs constant

work at each level between min(hi− , hi+) and hi; Step 4 performs at most

constant work at each level from hi through H(S). Again applying the Depth

Lemma yields the result. ut
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3.3.3 Joining Two Skiplists

Consider two biased skip lists, SL and SR, of total weights WL and WR

respectively. The item with the largest key in SL is denoted Lmax, and the

item with the smallest key in SR is denoted Rmin. If Lmax < Rmin, we can join

SL and SR to form a single biased skip list.

Procedure Join(SL, SR)

1. Trace through the profiles of Lmax and Rmin to splice the pointers leaving

SL together with the pointers going into SR.

2. Restore (I1), if necessary. For each j in turn from max(hLmax
, hRmin

) up

through max(H(SL), H(SR)), if (I1) is violated at level j, then among

the k ∈ (b, 2b+1] consecutive items of height j, promote the b k
2
c’th node

(in order) to height j + 1.

Lemma 3.3.5 Invariants (I1) and (I2) are true after Join(SL, SR).

Proof. Assuming the invariants were true before the join, splicing the pointers

cannot violate (I2), because nodes never lose predecessors or successors.

(I1) can be violated by joining two sequences of nodes at a given level;

max(hLmax
, hRmin

) is the lowest height at which such a violation can occur.

Promoting the node in the middle cannot violate (I2), because a ≤ b b
2
c. The

promotion can add another node to the next higher level, but the splicing

procedure left no more than 2b nodes there, by the assumption that (I1) was

true before the join. Thus, no more than 2b + 1 nodes occur at any level prior

to a promotion, and so the promotion strategy restores (I1). ut

Theorem 3.3.6 Joining (a, b)-biased skip lists SL and SR takes time

O

(

1 + loga

WL

wLmax

+ loga

WR

wRmin

)

.

Proof. Lemma 3.3.5 proves correctness of Join(SL, SR). Step 1 performs

O(1) work at each level between min(hLmax
, hRmin

) and min(H(SL), H(SR)).
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Step 2 potentially performs O(1) work at each level between max(hLmax
, hRmin

)

and max(H(SL), H(SR)). Putting this together and applying the Depth Lemma

yields the result. ut

3.3.4 Splitting A Skiplist

Given a biased skip list S of total weight W and a key i 6∈ S, we can

split S into two biased skip lists SL, containing keys in S less than i, and SR,

containing keys in S greater than i. (We can formulate this equivalently when

i ∈ S.)

Procedure Split(S, i)

1. Perform Insert(S, i), where the weight of i is aH(S)+1.

2. Disconnect the pointers between i and its predecessors to form SL; dis-

connect the pointers between i and its successors to form SR.

Theorem 3.3.7 Splitting an (a, b)-biased skip list on key i takes time

O

(

1 + loga

W

min(wi−, wi+)

)

.

Proof. Lemma 3.3.1 proves that (I1) and (I2) are true after Step 1. Be-

cause i is taller than all of its predecessors and successors, disconnecting the

pointers between them and i in Step 2 does not violate either invariant. Thus,

Procedure Split(S, i) is correct.

Step 1 takes O
(

1 + loga
W

min(w
i−

,w
i+

)

)

time, by Theorem 3.3.2 together with

the observation that wi = Θ(W ), and yields a biased skip list of height H(S)+

1. Step 2 takes O(2(H(S)+ 1)−hi−−hi+) time. Applying the Depth Lemma

finishes the proof. ut

3.3.5 Finger Searching

We can search for a key j in a biased skip list S starting at any node i

(not just the left sentinel) to which we are given an initial pointer (or finger).

56



Assume without loss of generality that j > i. The following procedure is

symmetric for the case j < i.

Procedure FingerSearch(S, i, j)

1. Initialize u← i, h← ri.

2. (Up phase.) If Ru
h ≥ j, then go to Step 3. Otherwise, if h < hu, set

h← h + 1; else set u← Ru
h; iterate at Step 2.

3. (Down phase.) Search from u, starting at height h, as in the normal

skip-list search procedure outlined in Section 3.2.

The up phase moves up and to the right in the skip list until we detect a

node u < j with a level-h successor (for some h) Ru
h > j. That the procedure

finds j if j ∈ S or the pair j−, j+ if j 6∈ S follows from the correctness of the

vanilla search procedure and that we enter the down phase at the specified

node u and height h.

Define V (i, j) =
∑

i≤u≤j wu.

Lemma 3.3.8 For any node u and h ∈ [ru, hu], V (Lu
h, u) ≥ ah and V (u, Ru

h) ≥
ah.

Proof. We prove V (Lu
h, u) ≥ ah; the other direction is symmetric. If h = ru,

then V (Lu
h, u) ≥ wu ≥ ah by definition. Otherwise, h > ru, and by (I2),

there are at least a elements of height h− 1 between u and Lu
h. By induction,

V (Lu
h, u) ≥ aah−1 = ah. ut

Theorem 3.3.9 Accessing an item j in an (a, b)-biased skip list, given a

pointer to an item i, takes

O

(

1 + loga

V (i, j)

min(wi, wj)

)

time if j ∈ X and

O

(

1 + loga

V (i, j+)

min(wi, wj−, wj+)

)

time if j /∈ X.
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Proof. We can assume constant-time access to level ri of any node i without

affecting previous time bounds. Consider the node u and height h at which

we enter the down phase. Intuitively, we show that sufficient weight supports

either the link into which u is originally entered during the up phase or the

link out of which u is exited during the down phase.

Define j ′ = j if j ∈ X and j ′ = j+ if j 6∈ X. The total search time is 1

plus O(1) per each of h −min(ri, hj′) ≤ h −min(ri, rj′) levels. We need only

show that V (i, j ′) = aΩ(h), which, together with the definition of rank, proves

the theorem.

In the case u > i, consider the first height h′ ≤ h at which u is entered

during the up phase. If h′ = h, then V (i, u) ≥ V (Lu
h, u), which by Lemma 3.3.8

is at least ah. Otherwise, h′ < h, and hence V (u, j ′) ≥ V (u, Ru
h−1), which by

Lemma 3.3.8 is at least ah−1. Since V (i, j ′) ≥ V (i, u) and V (i, j ′) ≥ V (u, j ′),

either subcase yields V (i, j ′) = aΩ(h).

In the remaining case, u = i. If h = ru, then V (i, j ′) ≥ wi ≥ ah. If h > ru,

then V (i, j ′) ≥ V (i, Ri
h−1), which by Lemma 3.3.8 is at least ah−1. Again

V (i, j ′) = aΩ(h). ut

Note that we start the finger search at height ri, not hi, which enables the

proof to work in case the search starts the down phase immediately.

3.3.6 Changing the Weight of an Item

Finally, we can change the weight of an item i from wi to w′
i without fully

deleting and reinserting i. Denote the new rank of i by r′i.

Procedure Reweight(S, i, w′
i)

1. Search S to find node i.

2. If r′i = ri, then stop.

3. If r′i > ri, then do nothing if hi ≥ r′i. Otherwise, promote i to height r′i;

apply Step 3 from Procedure Insert(S, i) but starting at height hi + 1;
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and apply Step 4 from Procedure Insert(S, i) starting at height r′i.

4. If r′i < ri, then demote i to height r′i; apply Step 3 from Procedure

Delete(S, i) but starting at height r′i; and apply Step 4 from Procedure

Delete(S, i) starting at the least j ∈ PL(i) greater than r′i.

Lemma 3.3.10 Invariants (I1) and (I2) are true after Reweight(S, i, w′
i).

Proof. Assume the invariants were true before the reweight. If r′i = ri, then

neither invariant can be violated. If r′i > ri, then if hi ≥ r′i, again neither

invariant can be violated. Otherwise, if r′i > hi ≥ ri, i must attain height at

least r′i, in which case (I2) can be violated between levels hi + 1 and r′i, and

(I1) can be violated at level r′i. Applying the demotion and promotion steps

from the insert procedure fixes the violations as shown in the proof of Lemma

3.3.1.

Finally, if r′i < ri, (I2) can be violated between levels r′i +1 and ri. Demot-

ing i to height r′i and then applying the promotion and deletion procedures

from the delete procedure fixes the violations as shown in the proof of Lemma

3.3.3. ut

Theorem 3.3.11 Changing the weight of any node i in an (a, b)-biased skip

list from wi to w′
i takes O

(

1 + loga
W+w′

i

min(wi,w′

i
)

)

time.

Proof. Lemma 3.3.10 proves correctness of Reweight(S, i, w′
i). Step 1 takes

O
(

1 + loga
W
wi

)

time by the Access Lemma. (We assume i ∈ X.) Height

promotions and demotions in Steps 3 and 4 perform at most constant work

per level and occur no lower than heights hi +1 and r′i respectively. Apply the

Depth Lemma completes the proof. ut

3.4 Randomized Updates

We can randomize the biased skip list structure presented in Section 3.3

to yield expected optimal access times without the need for promotions or
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demotions. Mehlhorn and Näher [58] suggested the following approach but

claimed only that the expected maximal height of a node is log W +O(1). We

will show that the expected depth of a node i is E[di] = O
(

log W
wi

)

.

