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Abstract

Rumor is a potentially harmful social phenomenon that has been ob-

served in all human societies in all times. Social networking sites provide
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a platform for the rapid interchange of information and hence, for the

rapid dissemination of unsubstantiated claims that are potentially harm-

ful. In this paper, we study different methods for combating rumors in

social networks actuated by the realization that authoritarian methods for

fighting rumor have largely failed. Our major insight is that in situations

where populations do not answer to the same authority, it is the trust that

individuals place in their friends that must be leveraged to fight rumor. In

other words, rumor is best combated by something which acts like itself,

a message which spreads from one individual to another. We call such

messages anti-rumors. We study three natural anti-rumor processes to

counter the rumor and present mean field equations that characterize the

system. Several metrics are proposed to capture the properties of rumor

and anti-rumor processes. The metrics are geared to capture temporal

evolution as well as global properties of the processes. We evaluate our

methods by simulating rumor and anti-rumor processes on a large data

set of around 105 nodes derived from the social networking site Twitter

and on a synthetic network of the same size generated according to the

Barabási-Albert model.

Keywords: Rumor, Anti-rumor, Diffusion, Social Networks.

1 Introduction

Sociologists use the term rumor to refer to an unverified account or explana-

tion of events circulating from person to person and pertaining to an object,

event, or issue of public concern [23]. Rumor is a potentially harmful social phe-
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nomenon that has been observed in human societies in all times. In Book IV

of the Aeneid, the Latin poet Virgil refers to “Rumor, the swiftest of all evils,”

going on further to give an intuitive characterization of its spread: “Speed lends

her strength, and she finds vigor as she goes.” [32]. Since Virgil wrote his clas-

sic, enabling technologies for the spread of rumor have multiplied. Specifically

online social networks (Twitter, Orkut, Facebook etc.) provide a platform for

the rapid interchange of information and hence, for the rapid dissemination of

unsubstantiated claims that are potentially harmful. In this paper we study

ways of combating rumors in social networks actuated by the realization that

authoritarian methods for fighting rumor have largely failed. Our major insight

is that in situations where populations do not answer to the same authority, it is

the trust that individuals place in their friends that must be leveraged to fight

rumor. In other words, rumor is best combated by something which act like

itself, a message which spreads from one individual to another. We call such

messages anti-rumors. Using mathematical models proposed in the literature

for the spread of rumor, we study different anti-rumors processes and present

metrics for evaluating the efficacy of these methods in fighting the spread of

rumor.

Social networking sites have certain intrinsic properties that make them an

ideal medium for the spread of rumor. They have huge and distributed user-

bases, clusters of users sharing the same interests, developing trust in each

other, and seeking access to the same resources. Moreover, the platform open-

ness makes it easy to deploy malicious applications. During times of crisis the
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use of social networking to spread information can have the harmful effect of

allowing rumors to proliferate even faster and wider than they did earlier. In

an era where email spam is easily detected by most users (would you send your

bank account number to the widow of an assassinated African general?), mainly

because it comes from people we do not know. However, it is possible for mali-

cious users to leverage the trust we repose in our “friends” or “connections” on

social networking sites in order to spread harmful content. In fact, as of now,

all popular social networking sites have experienced some level of malicious use

(see e.g. [22, 26]).

1.1 A note on assumptions

Our model makes one radical simplifying assumption that the anti-rumor is

a message which is completely convincing. There are several gaps in this as-

sumption. The basic question that arises is: How does a person distinguish

an anti-rumor from a rumor? In some cases this may be possible: for exam-

ple if the anti-rumor carries a proof of its correctness with it, or if it comes

from an authenticated source. But in general this may not be possible. We do

not account for this lacuna in our work. Instead we present our studies as a

foundational step. It may be possible in future to develop more sophisticated

models that take into account the difficulty in distinguishing between rumor and

anti-rumor, but we believe that the basic underlying dynamics will be not too

different from the ones we analyze here. We discuss the possibilities of pursuing

such a direction in Section 5.
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Further, we assume that a person who has once heard the anti-rumor will

never again believe the rumor and will in fact want to spread the anti-rumor.

This is based on a somewhat rose-tinted view of human nature. While it is true

that there are people who make independent efforts to quell rumors because

they realize the danger they may cause (see e.g. [20]), to believe that every

person will want to actively spread an anti-rumor is unduly optimistic. In fact

the truth might be far from this assumption: It is even possible that malicious

users might intercept the anti-rumor and, adapting the rumor so that it becomes

harder to refute and start spreading the adapted rumor. It is no doubt possible

to model a variable response to anti-rumor spread and that might be a way to

refine our model, but in this paper we only lay out the basic program, and do

not study the model to that level of sophistication.

1.2 Main contributions

The main contributions are setting out three models that describe natural sce-

narios for the spread of anti-rumor to combat the spread of rumor. We describe

these briefly now and in more detail in future sections.

Traditionally governments have tried to combat rumor in a centralized and

sometimes authoritarian fashion. The mode has been of an authority broad-

casting the anti-rumor message. This is expensive and not always effective (e.g.

the USA remains plagued by rumors regarding childhood vaccinations, despite

concerted advocacy through the media that it is false [17]) especially in culture

or in situations where people mistrust the authority or its motives. Tripathy et
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al. [30] studied decentralized and semi-centralized techniques to combat rumor.

The decentralized method called Delayed start model, models a situation where

a local authority might discover a rumor n days after it starts and decide to

spread an anti-rumor. This is a purely reactive methodology where a single

agent, perhaps a local authority, takes cognizance of a rumor and decides to act

against it. The semi-centralized method called Beacon model, models a situa-

tion where a set of vigilant agents, beacons, are on the lookout for the spread of

rumors. Once a beacon receives a rumor, it immediately starts spreading anti-

rumors to combat the rumor. The Beacon model is somewhat more proactive

than the Delayed start model. In the Beacon model we assume that there is a

loose confederation of agents, perhaps a set of local authorities, that realize the

danger of rumor spread and have planted listening posts in the social network.

