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4.1 Preliminaries

The FKG inequality allows us to lower bound the probability of the inter-
section of two increasing events. However, getting a general upper bound is
difficult. So we try to upper bound a different kind of event which is con-
tained in the intersection. Let us try and motivate this through an example.

In this lecture unless otherwise stated, all paths mentioned are open
paths.

Given x, y, u, v ∈ Z
2, we define the following events:

• A : There exists a path between the nodes x and y

• B : There exists a path between the nodes u and v

• A ∩ B : There exists a path between the nodes x and y and a path
between u and v

Note that for an outcome that satisfies the event A ∩ B, the two paths
in question might overlap on some edges (we focus only on edge overlaps not
on vertext overlaps). However, we can think of a subset of these outcomes
where this is not the case. We use the notation A ◦ B to denote this i.e. we
define A ◦B as the event where the edges used by the x− y path are disjoint
from those used by the u − v path.

It is easy to see that

A ◦ B ⊆ A ∩ B,

which implies that

P (A ◦ B) ≤ P (A ∩ B).

Let us try to formalize this notation. Given an outcome ω ∈ Ω, recall
that K(ω) = {e : ω(e) = 1}. Then, we can say that for increasing events A
and B, ω ∈ A ◦ B, if there exists ω1, ω2 such that,
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• ω1 ∈ A, ω2 ∈ B

• K(ω1) ∩ K(ω2) = ∅

• K(ω1) ∪ K(ω2) ⊆ K(ω)

i.e. the set of open edges of ω can be partitioned into two parts such that
the two events involved can be satisfied by assigning one partition each to
them and giving them use only of the edges in that partition.

Why have we constrained this definition to increasing events? Consider
the following non-increasing events:

• E : There exists an even number of open edges.

• O : There exists an odd number of open edges.

Here, E ∩ O = ∅, but E ◦ O 6= ∅. Take ω, ω1, ω2 such that |K(ω)| = 17,
|K(ω1)| = 10 and |K(ω2)| = 7.

4.2 BK inequality

We will mainly use the BK inequality in the bond percolation setting, but
let us state it in slightly more general way.

Given a positive integer m, let Γ =
∏m

i=1{0, 1} and F be the set of all
subsets of Γ. Let P be a product measure on (Γ,F) with density p(i) on the
i-th coordinate of vectors on Γ i.e. defining µi(1) = p(i) and µi(0) = 1−p(i),

P =

m
∏

i=1

µi.

The following result, proved by van den Berg and Kesten in 1985, is
referred to as the BK inequality

Theorem 4.1 (BK Inequality)For two increasing events A and B,

P (A ◦ B) ≤ P (A) · P (B).
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Proof. We begin by taking the probability space (Γ,F , P ) and producing
two identical copies of it: S1 = (Γ1,F1, P1) and S2 = (Γ2,F2, P2). The
product space of these two spaces, S is defined as

S = S1 × S2 = (Γ1 × Γ2,F1 ×F2, P12),

where P12 = P1 · P2 i.e. if A1 ∈ F1, and A2 ∈ F2, then A12 = A1 × A2 ∈
F1 × F2, and P (A12) = P1(A1)P2(A2).

We will write x × y for a typical point in Γ1 × Γ2 with x = (x1, . . . , xm)
being a point in Γ1 and y = (y1, . . . , ym) ∈ Γ2.

Based on the two increasing events A, B in the original space (Γ,F , P ),
we define the following events in the product space: A′ is the set of all points
x × y ∈ Γ1 × Γ2 such that x ∈ A. Note that A′ = A × Γ2.

Also, B′

k is the set of all points x × y such that the composite vector
(y1, . . . , yk, xk+1, . . . , xm) ∈ B, 0 ≤ k ≤ m.