We parameterize a randomized, biased skip list S by a positive constant

0 < p < 1. We redefine the rank of an item i as ri = blog 1

p
wic. When inserting

i into S, we assign its height to be hi = ri + ei with probability pei(1− p) for

ei a non-negative integer, which we call the excess height of i. Algorithmically,

we start node i at height ri and continually increment the height by one as

long as a biased coin flip returns heads (with probability p).

Reweight is the only operation that changes the height of a node. The new

height is chosen as for insertion but based on the new weight, and the tower

is adjusted appropriately. The remaining operations (delete, join, split, and

(finger) search) perform no rebalancing.

Lemma 3.4.1 (Randomized Height Lemma) The expected height of any

item i in a randomized, biased skip list does not exceed log 1

p
wi + O(1).

Proof.

E[hi] = ri + E[ei]

= ri +
∞
∑

j=0

jpj(1− p)

= ri +
p

1− p
= blog 1

p
wic + O(1)

ut

The proof of the Depth Lemma for the randomized structure follows that

for the deterministic structure.

Recall the definitions Ni = |{x : rx = i}|; N ′
i = |{x : rx ≤ i ∧ hx ≥ i}|; and

Wi =
∑

rx≤i wx.
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Lemma 3.4.2 E[N ′
i ] =

∑i
j=0 pi−jNj.

Proof. We prove the lemma by induction. The base case, N ′
0 = N0, is true

by definition. Since the excess heights are i.i.d. random variables, we have, for

i > 0, E[N ′
i+1] = Ni+1+pE[N ′

i ], which, together with the induction hypothesis,

proves the lemma. ut

Corollary 3.4.3 E[N ′
i ] ≤ piWi.

Proof. By definition,

Wi ≥
i
∑

j=0

1

pj
Nj

=
1

pi

i
∑

j=0

pi−jNj.

Lemma 3.4.2 yields the result. ut

Lemma 3.4.4 (Randomized Depth Lemma) The expected depth of any

node i in a randomized, biased skip list S is O
(

log 1

p

W
wi

)

.

Proof. The depth of i is di = H(S)− hi. As before, define R = maxx∈X rx.

By standard skip list analysis [68], we know that

E[H(S)] = R + O(E[log 1

p
N ′

R])

≤ R + cE[log 1

p
N ′

R] for some constant c

≤ R + c log 1

p
E[N ′

R] by Jensen’s inequality

≤ R + c
(

log 1

p
WR −R

)

by Corollary 3.4.3

= c log 1

p
W − (c− 1)R

By the Randomized Height Lemma, therefore, E[di] ≤ c log 1

p
W − (c− 1)R −

log 1

p
wi. The lemma follows by observing that R ≥ blog 1

p
wic. ut

61



Corollary 3.4.5 (Randomized Access Lemma) The expected access time

for any key i in a randomized, biased skip list is O
(

1 + log 1

p

W
wi

)

if i ∈ X and

O

(

1 + log 1

p

W

min(w
i−

,w
i+)

)

if i /∈ X.

Proof. As n → ∞, the probability that a plateau starting at any given

node is of size k is p(1− p)k−1. The expected size of any plateau is thus 1/p.

Applying the Randomized Depth Lemma completes the proof. ut

The operations discussed in Section 3.3 become simple to implement.

Insert(S, i). Locate i− and i+ and create a new node between them, as

described above, to hold i. The expected time is

O

(

1 + log 1

p

W + wi

min(wi−, wi, wi+)

)

.

Delete(S, i). Locate and remove node i. The expected time is

O

(

1 + log 1

p

W

min(wi−, wi, wi+)

)

.

The Randomized Depth and Access Lemmas continue to hold, because

S is as if i had never been inserted in the first place.

Join(SL, SR). Trace through the profiles of Lmax and Rmin to splice the point-

ers leaving SL together with the pointers going into SR. The expected

time is

O

(

1 + log 1

p

WL

wLmax

+ log 1

p

WR

wRmin

)

.

Split(S, i). (Assuming i 6∈ X. An equivalent formulation holds when i ∈ X.)

Disconnect the pointers that join the left profile of i− to the right profile

of i+. The expected time is

O

(

1 + log 1

p

W

min(wi−, wi+)

)

.
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FingerSearch(S, i, j). Perform FingerSearch(S, i, j) as described in Sec-

tion 3.3.5. It is straightforward to prove that Lemma 3.3.8 holds in the

expected case. The expected time is thus

O

(

1 + log 1

p

V (i, j)

min(wi, wj)

)

if j ∈ X and

O

(

1 + log 1

p

V (i, j+)

min(wi, wj−, wj+)

)

if j /∈ X.

Reweight(S, i, w′
i). Reconstruct the tower for node i as described above.

The expected time is

O

(

1 + log 1

p

W + w′
i

min(wi, w′
i)

)

.

3.5 An Open Problem

An open problem left is the problem of devising a deterministic biased

skip list that has not only the worst-case times that we provide but also an

amortized bound of O(log wi) for updating node i; i.e., once the location of

the update is discovered, inserting or deleting should take O(log wi) amortized

time.

The following counterexample demonstrates that our initial method of pro-

motion and demotion does not yield this amortized bound. Consider a node

i such that hi − ri is large and, moreover, that separates two plateaus of size

b/2 at each level j between ri + 1 and hi and two plateaus of size b/2 and

b/2 + 1, rsp., at level ri. Deleting i will cause a promotion starting at level ri

that will percolate to level hi. Reinserting i with weight ari will restore the

structural condition before the deletion of i. This sequence of two operations

can be repeated infinitely often; since hi− ri is arbitrary, the cost of restoring

the invariants cannot be amortized.

63



Chapter 4

Fault-Tolerant Routing in

Circuit Switched Networks

In Section 1.4.2 we mentioned that there is a move towards Traffic En-

gineering to make communication across the Internet faster. New standards

for packet delivery across the Internet emphasize making routing decisions for

every end to end connection beforehand, keeping other connections in mind,

in order to minimize congestion in the network. Under the IP routing proto-

col, two packets meant for the same destination would be forwarded along the

same link, even if that link is being heavily used. However, with new technol-

ogy (like the Multi-Protocol Label-switching System (MPLS), see e.g. [17] for

details) it is possible to differentiate between two packets, maybe generated by

two different applications, headed for the same machine, and send them along

different links if the need arises.

In this context standard routing paradigms such as the edge-disjoint paths

problem and the unsplittable flow problem [14, 49, 49] are insufficient for

practical purposes, since they do not allow a rapid adaptation to edge faults

or heavy load conditions. Instead of having just one path for each request, it

would be much more desirable to determine a collection of alternative paths for

each accepted request that can flexibly be used to ensure rapid adaptability.

The paths, however, should be chosen so that not too much bandwidth is
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wasted under normal conditions. With this end in mind we introduce two new

optimization problems: the k edge-disjoint paths problem (k-EDP) and the k

disjoint flows problem (k-DFP).

4.1 Preliminaries

4.1.1 Problem definitions

In the k-EDP we are given an undirected graph G = (V, E) and a set of

terminal pairs (or requests) T . The problem is to find a maximum subset of

the pairs in T such that each chosen pair can be connected by k disjoint paths

and, moreover, the paths for different pairs are mutually disjoint.

Similarly, in the k-DFP we are given an undirected network G = (V, E)

with edge capacities and a set of terminal pairs T with demands di, 1 ≤ i ≤ |T |.
The problem is to find a subset of the pairs of maximum total demand such

that each chosen pair can be connected by k disjoint paths, each path carrying

di/k units of flow and no capacity constraint is violated.

In order to demonstrate that the k-DFP can be used to achieve fault toler-

ance together with a high utilization of the network resources and also rapid

adaptability, consider a network G in which continuously new edge faults may

occur but the total number of faulty edges at the same time is at most f . In

this case, given a request with demand d, the strategy is to reserve k + f dis-

joint flow paths for it, for some k ≥ 1, with total demand (1 + f/k)d. As long

as at most f edge faults appear at the same time, it will still be possible to

ship a demand of d along the remaining paths. Furthermore, under fault-free

conditions, only a fraction f/k of the reserved bandwidth is wasted, which can

be made sufficiently small by setting k sufficiently large (which will, of course,

be limited by the properties of the network).
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4.1.2 Previous results

Since we are not aware of previous results for the k-EDP and the k-DFP

for arbitrary k, we will just survey results for the heavily studied case of k = 1

i.e. the edge-disjoint paths problem (EDP) and the unsplittable flow problem

(UFP).