These listening posts are like sleeper agents, they come alive only when they de-

tect a rumor. In this article, we study the Delayed start model and the Beacon

model more rigorously using a number of new metrics (explained in Section 2).

We also study a fully decentralized model of an enlightened citizenry vigilant

against rumors, called the Neighborhood model, in which any user with some

probability can detect the rumor on receiving it and decide to warn his or her

contacts about the spread of the rumor. The difference between the Neighbor-

hood model and the previously studied models is that each agent of the social

network can independently decide to start combating the rumor.

The models we study are Markovian in nature and so their evolution can

be characterized by simple differential equations. This approach, known as the
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mean field approach, follows from an influential work of Kurtz [15] that shows

the connection between differential equations and limit laws for Markov process.

In Section 3 we present mean field characterizations of our three models and

validate the quality of the approximation they provide. This allows us to study

the anti rumor models at scales that would be prohibitively difficult to simulate.

1.3 Related Work

Rumor spread bears strong similarities to the virus spread since the spread-

ing mechanisms are similar e.g. the Susceptible Infected Susceptible (SIS)

model and the Susceptible Infected Recovered (SIR) model [7, 28, 36], the

Voter model [5, 16], the Independent Cascade (IC) model [13] etc. We wish

to clarify an important difference between our model and virus spread mod-

els. Although both, rumor & virus, spread through social (or physical) con-

tacts containing them requires fundamentally different strategies. Rumor can

be combated by spreading messages (anti-rumor) on the same network, whereas

combating viruses requires vaccination of each individual who is to be protected.

Hence, unlike the virus spread case, the same social network used by a rumor

can be leveraged to fight against it.

The problem we study is also very similar to the well studied problem of

competitive viral marketing [3, 4, 29]. In our setting, there is a competition

between two processes, the rumor process and the anti-rumor process. Similarly,

in competitive viral marketing there is competition between two products. But

the key difference between these two domains is encapsulated in our assumption
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thate rumor will eventually be removed by the anti-rumor because there is some

essential distinction between falsehood and truth. Although this is definitely

not true for all rumors and all situations we believe that it covers a large and

significant part of the space. In the case of competitive viral marketing there is

no authority who can unequivocally decide which product is superior. Hence,

in our models anti-rumor eventually cleans the network from rumor, whereas in

competitive viral marketing situation a stable state is reached when all parties

settle on a market share.

The problem of characterizing the rumor process in a social network has been

studied (see e.g. [36]) using an epidemic like model called SIR model, however

the rumor-control problem has not received wide attention. Habiba et al. [11]

studied the problem of identifying good blockers to minimize the rumor spread in

the network. This paper also uses the Independent Cascade model for diffusion.

Ur et al. [31] show how attack strength can be increased in a social network by

controlling the hubs of the network. Webb et al. [33] proposed a technique to find

spammer profiles by installing social Honeypots. They found that spam profiles

follow a distinct temporal pattern and their geographical locations overlap with

the target location. Kimura et al. [14] studied the problem of minimizing the

contamination spread in network by blocking the links of the network. In this

paper we study different ways of combating rumors in social networks.

We would like to observe that while sharing several aspects with the papers

described above, our work’s first main original contribution is the idea that

rumor can be combatted with rumor-like anti-rumor messages. Our second
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main original contribution is the formulation of the three anti-rumor spread

models described above and a set of metrics for studying these models which

will be discussed in detail in the next section.

2 Models and Metrics

Basic Notation We assume that the online social network is modeled as a

directed graph G = {V, E}. For each node Vi, the immediate neighbors are

represented by set Ni and n represents the total number of nodes in the network.

A variable si, the status of the node, is maintained for each node Vi. A node

i with si = 0 is a susceptible nodes. This nodes is yet to believe the rumor

or anti-rumor. If si = 1, then node i is an infected node. Such nodes, after

believing the rumor, will spread the rumor in the network. When si = 2 we

say i is a cured node whereas if si = 3 we call i a vaccinated node. Cured

nodes are those nodes which were once infected and now believe the anti-rumor.

Vaccinated nodes are those susceptible nodes who now believe the anti-rumor

but were never infected with the rumor. These two types of nodes, cured and

vaccinated, will spread the anti-rumor message in the network. s
(t)
i denotes the

status of node at time t.

2.1 Rumor spread model

To model rumor spread process, we use the Independent Cascade (IC) Model

with a little variation. This is a well studied model for diffusion in social net-

works [13, 14, 24]. In the IC model, each node gets a single chance to infect its
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neighbors, whereas in our setting each node gets multiple chances to infect its

neighbors. Therefore, the rumor can spread very fast. We call this the Multi

Try Independent Cascade Model (MTICM). In MTICM, at time t, each infected

node Vi tries to infect each of its uninfected neighbors w ∈ Ni and succeeds with

probability p1. The rationale for choosing this model of for rumor spread is that

this model is guaranteed to spread the rumor throughout the network. And in

fact this model succeeds in spreading the rumor through the network in a rela-

tively short time (see e.g. the work by Chierchetti et. al. [6]). This makes this

model a pessimistic estimate of the power of rumor, and hence a more difficult

adversary to deal with than other models, some of which cannot even guarantee

network-wide spread of the rumor (see e.g. Sudbury’s work on the SIR model

on complete graphs [27].) The hope is that if if we can combat rumor which

is spreading by this model then the rumor spread using a less powerful model

can also be easily combated. On the optimistic side, we also use the MTICM

to model the spread of anti-rumor. This assumes that an anti-rumor spreader,

who is essentially an altruistic person, will be persistent in his or her actions.

We postpone for the future a more sophisticated study that models closely the

variations in altruistic behavior of real world actors.

Through the course of our experiments we have taken p1 to be 0.01. If it

succeeds then w will become infected at time t + 1. The process starts with 10

random infected nodes. These choices of parameters are admittedly arbitrary

as is the assumption that these parameters are uniform across nodes and across

time. Deriving meaningful values of such parameters is a research problem
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in itself, one that we do not intend to focus on in this paper. Our goal is

to demonstrate the fundamental characteristics of the process we study with

parameter values that satisfy our general intuition.