Let us take an example. Consider the event B = {0110, 0111, 1111, 1110}.
In words we can say that B is the event that the second and third component
of the outcome vector are both 1. Then, (0000, 1111) ∈ B′

3 because the
composite vector for the subscript 3 is 1110 which has the required condition.
On the other hand (0000, 1111) is not in B′

1 because the composite vector in
that case is 1000.

Note that, B′

0 = B × Γ2 i.e. the set of point x × y ∈ Γ1 × Γ2 such that
x ∈ B in the original space Γ. Hence we can now see that

P (A ◦ B) = P12(A
′ ◦ B′

0) (1)

Similarly, B′

m = Γ1 × B. And this implies that A′ ◦ B′

m = A′ ∩ B′

m since
the two events A′ and B′

m depend on disjoint sets of points. Using this fact
and the fact that P12 is a product measure we get,

P12(A
′ ◦ B′

m) = P12(A
′ ∩ B′

m) (2)

= P12((A × Γ2) ∩ (Γ1 × B)) (3)

= P (A)P (B) (4)

In order to complete the proof we relate P12(A
′ ◦B′

0) and P12(A
′ ◦B′

m) in
the following way:
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Figure 1: A pictorial depiction of Γ1×Γ2. A is the event that there is at least
one 1. B is the same as A. E = (A′◦B2)\(A′◦B1), F = (A′◦B′

1)∩(A′◦B′

2) =
A′ ◦ B′

1.

Claim 4.2

P12(A
′ ◦ B′

k−1) ≤ P12(A
′ ◦ B′

k), for 1 ≤ k ≤ m.

If this claim holds, it follows from (1) and (2-4) that

P (A ◦ B) = P12(A
′ ◦ B′

0) ≤ P12(A
′ ◦ B′

m) = P (A)P (B).

And this completes the proof of the BK inequality.
We have omitted the proof of Claim 4.2 here. But let us try and under-

stand the intuition behind it. Let us take m = 3 i.e. Γ is a sample space
with 8 possible outcomes, each a vector with 3 components. Define the event
A as follows : At least one of the components is 1. We define the event B to
be identical to A.

In Figure 1 we pictorially depict the outcomes corresponding to A′ ◦ B1

and A′ ◦ B2. The reader can verify that we find that A′ ◦ B1 is properly
contained in A′ ◦ B2. We do not claim that this is always true, but it gives
us an idea of the direction the proof would take.
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Figure 2: Path crossing B(m) to reach B(m + k)

4.3 Applications of BK inequality

4.3.1 Example 1

Suppose X is a random variable and P [X > n] = k(α)/nα.
Then, limn→∞P [X > n] = 0. If α ≤ 1, E[X] =

∑

∞

n=1 P [X > n] → ∞ as
n → ∞.

Let, χ(p) = Ep(|C|). Denote by ∂B(n), the boundary of the box B(n).
Let x ↔ y denote that there is an open path between x and y. Then, we
have the following theorem.

Theorem 4.3 If χ(p) < ∞, there exists σ(p) > 0 such that,

Pp[0 ↔ ∂B(n)] ≤ e−nσ(p).

Proof. Let the random variable Nn be the number of nodes of ∂B(n) to
which the origin is connected. For x ∈ ∂B(n), define τp(0, x) = Pp[0 ↔ x].

Then, Ep[Nn] =
∑

x∈∂B(n) τp(0, x). It follows that,

0 ↔ ∂B(m + k) ⊆
⋃

x∈∂B(m)

(0 ↔ x) ◦ (x ↔ ∂B(k, x))
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In Figure 2, B(k, x) is the box centered at x ∈ ∂B(m) of side length 2k.
The above relationship holds because a path from the origin to a point on
the boundary of B(m + k) must intersect the boundary of B(m) at some
point x and from x there will be another path to a point on the boundary
of B(k, x). Note that these paths are edge-disjoint. But not all paths of the
latter type are of the former type (e.g. when the path ends inside B(m+k)).
Hence, the former is a subset of the latter.