Several results are known about the approximation ratio and competitive

ratio achievable for the UFP under the assumption that the maximum demand

of a commodity, dmax, does not exceed the minimum edge capacity, cmin, called

the no-bottleneck assumption in the following [12, 47, 14, 22, 39, 49, 50]. If

nothing other than the number m of edges is known, Baveja and Srinivasan [14]

present a polynomial time algorithm with approximation ratio O(
√

m). On

the lower bound side, it was shown by Guruswami et al. [39] that on directed

networks the UFP is NP-hard to approximate within a factor of m1/2−ε for

any ε > 0. The best result for the EDP and UFP was given by Kolman and

Scheideler [50]. Using a new parameter called the flow number F of a network,

they show that a simple online algorithm has a competitive ratio of O(F ) and

prove that F = O(∆α−1 log n), where for the EDP ∆ is the maximal degree of

the network, α is the expansion and n is the number of nodes (for the UFP the

capacities are taken into account). Combining the approach of Kolman and

Scheideler [50] with the AAP algorithm [12], Chakrabarti et al. [22] recently

proved an approximation ratio of O(∆2α−1 log2 n) for the more general UFP

with profits.

We also consider two related problems, the integral splittable flow problem

(ISF) [39] and the k-splittable flow problem (k-SFP). In both cases, the input

and the objective (i.e., to maximize the sum of accepted demands) is the same

as in the UFP. The difference is that in the ISF all demands are integral and

a flow satisfying a demand can be split into several paths, each carrying an

integral amount of flow, and, in the k-SFP a demand may be split into up to

k flow paths (not necessarily integral). Under the no-bottleneck assumption

Guruswami et al. [39] give an O(
√

mdmax log2 m) approximation for the ISF.
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Recent results of Kolman and Scheideler [50] imply an O(F ) randomized com-

petitive ratio and an O(F ) deterministic approximation ratio for both of these

problems on uniform capacity networks. Although the ISF and the k-SFP on

one side and the k-DFP on the other seem very similar at first sight there

is a serious difference between the two. Whereas the ISF and the k-SFP are

relaxations of the UFP (they allows the use of more paths for a single request

and the paths are not required to be disjoint), the k-DFP is actually a more

complex version of the UFP since it requires several disjoint paths for a single

request.

4.1.3 New results

The main results of this chapter are

• a deterministic online algorithm for the k-EDP with competitive ratio

O(k3F ).

• a deterministic offline algorithm for the k-DFP on unit-capacity networks

with an approximation ratio of O(k3F log(kF )).

Using known techniques, we also show how the online algorithm for the k-EDP

can be transformed into an offline algorithm with approximation ratio O(k3F )

for the k-EDP with profits, and we describe how the offline algorithm for the

k-DFP can be converted into a randomized online algorithm for the k-DFP

with an expected competitive ratio of O(k3F log(kF )).

In addition, we show that any deterministic online algorithm for the k-EDP

(and consequently also for the k-DFP) has a competitive ratio of Ω(k · F ).

Thus, for constant k, we have matching upper and lower bounds for the k-

EDP. Furthermore, we demonstrate that the disjointness condition of the k

paths for every single request seems to be the crucial condition that makes the

problems above harder than the other related problems.

Our algorithms for the k-EDP and k-DFP are based on a simple concept,

a natural extension of the bounded greedy algorithm (BGA) that has already
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been studied in several papers [47, 49, 50]: for every request for which there are

still k disjoint flow paths of total length at most L available without violating

the capacity constraints, select any such system of k paths for it. The core

of the chapter is in the analysis of this simple algorithm. The problem is to

show that this strategy works even if the optimal offline algorithm connects

many requests via k disjoint paths of total length more than L. In order to

solve this problem, we use a new technique, based on the Menger’s theorem

and the Lovász Local Lemma, that converts large systems of k disjoint paths

into small systems of k disjoint paths. Previously, shortening strategies were

only known for k = 1 [49, 50].

4.1.4 Basic notation

Many of the previous techniques for the EDP and related problems are hard

put to prove strong upper bounds on approximation or competitive ratios due

to the use of inappropriate parameters. If m is the only parameter used an

upper bound of O(
√

m) is essentially the best possible for the case of directed

networks [39]. Much better ratios can be shown if the expansion or the routing

number [77] of a network are used. These measures give very good bounds for

low-degree networks with uniform edge capacities, but are usually very poor

when applied to networks of high degree or highly nonuniform degree or edge

capacities. To get more precise bounds for the approximation and competitive

ratios of algorithms, Kolman and Scheideler [50] recently introduced a new

network measure, the flow number F . Not only does the flow number lead to

more precise results, it also has the major advantage that, in contrast to the

expansion or the routing number, it can be computed exactly in polynomial

time. Hence we will use the flow number here as well.

Before we can introduce the flow number, we need some notation. In a

concurrent multicommodity flow problem there are k commodities, each with

two terminal nodes si and ti and a demand di. A feasible solution is a set of flow

paths for the commodities that obey capacity constraints but need not meet the
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specified demands. The important thing is that, in contrast to the unsplittable

flow problem, the commodity between si and ti can be routed along multiple

paths. The (relative) flow value of a feasible solution is the maximum f such

that at least f · di units of commodity i are simultaneously routed for each

i. The max-flow for a concurrent multicommodity flow problem is defined as

the maximum flow value over all feasible solutions. For a path p in a solution,

the flow value of p is the amount of flow routed along it. A special class of

concurrent multicommodity flow problems is the product multicommodity flow

problem (PMFP). In a PMFP, a nonnegative weight π(u) is associated with

each node u ∈ V . There is a commodity for every pair of nodes and the

demand for the pair (u, v) is equal to π(u) · π(v).

Suppose we have a network G = (V, E) with arbitrary non-negative edge

capacities. For every node v, let c(v) =
∑

w:{v,w}∈E c(v, w) be the capacity of

v and Γ =
∑

v c(v) be the capacity of G. Given a concurrent multicommodity

flow problem with feasible solution S, let the dilation D(S) of S be defined as

the length of the longest flow path in S and the congestion C(S) of S be defined

as the inverse of its flow value (i.e., the congestion tells us how many times the

edge capacities would have to be increased in order to satisfy all the demands

along the paths of S). Let I0 be the PMFP in which π(v) = c(v)/
√

Γ for

every node v, that is, each pair of nodes (v, w) has a commodity with demand

c(v) · c(w)/Γ. The flow number F (G) of a network G is the minimum of

max{C(S), D(S)} over all feasible solutions S of I0. When there is no risk of

confusion, we will simply write F instead of F (G). Note that the flow number

of a network is invariant to scaling of capacities.

The smaller the flow number, the better are the communication prop-

erties of the network. For example, F (line) = Θ(n), F (mesh) = Θ(
√

n),

F (hypercube) = Θ(log n) and F (expander) = Θ(log n).

Another useful class of concurrent multicommodity flow problems is the

balanced multicommodity flow problem (BMFP). A BMFP is a multicommodity

flow problem in which the sum of the demands of the commodities originating

and the commodities terminating in a node v is at most c(v) for every v ∈ V .
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We will make use of the following property of the problem [50]:

Lemma 4.1.1 For any network G with flow number F and any instance I of

the BMFP for G, there is a feasible solution for I with congestion and dilation

at most 2F .

Apart from the flow number we will also need Chernoff bounds and the

general Lovász Local Lemma.

Lemma 4.1.2 (Chernoff-Hoeffding) Consider any set of n independent ran-

dom variables X1, . . . , Xn that take values in the range [0, k]. Let X =
∑n

i=1 Xi

and µ be chosen so that µ ≥ E[X]. Then it holds for all δ ≥ 0 that

Pr[X ≥ (1 + δ)µ] ≤ e−min[δ2, δ]·µ/(3k) .

Lemma 4.1.3 (Lovász Local Lemma [31]) Let A1, . . . , An be “bad” events

in an arbitrary probability space. Suppose that G = (V, E) is a dependency

graph of these events and suppose there are real numbers xi ∈ [0, 1), 1 ≤ i ≤ n,

with

Pr[Ai] ≤ xi

∏

(i,j)∈E

(1− xj)

for all 1 ≤ i ≤ n. Then,

Pr[
n
⋂

i=1

Āi] ≥
n
∏

i=1

(1− xi) .

In particular, with positive probability no bad event Ai appears.

4.2 Algorithms for the k-EDP

Consider the folowing extension of the bounded greedy algorithm: Let L

be a suitably chosen parameter. Given a request, reject it if it is not possible

to find k edge-disjoint paths, p1, p2, . . . pk between the terminal nodes of the

pair such that
∑k

i=1 |pi| ≤ L, where |p| is the length (i.e., the number of edges)
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of a path p. By disjoint we mean mutually disjoint and, moreover, disjoint

with all other paths established so far. Let us call this algorithm k-BGA.

Note that the problem of finding k edge-disjoint paths p1, p2, . . . pk of to-

tal length at most L can be reduced to the classical min-cost (integral) flow

problem, which can be solved by standard methods in polynomial time [27,

Chapter 4]. It is worth mentioning that if there were a bound L/k on length

of every path the problem would not be tractable any more (cf. [18]).

4.2.1 The upper bound

Theorem 4.2.1 Given a network G of flow number F , the competitive ratio

of the k-BGA with parameter L = 32k3F is O(k3F ).

Proof. Since for k = 1 the result is known, we assume k ≥ 2. In the following,

we call the k edge-disjoint paths that were selected for a request a k-system.

A k-system is called small if it has at most L edges.