2.2 Anti-rumor spread models

In this subsection, we present the anti-rumor spread models. In our previous

study [30] we presented preliminary analysis of the first two models Delayed

start model and Beacon model. For making this article self-contained, we briefly

explain these models. In this work, we present a new model and also evaluate the

older models on larger dataset and the new metrics proposed in next subsection.

Delayed Start Model: Here we model the situation that an authority with

limited jurisdiction detects the spread of rumor and then combats it by starting

an independent cascade from a randomly selected infected node. We contend

that there will always be a time lag between the start of rumor and its detection

(and hence, the start of the anti-rumor). We parametrize our model with this

delay, represented by d. Fig. 1(b) pictorially depicts the Delayed start model.

The checkered node is the previously infected node from where the anti rumor

starts. The information goes to all neighbors: infected (node A) as well as

uninfected (Node B). The process starts from a single random infected node

after a delay time d.

Beacon Model: Between the time an authority detects the spread of rumor

and decides to combat it, the rumor continues apace. In order to proactively

combat rumors, authorities may embed agents in the network that are capable
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of detecting the spread of rumor and are authorized to start anti-rumors as soon

as they detect rumor. We refer these agents as beacons. The beacons spread the

anti-rumor according to the Multi Try Independent Cascade Model (MTICM).

Fig. 1(c) shows a Beacon model. Please note that in the current state of the

network, beacon B1 will be inactive since it has not yet received the rumor. In

Delayed start model, the starting time of anti-rumor process is fixed but here

it depends upon the time when the beacon receives the rumor.

Neighborhood Model: In the previous models the anti-rumor originates from

the nodes selected by some authority either before or after the rumor starts. In

the current model any node Vi may decide, on receiving the rumor from a neigh-

bor Vj , to refute it. This model is similar to the Beacon model. The difference

lies in choosing the set of initial beacons. In the Beacon model, the initial set of

beacons are chosen by some authority whereas in the Neighborhood model, the

beacons are self created with some probability during rumor spreading process.

The Beacon model with b number of beacons (out of total n nodes) is compa-

rable in an expected sense to a Neighborhood model where a node refutes the

rumor with probability b
n
.

2.3 Metrics

In this section, we propose various metrics to evaluate and compare the efficacy

of these models. We divide these metrics into two categories: Time varying

metrics and Lifetime metrics.
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2.3.1 Time varying metrics:

These metrics capture the temporal evolution of the system. We consider three

time varying metrics:

Number of Infected (I(t)): This metric captures the number of infected

nodes at time t. Mathematically, we can define this as: I(t) =
∣

∣

{

Vi | Vi ∈ V (G)

and st
i = 1

}
∣

∣. It provides us with a handle on the rumor growth process. Ti

denotes the time period for which a node Vi remains infected. Ti is defined as:

max {t :s
(t)
i = 1 } - min {t : s

(t)
i = 1 }. Finally, ∆(t) is calculated as I(t + 1) -

I(t).

Number of Cured (C(t)): This metric captures the number of cured nodes

at time t, i.e., the number of infected nodes who have accepted the anti-rumor

and now recognize the rumor as false. Formally, C(t) =
∣

∣

{

Vi | Vi ∈ V (G) and

st
i = 2

}∣

∣.

Number of Vaccinated (V (t)): This metric captures the number of nodes who

learn the truth about the rumor before the rumor reaches them and therefore,

they are vaccinated against future encounters with the rumor. It can be defined

as: V (t) =
∣

∣

{

Vi | Vi ∈ V (G) and st
i = 3

}∣

∣.

Finally, the number of nodes which are not covered in the above metrics are

known as susceptible nodes (S(t)). Formally, they are defined as S(t) =
∣

∣

{

Vi |

Vi ∈ V (G) and st
i = 0

}∣

∣. Anti-rumor process performs two operations, it makes

the infected nodes cured and makes the susceptible nodes vaccinated. Similar

metrics are used in several papers related to rumors, viruses and epidemics

spread [18, 19, 34, 35, 36].
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2.3.2 Lifetime metrics

These metrics capture the global properties and are calculated at the end of the

process. We consider five lifetime metrics:

Duration of Infection (D(G)): This metric denotes the total time required for

the anti-rumor process to kill the rumor process completely. D(G) = max{t |

∃i : s
(t)
i = 1}. This metric is a well studied metric in epidemic and virus

literature [10, 36].

Outbreak size (R(G)): Outbreak size captures the total number of nodes

which are infected at some point of time. R(G) =
∣

∣{Vi | ∃t ≤ D(G) : s
(t)
i = 1}

∣

∣

Grabowski et al. [10] also used this metric to measure the strength of epidemic

spread where in SIS model.

Maximum infected time (M(G)): The Maximum infected time measures the

life time of the rumor in the network, i.e., it measures the maximum duration

for which any node continues to believe the rumor. It can be defined as M(G) =

max{Ti | ∀Vi ∈ V (G)}

Average infected time(A(G)): The average infected time captures the av-

erage time for which the users continue to believe the rumor, i.e., A(G) =

1
|V [G]|

∑

Vi∈V [G] Ti.

Point of Decline (P (G)): There are two independent cascade processes grow-

ing simultaneously: rumor process and anti-rumor process. If ∆(t) ≥ 0, then

rumor process is growing and if ∆(t) < 0, then rumor process is declining.

Please recall ∆(t) = I(t + 1) - I(t). Point of decline measure the time point at

which the number of users believing the rumor start to decline and therefore,
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marking the time when anti-rumor process gets stronger than rumor process.

It can be defined as P (G) = min{t | ∆(t) < 0}. Note that the uniqueness of

the point of decline is not a priori obvious. However, our studies have shown

that once the number of rumor infected individuals starts decreasing, it does

not increase again. This metric is also used in epidemic literature [10].

3 Mean Field Characterization

Clearly, our models of rumor and anti-rumor are Markovian processes. The

influential work of Kurtz [15] demonstrated that the limit laws of such processes

conform to the solutions of ordinary differential equations. This gave rise to

the “mean field” way of analyzing Markov processes. The key insight can be

loosely stated as follows: if we assume that neighborhood of a node behave like

an “average” neighborhood, the evolution of this “mean field” process closely

approximates the evolution of the Markov process.