From this we get,

Pp[0 ↔ ∂B(m + k)] ≤
∑

x∈∂B(m)

Pp[(0 ↔ x) ◦ (x ↔ ∂B(k, x))]

≤
∑

x∈∂B(m)

Pp[0 ↔ x] · Pp[x ↔ ∂B(k, x)]

=
∑

x∈∂B(m)

τp(0, x) · Pp[0 ↔ ∂B(k)]

= Pp[0 ↔ ∂B(k)]
∑

x∈∂B(m)

τp(0, x)

= Ep[Nm] · Pp[0 ↔ ∂B(k)].

The inequality on the second line follows from BK inequality, and the
equality on the third line follows from translation invariance.

Now we are going to establish the relation between Ep[Nn] and χ(p).

∞
∑

n=1

Ep[Nn] =
∞

∑

n=1

∑

x∈∂B(n)

τp(0, x)

=

∞
∑

n=1

∑

x∈∂B(n)

Ep[Cx]

= Ep(|C|)

= χ(p).

Since,
∑

∞

n=1 Ep[Nn] < ∞, limn→∞Ep[Nn] = 0. Choose an m∗ such that,
η = Ep[Nm∗ ] < 1.

Suppose, n = rm∗ + s, where r ≥ 0, 0 ≤ s < m∗.

Pp[0 ↔ ∂B(n)] ≤ Pp[0 ↔ ∂B(rm∗)]

≤ ηPp[0 ↔ ∂B((r − 1)m∗)]

6



≤ ..........................

≤ ηrPp[0 ↔ ∂B(0)]

≤ η(1+ n
m∗ )

= e−nσ(p).

Here, σ(p) = f(m∗) is only a function of p independent of n.

4.3.2 Example 2

Consider the network G depicted in Figure 3. There are n nodes from s to
t. Each node is connected to its two neighbours by log n paralell edges.

...........
s t

Figure 3: A multi-edged network

Now suppose each edge is removed with probability 1/2, to give a network
G′.

Problem 1 Prove that the min cut between s and t in G′ is at most log n/2
with probability 1 − Θ( 1

nǫ ) for some non-negative ǫ. What is the value of ǫ?

Solution. We are assuming that all logarithms are in base 2. If the base is
different, some coefficients may change.

Lets define the following events.

• A : There exists at least one s − t path.

• Ak: There exist at least k edge-disjoint s − t paths.

Then, Ak = A ◦ ... ◦ A (k times). Since A is an increasing event, by BK
inequality,

P (Ak) ≤ P (A)k
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Let the vertices of the graph be numbered as s = v1, v2, ..., vn−1, vn = t
(from the left). There exists an s− t path if and only if there is at least one
edge between each of the nodes vi and vi+1 for 1 ≤ i ≤ n− 1. Let Bi denote
this event. Then,

Bi = 1 −
1

2log n
= 1 −

1

n
,

as 1
2log n is the probability that all the log n edges will be removed.

Now,

A =
n−1
⋂

i=1

Bi

and the Bi’s are independent of each other. Therefore,

P (A) =
n−1
∏

i=1

P (Bi) =
n−1
∏

i=1

(

1 −
1

n

)

=

(

1 −
1

n

)n−1

.

We know that for n ≥ 2,

P (A) =

(

1 −
1

n

)n−1

≤
1

2
.

Hence,

P (Ak) ≤ P (A)k

≤ 2−k.

Setting k = log n/2 we get,

P (Alog n/2) ≤ (2log n)−1/2

=
1

n1/2
.

By Menger’s Theorem,

Size of a minimum s− t cut = Maximum number of edge-disjoint s− t paths

From the above discussion, the probability that the number of edge-
disjoint s − t paths is at most log n/2 is 1 − Θ

(

1
n1/2

)

. Hence, the min-cut

between s and t in G′ is at most log n/2 with probability 1 − Θ
(

1
n1/2

)

, im-
plying ǫ = 1

2
.

8