Let B be the solution obtained by the k-BGA and O be the optimal so-

lution. In the analysis of the algorithm we say that a k-system q ∈ B is a

witness for a k-system p if p and q share an edge. Obviously, a request with a

small k-system in the optimal solution that was rejected by the k-BGA must

have a witness in B.

Let O′ ⊆ O denote the set of all k-systems in O that are larger than L

and that correspond to requests not accepted by the k-BGA and that do not

have a witness in B. Then each k-system in O − O′ either has a witness or

was accepted by the k-BGA. Since the k-systems in O −O′ are edge-disjoint,

each request accepted by the k-BGA can be a witness to at most L requests

in O −O′. Hence, |O − O′| ≤ (1 + L)|B|.
It remains to prove an upper bound on |O′|. To achieve this, we transform

the k-systems in O′ into a set P of possibly overlapping but small k-systems.

Since these small k-systems are candidates for the k-BGA but were not picked,

each of them has at least one witness. Then we show that the small k-systems
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in P do not overlap much and thus many k-systems from B are needed in order

to provide a witness from B for every k-system in P.

Lemma 4.2.2 The k-systems in O′ can be transformed into a set R of flow

systems transporting the same amount of flow such that every flow path has a

length of at most 8k · F . Furthermore, the congestion at every edge used by a

k-system in O′ is at most 1 + 1/(2k), and the congestion at every other edge

is at most 1/(2k).

Proof. Consider a pair (si, ti) corresponding to a k-system in O′, and let

the k paths chosen for it be denoted by p1, p2, . . . , pk. At least one of these k

paths must have a length at least L/k = 32k2F , since otherwise the k-system

would be in O − O′. A path with more than 8kF ≤ 32k2F edges is called

long. Suppose that the number of long paths connecting the vertices si and

ti is ni. Let us say that these long paths are p1, p2, . . . pni
and the others, the

small paths, if any, are pni+1, pni+2, . . . , pk.

For each long path pr, 1 ≤ r ≤ ni, we construct 4kF pairs of vertices

in the following way. Let the first 4kF nodes of pr be denoted by apr

i,1 =

si, a
pr

i,2 . . . apr

i,4kF and the last 4kF nodes be bpr

i,1, b
pr

i,2 . . . bpr

i,4kF = ti. Note that

for each long path these two sets of nodes do not overlap. Denote by L the

multiset

L =
⋃

i:(si,ti)∈O′

ni
⋃

r=1

4kF
⋃

j=1

{(apr

i,j, b
pr

i,j)} .

If we think about each pair (a, b) ∈ L as a request with demand one, then,

since the k-systems in O′ are edge-disjoint, L is (a subset of) an instance of

a balanced multicommodity flow problem. From the properties of the flow

number (Lemma 4.1.1) we know that there exists a (fractional) flow system F
for L with congestion at most 2F and dilation at most 2F .

For every (apr

i,j, b
pr

i,j) ∈ L let f r
i,j denote the corresponding (possibly frac-

tional) flow subsystem as F , and let gpr

i,j denote the flow system between si

and ti of value 1/(4kF ) that first moves from si to apr

i,j along the path pr, then
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from apr

i,j to bpr

i,j along the flow system f r
i,j, and finally, from bpr

i,j to ti along the

path pr again, each with a flow value 1/(4kF ). If this is done for every pair

(a, b) ∈ L, and, moreover, if all the short flow paths
⋃

i:(si,ti)∈O′

⋃k
r=ni+1 pr are

added, then in the resulting flow system, denoted by R, k units of flow are

transferred between all pairs in O′. Thus, we maintain in R the original flow

for every (si, ti) ∈ O′. Furthermore, all flow paths are small (i.e., consist of

at most 4kF + 2F ≤ 8kF edges), and the additional edge congestion caused

by the flows is at most (2F )/(4kF ) = 1/(2k). Since the congestion of the

k-systems in O′ is at most 1, the lemma follows. ut

Lemma 4.2.2 does not immediately provide us with short k-systems for the

requests in O′, since the flow systems in R may not consist of disjoint paths.

Hence, we still have to show how to extract short k-systems out of these.

Lemma 4.2.3 For every request in O′, a set of small k-systems can be ex-

tracted out of its flow system in R with a total flow value of at least 1/4.

Proof. Let (si, ti) be a fixed request from O′ and let Ei be the set of all edges

that are traversed by the flow system for (si, ti) in R. Consider any set of k−1

edges in Ei. Since the edge congestion caused by R is at most 1 + 1/(2k), the

total amount of flow in the flow system for (si, ti) in R that traverses Ei is at

most (k−1)(1+1/(2k)) ≤ k−1/2. Thus, the minimal si− ti-cut in the graph

(V, Ei) consists of at least k edges. Hence, Menger’s theorem [19] implies that

there are k edge-disjoint paths between si and ti in Ei. We take any such k

paths and denote them as the k-system σ1. We associate a weight of k · ε1 with

σ1, where ε1 is the minimum flow from si to ti through an edge in Ei belonging

to the k-system σ1.

Assume now that we have already found ` k-systems σ1, · · · , σ`, for some

` ≥ 1. If
∑`

j=1 k · εj ≥ 1
2

we stop the process of defining σj. Otherwise, the

minimal si − ti-cut in (V, Ei) must still be at least k, because the total flow

along any k − 1 edges in Ei is still less than the total remaining flow from

si to ti. Thus, we can apply Menger’s theorem again. This allows us to find
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another k-system σ`+1 between si and ti and in the same way as above we

associate with it a weight εl+1. Let ˆ̀ be the number of k-systems at the end

of the process.

So far there is no guarantee that any of the k-systems defined above will

be small, neither that they will transport enough flow between the terminal

pair si and ti. However, after a simple procedure they will satisfy our needs.

According to Lemma 4.2.2, all flow paths in R have a length of at most

8kF . Hence, the total amount of edge capacity consumed by a flow system

in R representing a request in O′ is at most 8k2F . If there were k-systems

in σ1, · · · , σˆ̀ of total flow value at least 1/4 that use more than 32k3F edges

each, then they would not fit into the available edge capacity, because 32k3F ·
1/(4k) ≥ 8k2F . Thus, there exists a subset of the k-systems σ1, · · · , σˆ̀ with

total flow value at least 1/4 such that each of them is small, that is, each of

them uses at most 32k3F edges. ut

Let Si denote the set of small k-systems for request (si, ti) given by this

lemma, i.e. Lemma 4.2.3, and let S be the set of all Si. A random experiment

will finally help us to bound |O′| in terms of |B|. Independently for each

(si, ti) ∈ O′, choose exactly one of its k-systems in S, where a k-system σj is

picked with a probability proportional to its flow value. After the selection,

each of the chosen k-systems is used to carry k units of flow, one unit along

each of its paths. Let P denote the chosen k-systems with the k units of flow.

For every σj ∈ Si, let the binary random variable X
σj

i be one if and only if

σj was chosen in the random experiment. Since each k-system in P is small,

and therefore a candidate for the k-BGA, but was rejected by the k-BGA, it

must have a witness in B. This witnessing must be at an edge that is not

used by any k-system in O′, because otherwise the definition of O′ would be

violated. Hence, only edges outside of the edges used by O′ can be potential

witness edges. From Lemma 4.2.2 we know that each of these edges can have

a congestion of at most 1/(2k). Hence, after selecting a random, small k-

system for each request and shipping a demand of 1 along each of its paths,
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the expected congestion at every potential witness edge is at most 2. Thus,

in expectation, every k-system from B can serve as a witness to at most 2 · L
k-systems from P. We conclude that there exists such a random choice for

which the k-systems from B serve as witnesses to at most 2 ·L · |B| k-systems

from P (cf. [49]). Since |P| = |O′|, the proof is completed. ut

The upper bound on the competitive ratio for the k-BGA in Theorem 4.2.1

is the best possible, since a k-system of size Θ(k3F ) may prevent Θ(k3F ) other

k-systems from being selected. An open question is whether it is possible to

achieve a better competitive ratio with a stronger restriction on the size of the

k-systems that are used by the k-BGA.

4.2.2 General lower bound

Next we show there is a lower bound that holds for the competitive ratio

of any deterministic online algorithm for the k-EDP problem which is not far

away from the performance of the k-BGA.

Theorem 4.2.4 For any n, k, and F ≥ logk n with n ≥ k2 · F there is a

graph G of size Θ(n) with maximum degree O(k) and flow number F so that

the competitive ratio of any deterministic online algorithm on G is Ω(k · F ).

Proof. Consider the graph in Figure 4.1. The core of this graph consists of

m = n/(k · F ) ≥ k line graphs and a so-called k-ary multibutterfly network.

In addition, a node s is connected to the first k line graphs on the left, and

a node t is connected to the first k line graphs on the right. For every i,

line graph i consists of a sequence of F + logk n diamond structures, and each

diamond structure represents a smallest possible k-system between two nodes:

structure j has two nodes si,j(= ti,j−1) and ti,j(= si,j+1) that are connected via

k intermediate nodes. The endpoints of the diamond structures in the shaded

area represent the nodes of the underlying multibutterfly. We will use the fact

that a k-ary multibutterfly with n′ inputs and outputs (which is a network
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of degree O(k)) can route any r-relation from the inputs to the outputs with

congestion and dilation at most O(max[r/k, logk n′]) [77].
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Figure 4.1: The graph for the lower bound.