Mean field theory has been a central tool for theoretical physics. Several

foundation papers on social networks use this method e.g. Newman et al. [21]

studied the small world model using mean-field, Barabási et al. [2] described

mean-field rate equations for the scale-free model. In the study of sociological

phenomena that involves diffusion on complex networks, systems like epidemic

spread (e.g. Funk et al. [9]) and competitive viral marketing [29] have also been

analyzed using mean-field theory. Of direct relevance to our current paper, is

the work of Nekovee et al. [19] where mean-field theory was used to study the
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spread of rumor in a complex networks using the MakiThompson (MK) model.

Sathe [25] also used mean-field methods to study the spreading behavior of

rumor in LiveJournal.

Notation In order to describe the mean field equations for our models, we

take into account the heterogeneity induced by nodes having varying numbers

of neighbors by partitioning the sets of nodes with different states according

to their indegree. The number of susceptible nodes of in-degree k at time t

is denoted by Sk(t) where k takes all values up to the maximum degree of

the network. Similarly Ik(t), Ck(t) and Vk(t) denote the infected, cured and

vaccinated nodes, respectively, at time t that have indegree k. The indegree

distribution of the graph is denoted by {F (k)}k≥0 i.e. the probability of a node

having degree k is F (k). Recall that p1 is probability of a node accepting the

rumor and p2 is the corresponding quantity for the anti-rumor message.

The probability of a node being infected at time t is the fraction of the nodes

of the network that are infected at time t. We denote this quantity by θ1(t)

where

θ1(t) =

∑

k kF (k)Ik(t)

n ·
∑

k kF (k)

Similarly θ2(t) is the probability that any given link points to an anti-rumor

spreading node (cured or vaccinated)

θ2(t) =

∑

k kF (k)(Ck(t) + Vk(t))

n ·
∑

k kF (k)

Delayed Start Model Noting that a susceptible node is no longer susceptible

once it accepts either the rumor or anti-rumor we have We solved the rate
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equations (??)-(??) numerically and validated the evolution by comparing the

solution with the results of simulations conducted on a Barabási-Albert graph

with 106 nodes. The results, for a delay of 160, are presented in Fig. 2(a). We

note that the mean field evolution is a very close approximation to the simulated

evolution.

Beacon Model For this model we also have to keep track of the unactivated

beacons at time time. We denote by Bk(t) the number of unactivated beacons

of indegree k at time t. As in the Delayed start model we have

∆(Sk(t)) = −{1 − (1 − p1)
kθ1(t)(1 − p2)

kθ2(t)}Sk(t) (1)

∆(Ik(t)) = {1 − (1 − p1)
kθ1(t)}Sk(t) − {1 − (1 − p2)

kθ2(t)}Ik(t) (2)

The difference arises in ∆(Ck(t)) and ∆(Vk(t)). A beacon, once it accepts the

rumor begins to spread the anti-rumor, i.e., it begins to behave like a cured

node. Hence

∆(Ck(t)) = {1 − (1 − p2)
kθ2(t)}Ik(t) + {1 − (1 − p1)

kθ1(t)}Bk(t) (3)

∆(Vk(t)) = {1 − (1 − p2)
kθ2(t)}Sk(t) + {1 − (1 − p2)

kθ2(t)}Bk(t) (4)

Also, an unactivated beacon gets activated once it accepts the rumor or, by

default, once it accepts the anti rumor, i.e.

∆(Bk(t)) = −{1 − (1 − p1)
kθ1(t)(1 − p2)

kθ2(t)}Bk(t) (5)

Solving these equations numerically for the case where there are 500 beacons in

a 90,000 node graph mentioned above and plotting against the simulated value
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(see Fig. 2(b)) we find that the mean field results are a close approximation to

the simulated values.

Neighborhood Model In the neighborhood model we add another proba-

bility, the probability of refutation. We denote it by p3, the probability that

a node recognizes the rumor and decides to refute it. In this model the rate

equations for susceptible nodes and vaccinated nodes are as before.

∆(Sk(t)) = −{1 − (1 − p1)
kθ1(t)(1 − p2)

kθ2(t)}Sk(t) (6)

∆(Vk(t)) = {1 − (1 − p2)
kθ2(t)}Sk(t) (7)

The difference occurs in the infected and cured nodes. When a susceptible node

accepts the rumor, it enters the infected set with probability 1 − p3 else with

probability p3 it enters the cured set and becomes a spreader of anti rumor.

Hence

∆(Ik(t)) = (1 − p3){1 − (1 − p1)
kθ1(t)}Sk(t) − {1 − (1 − p2)

kθ2(t)}Ik(t)(8)

∆(Ck(t)) = {1 − (1 − p2)
kθ2(t)}Ik(t) + p3{1 − (1 − p1)

kθ1(t)}Sk(t) (9)

In Fig. 2 (c) we show the comparison between the simulated evolution and

the mean field solution of the Neighborhood model for refutation probability

p3 = 500/90000. The approximation is found to be close to the simulation.

Discussion The key idea of studying the mean field approach is to study the

evolution of the rumor versus anti rumor process at scales which are too large

to simulate conveniently. Similar approach also used by Nekovee et al. [19] to
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understand the dynamics of rumor spreading in scale free network. The quality

of the approximation grows with the increase in scale. In the case of the De-

layed start model, the quality of approximation deteriorates as the delay time

increases. This is because the variability of the number of nodes increases with

increase in delay. Fig. 3(a) shows the correlation between growth of infected

nodes in simulation and in mean field solutions. We can see that correlation

coefficient is deteriorated as the delay time increases. Similarly in Fig. 3(b)

we can see that the mean-squared error increases as the delay time increases.

The quality of the approximation is poorer for the beacon model and the neigh-

borhood model because apart from the size of the network, both these models

have another scale parameter: the number of beacons and the probability of

refutation, respectively. As these parameters grow the approximation improves.