First, we show that this graph has a flow number of Θ(F ). For this we have

to prove that the PMFP for the given graph can be solved with congestion

and dilation O(F ). Consider each node v of degree δv to consist of δv copies of

nodes and let V ′ be the set of all of these copies, V ′ = {0, . . . , N − 1}. Then

the PMFP reduces to the problem of sending a packet of size 1/N for any pair

of nodes in V ′. Such a routing problem can be split into N permutations πi

with πi(v) = (v + i) mod N for all i ∈ {0, . . . , N − 1} and v ∈ V ′. Each such

permutation represents a routing problem ρ in the original network where each

node is the starting point and endpoint of a number of packets that is equal

to its degree. We want to bound the congestion and dilation for routing such

a problem.

In order to route ρ, we first move all packets to the inputs of the k-ary

multibutterfly by using the line graphs. This can clearly be done with edge

congestion O(F ) and dilation O(F ). Next, we use the multibutterfly to send

the packets to the rows of their destinations. Since every input has O(k · F )

packets, this can also be done with congestion and dilation O(F ). Finally, all

packets are sent to their correct destinations. This also causes a congestion
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and dilation of at most O(F ). Hence, routing ρ only requires a total congestion

and dilation of O(F ).

Combining the fact that all packets are of size 1/N with the fact that we

have N permutations πi, it follows that the congestion and dilation of routing

the PMFP in the given graph is O(F ). Hence, its flow number is O(F ).

Now consider the following two sequences of requests:

(1) (s, t)

(2) (s, t), (s1,1, t1,1), (s1,2, t1,2), . . . , (s1,F , t1,F ), (s2,1, t2,1), . . . , (sk,F , tk,F )

Obviously, every deterministic online algorithm has to accept (s, t) to ensure a

finite competitive ratio for (1). However, in this case none of the other requests

in (2) can be satisfied. But the optimal solution for (2) is to reject (s, t) and

to accept all other requests. Hence, the competitive ratio is Ω(k · F ). ut

4.2.3 Managing requests with profits

We define the k edge-disjoint paths with profits problem (k-EDPP) as fol-

lows: we are given an undirected graph G = (V, E) and a set of terminal pairs

(or requests) T . Each request ri = (si, ti) offers a profit (or benefit) b(ri) if it

is accepted. The problem is to find a subset S of the pairs in T for which it

is possible to select disjoint paths so that each pair is connected by k disjoint

paths such that the sum of the profits of the requests in S is maximum.

It turns out that a simple offline version of the k-BGA gives the same

approximation for the k-EDPP as we have for the k-EDP, that is an O(k3 ·F )

approximation. The algorithm involves sorting the requests in decreasing order

of their profits and running the BGA on this sorted sequence. We call this

algorithm the sorted k-BGA.

Theorem 4.2.5 Given a network G of flow number F , the competitive ratio

of the sorted k-BGA with parameter L = 32k3F is O(k3F ) for the k-EDPP.
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Proof. The proof is almost identical to the proof of Theorem 4.2.1. We will

just point out the differences here.

We carry forward all the notation from the proof of Theorem 4.2.1. For any

set of requests S, denote the sum of the profits of the requests in S by P (S).

We retain the definition of a witness from the proof of Theorem 4.2.1 and we

add the notion of profit witnessed. If an edge e witnesses requests whose profits

total up to some l, we say that the profit witnessed by e, denoted pw(e), is

l. The profit witnessed by a path p ∈ B, denoted pw(p) is the sum of profits

witnessed by the edges along that path.

As before, let O′ ⊆ O denote the set of all k-systems in O that are larger

than L and that correspond to requests not accepted by the k-BGA and that

do not have a witness in B.

We claim the following:

Claim 4.2.6 There exists a rearrangement of the k-systems of O′ into a set

S such that

1. Every request in O \ O′ ∪ S is either accepted by the sorted k-BGA or

has a witness in B.

2. For every edge e in a path p ∈ B

pw(e) ≤ 3 · b(p)

Proof. We know from the proof of Theorem 4.2.1, that each edge in B
witnesses at most one request in O \O′. And also, from the second case, that

there is a rearrangement of O′ into a set S such that each k-system in S is

small, i.e. it has a witness in B, and the congestion among the k-systems is

no more than 2.

The claim follows from the simple observation that if a request p in B
witnesses a request q then, since we sorted the requests by decreasing profits,

b(q) < b(p). ut
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We denote E ′ to be the set of witness edges. From Claim 4.2.6 it follows

that:

P (O) = P (O \ O′) + P (S)
(1)

≤ P (B) +
∑

e∈E′

pw(e)

(2)

≤ P (B) +
∑

p∈B

3 · b(p)

≤ (1 + 3 · L) · P (B)

Where (1) follows from the first part of Claim 4.2.6 and (2) follows from

the second part. ut

4.2.4 The Multiway EDP

A variant of the k-EDP to which our techniques can be applied is the

Multiway Edge Disjoint Paths Problem (MWDP) which can be defined as

follows: given a graph G and a set of terminal pairs with integral demands di,

find a maximum subset of the pairs for which it is possible to select disjoint

paths so that every selected pair i has di disjoint paths.

The k-BGA used for the k-EDP can be used here as well, with k set to

dmax, where dmax us the maximum demand of all the requests.

Theorem 4.2.7 Given a network G of flow number F , the competitive ratio

of the BGA with parameter L = 32d3
maxF is O(d3

maxF ), where dmax is the

maximum demand of an accepted request.

The theorem can be shown along the same lines as Theorem 4.2.1.

4.3 Algorithms for the k-DFP

Throughout this section we will assume that the maximal demand is at

most k times larger than the minimal edge capacity, which is analogous to
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assumptions made in almost all papers about the UFP. We call this the weak

bottleneck assumption. Moreover, we assume that all edge capacities are the

same, equal to one. The minimal demand of a request will be denoted by dmin.

We first show how to solve the offline k-DFP, and then mention how to extend

this solution to the online case.

To solve the offline k-DFP, we first sort the requests in decreasing order of

their demands. On this sorted sequence of requests we use an algorithm that

is very similar to the k-BGA: let L be a suitably chosen parameter. Given a

request with a demand of d, reject it if it is not possible to find k edge-disjoint

paths p1, p2, . . . pk of flow value d/k between the terminal nodes of the request

that fit into the network without violating the capacity constraints and whose

total length
∑k

i=1 |pi| is at most L. This extension of the k-BGA will be called

k-flow BGA.

The next theorem demonstrates that the performance of the k-flow BGA

for the k-DFP is comparable to the performance of the k-BGA for the k-EDP.

It is slightly worse due to technical reasons; it is much harder to use our

technique for extracting short k-systems for the k-DFP than for the k-EDP.

Theorem 4.3.1 Given a unit-capacity network G with flow number F , there

is a constant γ such that the approximation ratio of the k-flow BGA for the

k-DFP with parameter L = γ · k3F log(kF )), when run on requests sorted in

non-increasing order, is O(k3F log(kF )).

Proof. As usual, let B denote the set of k-systems for the requests accepted

by the BGA and O be the set of k-systems in the optimal solution. Each

k-system consists of k disjoint flow paths which we also call streams.

For each stream q ∈ B or q ∈ O, let f(q) denote the flow along that

stream. If q belongs to the request (si, ti) with demand di, then f(q) = di/k.

For a set Q of streams let ||Q|| =
∑

q∈Q f(q). Also, for an edge e ∈ E

and a stream q, let F (e, q) denote the sum of the flow values of all streams

in B passing through e whose flow is at least as large as the flow along q,

i.e., F (e, q) = ||{p | p ∈ B, e ∈ p, f(p) ≥ f(q)}||. A stream p ∈ B is a
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witness for a stream q if f(p) ≥ f(q) and p and q intersect in an edge e with

F (e, q) + f(q) > 1. For each edge e let W(e,B) denote the set of streams in

B that serve as witnesses on e. Similarly, for each edge e let V(e,Q) denote

the set of streams in Q that have witnesses on e. We also say that a k-system

has a witness on an edge e if any of its k streams has a witness on e. We start

with a simple observation.

Lemma 4.3.2 For any stream q and edge e, if q has a witness on e then

‖W(e,B)‖ ≥ 1/2.

Proof. Let p be a witness of q on e. Assume, by contradiction, that F (e, q) <

1/2. It easily follows that f(p) < 1/2. Since f(q) ≤ f(p) and F (e, q)+f(q) > 1

by the definition of a witness, we have a contradiction. ut

Let O′ ⊂ O be the set of k-systems that are larger than L and that corre-

spond to requests not accepted by the BGA and that do not have a witness in

B. The next two bounds on ||O \ O′|| and ||O′|| complete the proof.

Lemma 4.3.3 ||O \ O′|| ≤ (1 + 2L) · ||B||.

Proof. We partition O \ O′ into two sets. Let O1 ⊆ O \ O′ consist of

all the k-systems corresponding to requests accepted by the BGA and let

O2 = (O \O′) \O1. Note that each k-system in O2 must have a witness in B.

Let E ′ ⊆ E denote the set of all edges on which some k-system from O2 has

a witness. We then have

‖O2‖ ≤
∑

e∈E′

k‖V(e,O2)‖ ≤
∑

e∈E′

k ≤
∑

e∈E′

k · 2‖W(e,B)‖

For the first inequality note that a k-system of demand di in O2 may only have

a witness at a single edge, and this edge can only be traversed by a flow of

di/k belonging to that k-system.

Since all k-systems in B are of length at most L, we have

∑

e∈E′

‖W(e,B)‖ ≤
∑

streams p∈B

|p| · f(p) ≤
∑

k−systems s∈B

L · d(s)/k ≤ L · ‖B‖/k .

81



This completes the proof. ut

In the next lemma we bound ‖O′‖ by first transforming the large k-systems

in O′ into a set S of small k-systems and then bounding ‖S‖ in terms of ‖B‖.

Lemma 4.3.4 ‖O′‖ = O(L · ‖B‖).

Proof. In order to prove the lemma, we will transform the k-systems in O′

into a set of k-systems S in which each k-system has a length of at most L and

therefore must have a witness in B. To achieve this, we perform a sequence of

transformations:

1. First, we scale the demands and edge capacities so that each edge in G

has a capacity of C = d3k/dmine and all requests have demands that

are integral multiples of k. More precisely, the demand of each request

of original demand d is set to d′ = k · dC · d/ke. Since d′/C ∈ [d, (1 +

1/3)d], this slightly increases the demands and therefore also the flows

along the streams so that the total flow along an edge is now at most

(1 + 1/3)C. Note that slightly increasing the demands only increases

‖O′‖ and therefore only makes the bound on the relationship between

‖O′‖ and ‖B‖ more pesimistic.

2. Next, we replace each request (si, ti) in O′ by d′
i/k elementary requests

of demand k each, shipped along the same k-system as for (si, ti). For

every k-system of such a request, we only keep the first 8c · kF and the

last 8c · kF nodes along each of its k streams for some c = O(log(kF )).

The remaining pieces will be called a k-core. As shown in Claim 4.3.5, we

can then distribute the elementary requests among C/c sets S1, . . . , SC/c

so that the congestion caused by the k-cores within each set is at most

2c at each edge and at most 2δc at each node of degree δ.

3. Afterwards, we consider each Si separately. We will reconnect discon-

nected streams in each k-core in Si with flow systems given by the flow
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number. Then, we will show in Claim 4.3.6 how to extract k-systems of

length at most L from each reconnected k-core.

4. Once we have found the short k-systems, we will be able to compare

‖O′‖ with ‖B‖ with the help of witnesses.

We next present two vital claims.

Claim 4.3.5 The elementary requests can be distributed into C/c sets named

S1, . . . SC/c for some c = O(log(kF )) so that for each set Si the congestion

caused by its k-cores is at most 2c at each edge and at most 2δc at each node

of degree δ.

Proof. We first prove the claim for c = O(log(kF + C)) and afterwards

mention how to improve it to c = O(log(kF )).

Our proof uses the Chernoff-Hoeffding bounds and the general Lovász Lo-

cal Lemma (LLL). Consider the random experiment of assigning to each el-

ementary request a number in {1, . . . , C/c} uniformly and independently at

random, and let Si be the set of all requests that choose number i. For every

node v and edge e let the random variable Xv,i be the number of streams

assigned to Si that traverse v and the random variable Ye,i be the number of

streams assigned to Si that traverse e. Obviously,

E[Xv,i] ≤ δv · 4c/3 and E[Ye,i] ≤ 4c/3

for all v and e, where δv denotes the degree of v. To be able to apply the

Chernoff-Hoeffding bounds, we have to specify how much a k-core can con-

tribute to a random variable Xv,i and Ye,i. For every node v of degree δv, any

k-core can have at most min[δv, k] steams crossing it. Hence, a k-core can

contribute a value of at most min[δv, k] to Xv,i. On the other hand, every

edge e can be used by at most one stream of any k-core. Hence, a k-core can

contribute at most 1 to Xe,i. Thus,

Pr[Xv,i ≥ (1 + 1/3)δv · 4c/3] ≤ e−(1/3)2δv ·(4c/3)/(3 min[δv ,k])

≤ e−max[1,δv/k]4c/34

83



and

Pr[Ye,i ≥ (1 + 1/3) · 4c/3] ≤ e−(1/3)2 ·(4c/3)/3 = e−4c/34

.

Let Av,i be the event that Xv,i > 2δvc and Be,i be the event that Ye,i > 2c.

Since (4/3)2 ≤ 2, we can use the above probability estimates to bound the

probability that the events Av,i and Be,i appear. Our aim is to show with the

help of the LLL that it is possible in the random experiment to assign numbers

to the requests so that none of these events emerges. To apply the LLL, we

have to bound the dependencies among the events Av,i and Be,i.

Each node v can be used by at most 2δvC k-cores and each of these k-cores

consists of at most 2k(8c · kF ) nodes and edges. Hence, the set Nv of nodes w

that depend on v has a size of at most (2δvC) · (16ck2F ) = 32cδvk
2CF . The

same holds for the set Ev of edges that depend on v. On the other hand, each

edge e can be used by at most 2C k-cores, each of these k-cores consists of at

most 2k(8c · kF ) nodes and edges. Hence, the set Ne of nodes w that depend

on e has a size of at most 32ck2CF . The same holds for the set Ee of edges

that depend on e.

According to the general LLL we have to find values xv,i and ye,i so that

Pr[Av,i] ≤ xv,i

∏

dep. Aw,j

(1− xw,j) ·
∏

dep. Be,j′

(1− yw,j′)

and

Pr[Be,i] ≤ ye,i

∏

dep. Aw,j

(1− xw,j) ·
∏

dep. Be,j′

(1− yw,j′)

to guarantee a possibility that none of the events Av,i and Be,i appears. Let

us choose

xv,i = e−max[1,δv/k]2c/34

and ye,i = e−2c/34

.

In this case, Pr[Av,i] ≤ x2
v,i and Pr[Be,i] ≤ y2

e,i. When choosing c = 4 ·
34 ln(2kF + C) we obtain

xv,i = (2kF + C)−8·max[1,δv/k] and ye,i = (2kF + C)−8 .
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Recall that C ≥ 3k. Together with the fact that 1− x ≥ e−2x for all 0 ≤ x ≤
1/2 we get in the case of Av,i that

∏

dep. Aw,j

(1− xw,j) ≥
∏

dep. Aw,j

e−2xw,j ≥
∏

dep. Aw,j

exp
(

−2(2kF + C)−8·max[1,δv/k]
)

≥
∏

w∈Nv

exp
(

−2 · (2δwC/c) · (2kF + C)−8·max[1,δw/k]
)

≥ exp

(

−
∑

w∈Nv

4δwC/c · (2kF + C)−8·max[1,δw/k]

)

≥ exp

(

−
∑

w∈Nv

4C

c
· δw

2kF + C
· (2kF + C)−δw/k

)

·

exp
(

(2kF + C)−6·max[1,δw/k]
)

≥ exp

(

−(32cδvk
2CF ) · C

c
· (2kF + C)−6

)

≥ exp

(

−32δv ·
k2C2F

(2kF + C)6

)

≥ e−2δv/k

and

∏

dep. Be,j′

(1− yw,j′) ≥
∏

dep. Be,j′

e−2ye,j′ ≥
∏

dep. Be,j′

exp
(

−2(2kF + C)−8
)

≥
∏

e∈Ev

exp
(

−2 · (2C/c) · (2kF + C)−8
)

≥ exp
(

−(32cδvk
2CF ) · (4C/c) · (2kF + C)−8

)

≥ exp

(

−128δv ·
k2C2F

(2kF + C)−8

)

≥ e−2δv/k .

Hence,

xv,i

∏

dep. Aw,j

(1− xw,j) ·
∏

dep. Be,j′

(1− yw,j′)

≥ (2kF + C)−8·max[1,δv/k]
(

e−2δv/k
)2

≥ ((F + C)−8·max[1,δv/k])2 ≥ Pr[Av,i] .
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With a similar calculation it can be shown that the LLL inequality also holds

for Be,i. Thus, it is possible to find an outcome so that none of the bad events

is true, which completes the proof of the claim for c = O(log(kF + C)).

To improve this result to c = O(log(kF )), a sequence of refinements has

to be done. In a first refinement, c1 = O(log2 C) can be used to show that

the requests can be split into sets S1, . . . , SC/c1 so that the congestion at each

edge is at most (1 + o(1))c1 and the congestion at each node of degree δ is

at most (1 + o(1))δc1 for each Si. Afterwards, each Si is refined separately.

c2 = O(log2 c1) can be used to show that the requests in Si can be split into

sets S ′
1, . . . , S ′

c1/c2
so that the congestion at each edge is at most (1 + o(1))c2

and the congestion at each node of degree δ is at most (1 + o(1))δc2 for each

S ′
i. These refinement continue with cj+1 = O(log2 cj) until finally a cj is

reached with cj = O(log(kF )). At that point, the method described above for

c = O(log(kF + C)) is used to perform a last refinement with cj, which yields

the claim. The details of the proof are tedious but not new and therefore we

skip them here and refer the interested reader to similar techniques used in

[77]. ut

Claim 4.3.6 For every set Si, every elementary request in Si can be given

k-systems of total weight at least 1/4 such that each of them consists of at

most L edges. Furthermore, the congestion at every edge used by an original

k-system in Si is at most 2c + 1/(2k), and the congestion at every other edge

is at most 1/(2k).