Fig. 4 shows the quality of approximation for the growth of infected node in

the Beacon model. In Fig. 4(a) we find that as the number of beacons increase

the correlation between the simulated results and mean field results increase.

Fig. 4(b) shows decrease in the mean squared error between simulation and

mean field solutions as the number of beacons increase. The mean field equa-

tions for the Neighborhood model behave similar to that of the Beacon model.

In the next section we present results from simulation on the Synthetic graph

described above and a network derived from Twitter. We supplement these

results by deriving trends from the mean field results for various metrics on

Synthetic data.
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4 Experiments and Analysis

In this section we discuss our simulation results. In all our results, the values

used for the analysis are averaged over 50 runs. We also present the results for

mean field models and showcase that in most cases our simulation model and

analytical model are extremely close. In some cases, we observe a deviation in

actual values, however, the observed growth rate and trend are still consistent.

4.1 Data sets

Twitter Data We used Twitter’s API to crawl the Twitter network. We

started from the seed user DLF IPL, the official Twitter account of The Indian

Premier League (IPL), an Indian cricket league sponsored by Delhi Leasing and

Finance (DLF). Considering each user as a node and a “follower” relationship

as a directed link, we created a directed network containing 100,500 nodes and

2,465,836 edges. Since in this work we intend to find the impact of the proposed

anti-rumor models for combating rumor, therefore, we are interested in the

case where a rumor can possibly spread through entire network. Therefore, we

have taken the maximal strongly connected component (with 89,999 nodes) and

pruned the remaining 10,501 nodes (and corresponding edges) from the original

data set. The reason this pruning is done is to ensure that each node can

potentially send data to every node under consideration. If this were not done

then there would be nodes which can either only receive messages from some

part of the network or can only send messages to some part of the network. We

pruned away these nodes to get rid of degenerate behavior. After pruning, the

20



Twitter graph contained 89,999 nodes and 2,262,104 edges with average degree

24 and diameter 17.

Synthetic Data We use the Barábasi-Albert (BA) model [1] to generate the

synthetic data. The BA model is a random graph model which generates a

scale-free graph (means the graph with power-law degree distribution) by incor-

porating growth and preferential attachment. The key idea behind preferential

attachment is that the more connected a node is, the more likely it is to receive

new links. In BA model, starting with an initial graph of a few nodes, a new

node is added at each time step and is connected to other nodes based on their

degrees i.e., higher degree nodes have a higher probability of connecting from

new node.

A scale-free graph of size 90,000 (same size as that of the Twitter data) and

having power-law coefficient of 2.54 is generated using BA model . We use BA

model because, it is a widely accepted model for social network analysis due

to its scale free properties which is also there in our Twitter graph and it is

easy to derive the metrics for this model without simulation (using mean-field

equation).

We have used NetworkX [12] for creating networks for both the Synthetic as

well as the Twitter data. NetworkX is a Python package for creation, manipula-

tion, and study of the structure, dynamics, and functions of complex networks.
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4.2 Delayed Start Model

To get a preliminary idea about the efficacy of the Delayed start model, we

looked at the behavior of the rumor process for the Twitter graph as well as

the Synthetic graph. The results for the Delayed start model with a delay time

of 40 for both the Twitter graph and the Synthetic graph are shown in Fig. 5.

Growth of the infected nodes are similar for both the graph.

The key thing to note in Fig. 5 is the presence of a single point of decline for

both networks. The growth of number of infected nodes, I(t), is slow to start

with but as the time goes the I(t) increase very fast. Initially there are few nodes

who believe the rumor but as the number of nodes who believe the rumor grows,

the probability of accepting a rumor for a susceptible node increases which

makes the rate of growth rise. This is because with the increase of infected

nodes, the number infected neighbors of the susceptible nodes also increase.

So, the probability of accepting a rumor increases. After certain time point

the number of infected nodes start to decline, that point is called the point of

decline P (G). Beyond this point, not only does the rumor-affected population

not grow it declines very rapidly, because the anti-rumor process is growing

inside and outside the rumor process using the neighbors links. Once the anti-

rumor process out-perform rumor process, in the succeeding steps the number

of susceptible neighbors of the rumor accepted nodes decreases, which makes

the growth reduce further. So after the point of decline, it requires very little

time to completely remove the rumor. In combating rumor strategies, the point

of decline is an important parameter. A detailed study about this parameter is
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presented in the succeeding sections.

The sharp behavior noted above is further reinforced by studying the ratio

of the number of anti-rumor accepted nodes to the number of rumor accepted

nodes, i.e., C(t)+V (t) to I(t) (Fig. 6(a) and Fig. 6(b)). It is clear that the ratio

lies between zero and infinity, zero until anti-rumor process starts and infinity

when all rumor infected nodes are cured. After the anti-rumor process starts,

we see a sharp growth in this ratio, because the anti-rumor process starts killing

the rumor process which breaks the growth of rumor process. However, in the

Twitter we can observe that for higher values of delay time, after initial spurt

the growth of the ratio slowsdown. The reasons for this behavior may be stated

as, when the delay time increases the number of infected nodes increases and

in the Twitter graph some infected nodes remain infected for longer period of

time, because a lot of nodes in the Twitter graph have in-degree 1. These nodes

get less chance to be cured than a higher in-degree node. Finally, Fig. 6(c)

shows the results obtained for the metric by solving mean field equations. The

analytical solution in this case matches not only in trend with the simulation

results but the actual values are very close. We would like to point that the

trends in the Twitter graph very closely match with the trends shown in the

mean field solutions.

Next, we study how average infected time, A(G), varies with the delay time.