Proof. The proof of the claim is similar to the proof of Theorem 4.2.1.

Let us consider some fixed elementary request r and let pr
1, . . . , pr

`r
be all

the disconnected streams in its k-core, 1 ≤ `r ≤ k. Let the first nodes in

pr
i be denoted by ar

i,1, . . . , ar
i,8c·kF and the last nodes in pr

i be denoted by

br
i,1, . . . , br

i,8c·kF . Consider the set of pairs

L =
⋃

r∈S1

`r
⋃

i=1

8c·kF
⋃

j=1

{(ar
i,j, b

r
i,j)} .
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Due to the node congestion bound in Claim 4.3.5 it is possible to connect each

of these pairs (ar
i,j, b

r
i,j) by flow systems of length at most 2F and flow value

f(pr
i ) so that the edge congestion is at most 2c · 2F . Let the flow system from

ar
i,j to br

i,j be denoted by f r
i,j. For each request r = (s, t) and each 1 ≤ i ≤ `r

and 1 ≤ j ≤ 8c ·kF , we define a flow system gr
i,j that first moves from s to ar

i,j

along pr
i , then from ar

i,j to br
i,j along f r

i,j, and finally from br
i,j to t along pr

i and

assign to it a flow value of f(pr
i )/(8c · kF ). This ensures that a total flow of

f(pr
i ) is still being shipped for each pr

i . Furthermore, this allows us to reduce

the flow along f r
i,j by a factor of 1/(8c ·kF ). Hence, the edge congestion caused

by the f r
i,j for all r, i, j reduces to at most 4c ·F/(8c ·kF ) = 1/(2k). Therefore,

the additional congestion at any edge is at most 1/(2k), which proves the

congestion bounds in the claim.

Now consider any given elementary request r = (s, t). For any set of k− 1

edges, the congestion caused by the flow systems for r is at most (k − 1)(1 +

1/2k) ≤ k − 1/2. Hence, according to Menger’s theorem there are k edge-

disjoint flows in the system from s to t. Continuing with the same arguments

as in Theorem 4.2.1, we obtain a set of k-systems for r with properties as

stated by the claim. ut

Now that we have short k-systems for every elementary request, we combine

them back into the original requests. For a request with demand d this results

in a set of k-systems of size at most L each and total flow value at least d/(4k).

Let the set of all these k-systems for all requests be denoted by S. Since every

k-system has a size of at most L, it could have been a candidate for the BGA.

Thus, each of these k-systems must have a witness. Crucially, every edge that

has witnesses for these k-systems must be an edge that is not used by any of

the original k-systems in O′. (This follows directly from the definition of O′.)

According to the proof of Claim 4.3.6, the amount of flow from P traversing

any of these edges is at most 1/(2k). Let E ′ be the set of all witness edges.

We choose now one of the k-systems for each request independently at

random according to its weight. This will result in a set of k-systems P in
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which each request has exactly one k-system and in which the expected amount

of flow traversing any edge in E ′ is at most 1/(2k). Next, we assign the original

demand of the request to each of these k-systems. This causes the expected

amount of flow that traverses any edge in E ′ to increase from at most 1/(2k)

to at most 4k · 1/(2k) = 2.

Now we are ready to bound ‖P‖ in terms of ‖B‖. For every k-system

h ∈ S, let the indicator variable Xh be one if and only if h is chosen to be in

P. We shall look upon ‖P‖ as a random variable (though it always has the

same value) and bound its value by bounding its expected value E[‖P‖]. In

the following we assume that d(h) is the demand associated with the k-system

h.

E[‖P‖] ≤ E

[

∑

e∈E′

k · ‖V(e, P )‖
]

≤
∑

e∈E′

k · E
[

∑

p∈S: e∈p

Xp ·
di

k

]

≤
∑

e∈E′

k ·
∑

p∈S: e∈p

f(p) · k
di/(4k)

· di

k
≤
∑

e∈E′

k · 4k
∑

p∈S: e∈p

f(p)

≤
∑

e∈E′

4k2 · 1

2k
≤
∑

e∈E′

2k

≤ 4k
∑

e∈E′

‖W(e,B)‖ ≤ . . . ≤ 4L · ‖B‖

where the last calculations are done in the same way as in the proof of

Lemma 4.3.3. ut

Combining the two lemmas proves the theorem. ut

We note that if the minimum demand of a request, dmin, fulfills dmin ≥
k/ log(kF ), then one would not need Claim 4.3.5. In particular, if dmin were

known in advance, then the k-flow BGA could choose L = O(k3F/(dmin/k))

to achieve an approximation ratio of O(k3F/(dmin/k)). This would allow a

smooth transition from the bounds for the k-EDP (where dmin = k) to the

k-DFP.
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4.3.1 Online algorithms for the k-DFP

Next we present a randomized online algorithm for the k-DFP. This algo-

rithm, which we will call the randomized k-flow BGA, is an extension of the

k-flow BGA algorithm for the offline k-DFP.

First consider the set O of k-systems for requests accepted by the optimal

algorithm. Let O1 ⊆ O consist of k-systems each with demand at least k/2.

And, let O2 = O\O1. Exactly one of the following events is true: (1) ||O1|| ≥
1/2 · ||O|| or (2) ||O2|| > 1/2 · ||O||.

The randomized k-flow BGA begins by guessing which of the two events

above shall be true. If it guesses the former, it ignores all requests with demand

less than k/2 and runs the regular k-flow BGA on the rest of the requests. If

it guesses the latter, it correspondingly ignores all requests with demand at

least k/2 and runs the k-flow BGA on the rest. We now prove the following

theorem.

Theorem 4.3.7 Given any unit-capacity network G with flow number F ,

the expected competitive ratio of the randomized k-flow BGA for the online

k-DFP without deletions is O(k3F log(kF )), when run with parameter L =

O(k3F log(kF )).

Proof. The proof runs on exactly the same lines as the proof for Theo-

rem 4.3.1, except that we have to prove Lemma 4.3.2 in our changed situation.

Note that the original proof for Lemma 4.3.2 relied on the fact that requests

were sorted in a non-decreasing order before being considered. That need not

be true here. B denotes, as usual, the k-systems for requests accepted by the

randomized k-flow BGA.

Consider the case when the algorithm guesses that ||O1|| ≥ 1/2 · ||O||.
We claim that for any stream q ∈ O1 and edge e, if q has a witness on e

then ‖W(e,B)‖ ≥ 1/2. Let q be witnessed by p, a stream in B. Now, since

the algorithm only considers requests with demand at least k/2, f(p) ≥ 1/2.

The claim follows since ‖W(e,B)‖ ≥ f(p). Following the rest of the proof for
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Theorem 4.3.1, substituting O1 for O, shows that in this case the randomized

k-flow BGA will have a competitive ratio O(k3F log(kF )).

Consider now the case when the algorithm guesses ||O2|| ≥ 1/2 · ||O||. We

again claim that even in this case for any stream q ∈ O2 and edge e, if q has

a witness on e then ‖W(e,B)‖ ≥ 1/2. ¿From the definition of witnessing, we

have F (e, q) + f(q) > 1. Next, from the definition of O2, f(q) < 1/2. The

claim follows as ‖W(e,B)‖ ≥ F (e, q). As in the previous case, the rest of the

proof for Theorem 4.3.1 applies here too; substitute O2 for O.

The competitive ratio in both cases is O(k3F log(kF )). Note that the

algorithm may guess incorrectly which event shall be true. But that just

reduces the expected competitive ratio by a factor of 2. ut

4.3.2 Consequences for the k-splittable flow problem

Our proof for the k-DFP has interesting consequences for the k-splittable

flow problem (k-SFP) be defined as follows: given a graph with edge capacities

and a set of requests i with demand di, find a subset of requests of maximum

total demand for which it is possible to select up to k flow paths for each

accepted request i whose flow values sum up to di so that all the capacity

constraints are kept.

Certainly, the k-SFP is a relaxation of the UFP. However, this does not

necessarily make the problem easier, since not only the online algorithm but

also the optimal offline algorithm has more freedom in choosing flow paths for

its requests.

Theorem 4.3.8 Let G be a unit-capacity network with flow number F . The

approximation ratio of the k-BGA for the k-SFP, when run on requests ordered

according to non-increasing demands with parameter L = 3kF is O(k2F ).