The results are shown in Fig. 7(a). The trend is very intuitive, as the time

to start anti-rumor process increases, A(G) increases sub-linearly but for the

higher value of delay the average infected time grows much faster. This is
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because, the rumor accepted nodes remain infected for a longer period and also

get more chances to infect other nodes, hence the delay time is an important

parameter for controlling rumor. There is hardly any difference between the

Twitter data and the Synthetic data. The A(G) values of the Twitter graph

are slightly more than that of the Synthetic graph, which indicates that in the

Twitter graph some nodes remain infected for a longer period of time because

of the lower in-degrees of these nodes. We remind the readers that both our

graphs, the Twitter graph and the Synthetic graph, follow power-law degree

distributions with power-law coefficients 2.34 and 2.54 respectively. Being a real

graph, the Twitter graph contains a lot of variation in the nodes degree. The

maximum infected time, M(G), (Fig. 7(b)) grows very slowly. This implies that

the anti-rumor is able to arrest the rumor effectively in the sense that no single

node’s duration of believing the rumor is disproportionately large because of the

increase in delay, even though the entire populations average belief time does

get affected significantly by delay in starting the anti rumor. Fig. 7(d) present

the change in point of decline, P (G), with increase in delay. It is evident that

for smaller values of delay, P (G) increases almost linearly, i.e, the time taken

to tackle the rumor depends linearly on the delay. However, for larger values of

delay, P (G) increases but the increase is very slow because for higher delay the

rumor spreads through the entire network and then stops because there are no

nodes left to infect, so when the anti-rumor process starts it is the only process

which is running. Therefore tracking this metric for higher values of delay does

not make sense. Fig. 7(c) shows the trend in out-break size (R(G)). We can see
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a sharp behavior for smaller values of delay. i.e., a small increase in the delay

time will cause a exponential rise in the infection, which shows the importance

of delay time in the combating process. Finally, Fig. 7(e) and Fig. 7(f) shows

the results for P (G) and R(G) for mean field model. The mean field model

conforms to the simulation observations for the Synthetic as well as the Twitter

graph. Therefore, the lifetime metrics can be studied for large scale graph with

only mean field equations.

We know that out-break size, R(G), represents the total number of infected

nodes in the combating process. However, to study temporal behavior the time

varying metric, I(t)
R(G) is better suited. This ratio captures the growth of the

rumor relative to its overall reach. The values of 1 at time t implies that, the

rumor has attained the maximum strength at t. In Fig. 8, we have shown the

results for this ratio. In Fig. 8(a), we can see that even if both rumor and

anti-rumor process start at same time, at least 70% of the total out-break size,

R(G) is found to be infected at a particular period of time. In other words, this

implies that even after the rumor begins declining, it is still able to infect almost

one-third as many nodes as it did when it was on the rise. If the ratio touches 1

then the anti-rumor process is insignificant, since all nodes are already infected.

These curves also show the single point of decline. Comparing the results of the

Twitter data and the Synthetic data we observe that the maximum value of the

ratio increases with increase in delay time in both case but the maximum values

occur earlier in the Twitter graph compared to the Synthetic graph which again

supports the faster spread in the Twitter graph. Fig. 8(c) presents the results
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of the mean field model. The overall trend for different delay factor matches

with the Twitter as well as the Synthetic graph trends. However, in this result

we can see that the maximum value of the ratio is less compared to the Twitter

graph as well as to the Synthetic graph. The reason may be, the mean field is

an approximation and the approximation is closer to the original solution for

larger values of the scale parameter i.e. the number of nodes.

4.3 Beacon Model

We start with studying the growth of infected nodes I(t). The results for syn-

thetic and real graph are shown in Fig. 9. In this case we have used only 10

beacons. As in the Delayed start model, a single point of decline is also seen

in the Beacon model. In Fig. 9, we can see that the growth of I(t) is initially

slow to start with but after certain point it grows exponentially. Because as

the number of infected nodes increase, the probability of accepting a rumor also

increase. That means, if the beacons are able to detect the rumor early then

we can control the rumor easily. We also observe that after the point of decline

there is sharp decline in the growth of infected nodes. That is, once the anti-

rumor process gets hold of rumor process, it decimates it quickly. The growth

of the rumor process for the Twitter graph and the Synthetic graph are almost

same, but in the Twitter graph growth rate is slightly higher than the Synthetic

graph.

Similar to the Delayed start model we have looked at the values of S(t),

C(t) and V (t) together with I(t). The resultant graphs are shown in Figure-10.
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Initially, the ratio C(t)+V (t)
I(t) is zero because there is only one process (rumor)

until the beacon(s) get activated, after that the ratio starts to increase. When

the ratio approaches 1, then there is true competition, since the number of rumor

and anti-rumor spreaders are same. Hence, from that point the increase in ratio

slowsdown. The bend in the upper part of the curve in Fig. 10(a) suggests

that there are a few nodes in the Twitter network which remain infected for a

long period of time. The variation of the ratio in the Twitter graph Fig. 10(a)

is almost similar to that of the Synthetic graph Fig. 10(b), but growth of the

ratio is slightly higher in the Twitter graph. The increase in the ratio may

be due to decrease in the number of infected nodes (oppositely increase in the

number of cured node). Fig. 10(c) shows the results derived using the mean

field equations. It is interesting to note that, the mean field solutions not only

match the simulation results for the Synthetic graph but are quite close to the

results for the Twitter graph. The small deviation from the mean field solution

is due to noisy real world data, but looking at the overall trends the mean field

equations provide good approximations.

Lifetime metrics for the Beacon model are shown in Fig. 11. We start with

average infected time A(G) shown in Fig. 11(a). The A(G) value decreases as

the number of beacons increase, but the decrease is slower for a higher number

of beacons. This observation can be explained as follows: the anti-rumor process

begins by the beacon nodes, when a beacon is activated the number of nodes

who accept the anti-rumor grows centered around that beacon node, which

results in a component formed by that beacon node. As the number of beacons
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increase these components start overlapping which make the effectiveness of

some of the beacons to reduce. The Synthetic graph also shows a similar trend

as the Twitter graph, but the A(G) values are slightly higher in the Synthetic

graph because of relatively slower growth process in the Synthetic graph which

is already seen in Fig. 9. The maximum infected times, M(G), for different

number of beacons are shown in Fig. 11(b). The maximum time of infection

displays a gentler trend. As the number of beacons increases the M(G) values

decreases but slowly, which means even though we start the anti-rumor process

early by planting more number of beacons, there are some nodes which remain

infected for a longer period of time. Both the Twitter graph and the Synthetic

graph follow similar trends. Almost similar results were observed for the other

two metrics point of decline R(G) and out-break size P (G) (Fig. 11(c) and

Fig. 11(d)). Both P (G) and R(G) values decrease with increase in number of

beacons. Overall trends between the Twitter graph and the Synthetic graph

are similar but slightly higher P (G) values and lower R(G) values are observed

for the Synthetic graph. This further added to the slower growth process in the

Synthetic graph. The results for the P (G) and R(G) values of the mean field

equations are shown in Fig. 11(e) and Fig. 11(f). The overall trend of mean field