Proof Sketch. We use arguments similar to those in the proofs of the

approximation ratios for the k-DFP. For each stream q ∈ B or q ∈ O, let

d(q) denote the demand of the request belonging to that stream. For a set
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Q of streams let ||Q|| =
∑

q∈Q d(q). Also, for an edge e ∈ E and a stream

q, let D(e, q) denote the sum of the demands of all streams in B passing

through e whose demand is at least as large as the demand associated with

q, i.e., D(e, q) = ||{p | p ∈ B, e ∈ p, d(p) ≥ d(q)}||. A stream p ∈ B is a

witness for a stream q if d(p) ≥ d(q) and p and q intersect in an edge e with

D(e, q) + d(q) > 1. For each edge e let W(e,B) denote the set of streams in B
that serve as witnesses on e. Similarly, for each edge e let V(e,Q) denote the

set of streams in Q that have witnesses on e. We also say that a k-system has

a witness on an edge e if any of its k streams has a witness on e.

Lemma 4.3.9 For any stream q and edge e, if q has a witness on e then

‖W(e,B)‖ ≥ 1/2.

Proof. Let p be a witness of q on e. Assume, by contradiction, that D(e, q) <

1/2. Then it easily follows that d(p) < 1/2. Since d(q) ≤ d(p) and D(e, q) +

d(q) > 1 by the definition of a witness, we have a contradiction. ut

Let O′ ⊂ O be the set of flow systems that are larger than L and that

correspond to requests not accepted by the BGA and that do not have a

witness in B. The next two bounds on ||O \O′|| and ||O′|| complete the proof.

Lemma 4.3.10 (Case 1) ||O \ O′|| ≤ (1 + 2kL) · ||B||.

Proof. We partition O \ O′ into two sets. Let O1 ⊆ O \ O′ consist of

all the flow systems corresponding to requests accepted by the BGA and let

O2 = (O \O′) \ O1. Note that each flow system in O2 must have a witness in

B. Let E ′ ⊆ E denote the set of all edges on which some flow system from O2

has a witness. We then have

‖O2‖ ≤
∑

e∈E′

k‖V(e,O2)‖ ≤
∑

e∈E′

k ≤
∑

e∈E′

k · 2‖W(e,B)‖

The first inequality holds since every demand is counted k-fold in ‖O2‖. Since

all flow systems in B are of length at most L, we have

∑

e∈E′

‖W(e,B)‖ ≤
∑

streams p∈B

|p| · d(p) ≤
∑

k−systems s∈B

L · d(s) ≤ L · ‖B‖ .

91



The last inequality is tight since the flow systems in B may just consist of

single paths. This completes the proof. ut

In the next lemma we bound ‖O′‖ by first transforming the large flow

systems in O′ into a set S of small flow systems and then bounding ‖S‖ in

terms of ‖B‖.

Lemma 4.3.11 (Case 2) ‖O′‖ = O(kL · ‖B‖).

Proof Sketch. In this case we are left with the large flow systems. Using

Lemma 4.1.1, we can replace all streams which are longer than L/k = 3F by

a system of streams of length at most 3F by increasing the edge congestion to

at most 3 (1 due to the original streams and 2 due to the shortcut streams).

Using a random experiment to round the short streams down to at most k

for each request, we arrive at flow systems that could have been used by the

BGA while having an expected congestion of at most 3. Using Lemma 4.3.9 it

is then possible to show in the same flavour as in the proof of Theorem 4.3.1

that ‖O′‖ = O(kL · ‖B‖). ut

Combining Lemma 4.3.10 and 4.3.11 results in the theorem. ut

4.3.3 Consequences for the integral splittable flow prob-

lem

The Integral Splittable Flow Problem was defined in [39] as follows: given

a graph G and a set of terminal pairs with integral demands di, find a maxi-

mum subset of the pairs for which it is possible to fulfill the demand of each

pair by routing at least as much flow as it demands, while maintaining the

capacity constraints at each edge and ensuring that the flow through any edge

is integral.

The best previously known upper bound for this problem is O(
√

mdmax log2 m)

[39]. We will demonstrate that we can improve this upper bound for many

relevant cases.
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Without the “no-bottleneck” condition: In case we do not have the

condition that any edge can support all the demand for a given request i.e. we

do not have the condition that dmax ≤ 1, we simply use Theorem 4.3.1 with

the parameter k set to dmax to get the following corollary:

Corollary 4.3.12 Given any unit-capacity network G with flow number F ,

for the online ISF in which no request has demand more than dmax, the expected

competitive ratio of the randomized dmax-flow BGA is O(d3
maxF log(kF )), when

run with parameter L = O(d3
maxF log(kF )).

With the “no-bottleneck” condition: We now show that for a uniform

capacity network of capacity C, if dmax ≤ C, we can prove a much better bound

for the ISF. This follows with some additions from the proof of Theorem 4.1

from [50].

The algorithm we propose is the one used in [50]: the elementary BGA,

with parameter 4 ·F . This involves finding a single, i.e. unsplit, path of length

at most 4 · F for a request (si, ti) which can satisfy the entire demand di for

that request, in the residual graph left after satisfying previously accepted

requests. If such a path cannot be found, this request is rejected.

Theorem 4.3.13 Given any uniform-capacity network G of capacity C with

flow number F , for the online ISF in which no request has demand more than

dmax ≤ C, the expected competitive ratio of the elementary BGA when run

with parameter L = 4 · F is O(F ).

Proof Sketch.

As before, let the optimal solution be denoted as O and the BGA’s solution

be denoted as B. Let O′ ⊆ O\B be those requests which the optimal satisfies

by splitting their flow. In other word, for all the requests in O \ (O′ ∪ B),

the optimal algorithm routes the entire demand of each request along a single

path.

From the proof of Theorem 4.1 of [50] it follows that:

||O \ O′|| ≤ (16F + 1)||B||
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To bound ||O′||, we transform the optimal solution’s split flows into a set

of unsplit flows, S, which do not violate capacity constraints by more than

twice on the average. To do this, consider the flow for (si, ti) ∈ O′. This can

be separated into di possibly overlapping streams of unit flow. First we use the

Shortening Lemma (Lemma 3.1 from [50]) to transform all the streams in O′

into streams of length at most 4F at the cost of increasing the congestion on

each edge to at most twice its capacity. We now perform a random experiment

on these di streams: we choose one of them, uniformly at random, and decide

to send all the di flow along its path. The set S consists of the set of unsplit

flows determined by this random experiment.

Claim 4.3.14 The average flow through any edge in G due to the flows in S
is at most 2C.

Proof. Consider any edge. It has at most 2C shortened streams flowing

through it, if we consider the separate streams from a given request individu-

ally. Let the demands of the requests they are associated with be d1, d2, . . . d2C .

The average congestion on any given edge is

2C
∑

i=1

1

di
· di = 2C

ut

The flows in S were candidates for the BGA and since they were not

taken, it means that they were witnessed by B. Given the claim we can

now say, using arguments similar to the ones in Theorem 4.1 of [50], that

E[||S||] ≤ 32Fcdot||B||. This implies that there is an outcome S ′ of the

random experiment for which ||S ′|| = ||O′|| ≤ 32F · ||B||. ut

Essentially what Theorem 4.3.13 tells us is that if the no-bottleneck con-

dition is satisfied then splitting the flows does not buy us anything in terms

of an approximation ratio for the problem.

Additionally we note without going into detail that it is possible to give a

randomized online algorithm similar to the one described in Section 4.3.1 for
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the ISF with the no-bottleneck conditions which achieves a competitive ratio

of O(F ).

4.4 Conclusions

Several open problems remain. For example, what is the best competitive

ratio a deterministic algorithm can achieve for the k-EDP? We suspect that it

is O(k · F ), but it seems to be very hard to prove. It might be easier to show

this for the k-splittable flow problem first. Another open problem that might

be easier to solve is to improve the O(k3F log(kF )) bound for the k-DFP to

O(k3F ).

95



Chapter 5

Conclusion

There is a significant amount of work already being done by algorithms

researchers which could be classified as Internet Algorithmics. Apart from the

areas we have mentioned in Chapter 1, and the new areas we have covered in

Chapters 2, 3 and 4, there are several other areas in which some progress has

been made. An important example is that of web searching where algebraic

techniques have been used to organize the welter of information floating around

the World Wide Web (see e.g. [48].) We feel that there is already a move

towards Internet Algorithmics in the research community. There is a need

to recognize the special characteristics of this area and the interrelationship

between the various problems which it throws up.

The network of connections, so to speak, between the these problems and

the layered nature of the issues they arise from make for a fascinatingly rich

problem space. But this also means that the process of formulating clean

theoretical problems to attack becomes that much harder. While abstracting

away from details is essential to the business of algorithmic research, it is only

when we keep the larger picture in mind that we can ensure that we do not

make assumptions which make our solutions irrelevant. This is one of the

important considerations that has led to our thesis that the vast and diverse

area of Internet Algorithmics has to be viewed in a unified way.

In this dissertation we have tried to make a case for Internet Algorithmics
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as a coherent and important new area of study. It is our contention that

investigating the theoretical underpinnings of the processes of the Internet is

a fruitful endeavour which can potentially lead not only to a vast increase in

the usefulness and quality of the Internet as a medium for communication and

commerce, but also to a furthering in our understanding of the phenomenon

of computing.
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