model matches with the Synthetic as well as the Twitter data. The results show

that, after a sharp decrease in the values as the number of beacons increase the

curve is almost flat, which suggest that there is some upper bound on the use of

number of beacons in the combating process after that increasing the number

of beacons does not contributes a significant change in the results.
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Next we study the ratio I(t)
R(G) , i.e., the fraction of the outbreak size achieved

at time t. We see that although the beacons sit on the boundary of the rumor’s

spread (by their very definition), they do not effectively encircle the rumor:

even after the fraction starts decline, a large number of nodes do get infected.

In fact in the Twitter graph, Fig. 12 (a), around 40% of the total number of

infected nodes infect after the decline starts (for the cases of 50-beacons and

100 beacons). This metric is insignificant for the cases where the ratio is close

to 1. The results for the Synthetic network Fig. 12(b) are almost similar to that

of the Twitter network. The mean field solutions for higher number of beacons

Fig. 12(c) are not only matches with simulation using the Synthetic network

but also it is very close to the Twitter network as well.

4.4 Beacon Vs Delayed Start Model

Next we compare the performance of the Beacon model with the Delayed start

model. The basic difference in the two models is how the anti-rumor process

begins. In the Delayed start model we fix a time when the anti-rumor process

begins whereas in the Beacon model, we fix the locations of the beacons but

cannot know for sure when they are going to be activated. We have found that

average time for the beacon (in case of 1-Beacon model) to activate is close to

45 for the Twitter graph and close to 60 for the Synthetic graphs. Therefore, it

is meaningful to compare the 1-Beacon model and the Delayed start model with

delay time 45 for the Twitter graph and with delay time 60 for the Synthetic

graph. We observe that the out-break size, R(G), value for the 1-Beacon model
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(Fig. 11(c)) is around 68,000 whereas for the Delayed start model (having delay

time 45) (Fig. 7(c)) the value is much higher than 68,000 (in fact it is close to

82,000). Similarly, the average infected time, A(G), in case of the Beacon model

is also less than the Delayed start model. These observations can be explained

as follows: a beacon is activated on the way of the rumor growth process, i.e.,

the anti-rumor process starts at the edge of rumor growth process and hence it

will limits the growth of rumor process. In case of the Delayed start model, the

anti-rumor process begins at any infected node after a particular delay time.

The neighbors of that node may be infected but not effective, because probably

they could not able to further spread the rumor as their neighbor are already

infected. Therefore from these experimental observations we may conclude that

the Beacon model is able to combat the rumor more effectively. Similar results

are obtained for the Synthetic data (comparing the 1-Beacon model and the

Delayed start model with delay time 60). Examining the plots for the mean-field

solution Fig. 11(e) and Fig. 11(f) for the Beacon model and the Delayed start

model Fig. 7(e) and Fig. 7(f) we observed that in the Delayed start model as

the delay time increases, the point of decline, P (G), values increase linearly but

not so sharp behavior seen in the Beacon model. Similarly, the sharp behavior

in out-break size, R(G), for the Delayed start model is not seen in the Beacon

model. From these observations, we can conclude that the Beacon model is

more effective than the Delayed start model under similar settings.
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4.5 Neighborhood Model

In the Neighborhood model, a user may detect a message as rumor with some

probability while receiving it and decide to warn its neighbors about the spread

of rumor. If we compare this to the Beacon model it is as if a node decides to

be a beacon rather being decided a priori. We can compare the Beacon model

with b beacons with the Neighborhood model with probability of detection of

rumor as b
n

where n is the size of the graph.

First, we study the growth of infected nodes for both the Twitter and the

Synthetic graph. The graphs are shown in Fig. 13. In this case we consider the

probability of detecting the rumor is 10
90000 , which is equivalent to the Beacon

model with 10 beacons. The overall growth process is similar to that of the

other two models, i.e., there is single point of decline and there is also a sharp

behavior after the point of decline. The rate of growth for the Twitter graph is

faster than the Synthetic graph. Comparing this result with that of the Beacon

model Fig. 9, we find that rate of rumor growth in both the models is almost

similar and in fact slightly lower for the Neighborhood model. This is quite

interesting because, in the Beacon model we required some authorities to select

the beacons nodes but for the Neighborhood model there are no authorities in-

volved. The slight improvement in the Neighborhood model is observed because

higher degree nodes are more likely to become beacons and in social network

the higher degree nodes are the most influential node in term of information

spread [8]. On the other hand in the Beacon model there is no control over the

selection of the beacon nodes. Therefore, from these experimental observation
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we may conclude that the Neighborhood model is more efficient in arresting

rumor.

We study other time varying metrics as shown in Fig. 14. The behavior of the

ratio C(t)+V (t)
I(t) is almost similar to the Beacon model. Initially, the ratio is zero

because there is only one process (rumor) until any node(s) refute the rumor,

after that the ratio starts to increase. Comparing these results with the results

obtained by the Beacon model, Fig. 11, we have found that the time required

to activate a beacon is slightly greater than the time required by the first node

to refute the rumor. The growth rate of the ratio is much faster initially but

slowdown later in the Twitter graph, Fig. 14(a), which is not observed with the

Synthetic graph, Fig. 14(b). This may be due to the noise in real data. A lot

of nodes in the Twitter graph are having in-degree 1. Therefore, these nodes

take more time to be cured. The mean field solution, Fig. 14(c), is similar to

the solution obtained by simulation.

Next, we study the behavior of the life time metrics. The results are shown in

Fig. 15. The average infected time A(G), Fig. 15(a), and the maximum infected

time M(G), Fig. 15(b), decrease very slowly with the increase in refutation

probability. By comparing the results of the Twitter graph with the Synthetic

graph we observe that, the A(G) values of the Twitter graph are less than that

of the Synthetic graph whereas the M(G) values show the completely opposite

behavior. This may be explained as: in the Twitter graph both rumor and

anti-rumor spread very fast. Therefore, even when a larger number of nodes are

infected, the infection lasts for a very short duration of time compared to the
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Synthetic graph. However, there are some nodes in the Twitter network which

are very loosely connected to other part of the network. When such nodes

get infected, this take a long time to be cured which increases the maximum

infected time. Comparing these results with the results obtained by the Beacon

model Fig. 11(a) and Fig. 11(b), we find that both the models give similar

results. Similar observation can be made for the point of decline P (G) metric

in Fig. 15(d). The P (G) values decrease slowly and the value is greater for

the Synthetic graph than for the Twitter graph. The outbreak size, R(G) in

Fig. 15(c) of both the graphs are quite close and decrease with the increase in

the refutation probability. The mean field solutions Fig. 15(e) and Fig. 15(f)

match the simulation quite closely.

The last property we study is the ratio between number of infected, I(t) and

out-break size, R(G). The results for both the Twitter graph and the Synthetic

graph are shown in Fig. 16. As we can see, the behavior of the ratio I(t)
R(G) is

almost similar to that of the Beacon model (Fig. 12) and the Delayed start model

(Fig. 8). However, by looking at these results closely we can see slightly lower

values for the Neighborhood model. The reason for this is already discussed

previously, i.e., the higher degree nodes are more likely to become beacon and

also in the Neighborhood model the anti-rumor process is growing inside the

region of the rumor process. The solutions of mean field are shown in Fig. 16

(c) which resembles very closely with the Synthetic as well as the Twitter graph

for higher values of refute probability.
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4.6 Observations

In this article, we study three natural anti-rumor processes to counter the rumor

process. Simulating in a real graph (derived from Twitter) as well as synthetic

graph (generated using Barabási-Albert model), we study the temporal evolu-

tion as well as global properties of these anti-rumor processes. We have also

presented mean field equations that characterize the system. In all the three

models, we observe a sharp growth in the rumor process after a slow start. How-

ever, once the growth of rumor starts decline, within a very short period of time

the rumor is completely removed from the network. This observation suggest

that, once we detect the rumor (no matter in which ways) due to fast growth

power of social networks we can able to conquer the rumor. However, the life

time metrics behave differently for different models. In the Delayed start model,

we find the point of decline P (G) grows linearly and the out-break size R(G)

grows exponentially with delay time, but the other two models show different

behaviors. In the Beacon model we observe that, the P (G) and R(G) values

decrease very slowly as the number of beacons increase. Because, when a bea-

con is activated the number of nodes who accept the anti-rumor grows centered

around that beacon node, which results in a component formed by that beacon

node. As the number of beacons increase these components start overlapping

which make the effectiveness of some of the beacons to reduce. Comparing the

results of 1-Beacon model with the Delayed start model with delay 45 (average

time for the beacon to active) we find that the average infected time A(G),

the out-break size R(G) and the point of decline p(G) values are less for the
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1-Beacon model compared to the values for the Delayed start model with delay

45. The reasons for this can explained as: in the Delayed start model, the anti-

rumor process starts from an infected node and that node may have already

been infected for a long period of time. Therefore, the node lies in the region

of infected nodes. Therefore, by starting the anti-rumor process from this node

may decrease the number of infected nodes but not able to contain the rumor

process by vaccinating susceptible node. In the Beacon model, the beacon nodes

activate themselves while receiving the rumor, i.e., the anti-rumor process ac-

tually starts at the edge of rumor process. Therefore, the beacon nodes can

effectively contain rumor by vaccinating susceptible nodes as well as curing in-

fected nodes. In the Neighborhood model similar results are obtained, i.e. the

P (G) and R(G) values decrease very slowly as the number of refutation proba-

bility increases. The Beacon model and the Neighborhood model show similar

results and, even sometimes the Neighborhood model performs better than the

Beacon model. The slight improvement may be because, in the Neighborhood

model, a higher degree node has greater probability to become a beacon. How-

ever, even though the results for both the models are same, we strongly believe

that in large social networking sites the Neighborhood model is most natural

and effective way to combat rumor because, in case of the Beacon model some

authorities are required to select the beacon nodes whereas, the beacons are self

created in the Neighborhood model.
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5 Conclusions

The main contribution of this paper is to study various anti-rumor strategies

in online social networks. The guiding insight of our work is that since social

networks span multiple nations with no governing authority, the only way that

rumors can be quelled is by using the power of social relationships. In other

words we study processes which are by nature decentralized and work in same

fashion as rumor. We have studied a reactive situation where there is a time

lag in the detection of rumor and a local authority attempts to stop the rumor

by starting an anti-rumor once the rumor is detected. We found that the time

lag is an important parameter. We also studied a proactive situation where

beacons embedded in the network detect and fight rumor. Further, we studied

the situation where individual citizens attempt to fight the rumor, no role of

any authority is assumed and found that this way of fighting rumor is the most

effective among other models. We believe our work is a first step in the direction

of studying the efficacy of natural processes that can be employed to fight the

spread of rumors in social networks, and may, by virtue of their distributed and

organic nature succeed where authoritarian strategies have clearly failed.
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Figure 3: Quality of Approximation: Delayed start model
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Figure 4: Quality of Approximation: Beacon model
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Figure 6: Behavior of time varying metrics: Delayed Start Model
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Figure 8: Growth of Infected vs. Out-break size: Delayed start model
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Figure 9: Rumor growth: Beacon Model
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Figure 10: Behavior of time varying metrics: Beacon Model
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Figure 12: Growth of Infected vs. Out-break size: Beacon model
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Figure 13: Rumor growth: Neighborhood Model
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Figure 14: Behavior of time varying metrics: Neighborhood Model
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Figure 16: Growth of Infected vs. Out-break size: Neighborhood model
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