
CSL863: Expander graphs and their applications Amitabha Bagchi
Scribes: Dravyansh Sharma, Sai Praneeth IIT Delhi

Lecture 1: A local algorithm for low conductance
clusters using the Lovasz-Simonovits Theorem

30/3, 31/3 and 6/4 2015

1.1 Introduction

1.1.1 Motivation

Clustering is the task of grouping vertices of a graph which are more tightly
knit than others. In the age of the internet and large social networks, these
networks tend to be prohibitively large to run algorithms of time complexity
larger than Õ(n) 1. In some cases, like the internet for example, it would be
impossible to access all of the nodes even once. This calls for more near-linear
and local approaches.

1.1.2 Local Clustering

We say that the graph is a local algorithm if at each step it only examines
the neighbors of the current vertex. Given a graph and a vertex v, we want
to construct a local algorithm which examines T vertices to return a good
cluster of size at least T/2 containing v, if it exists. This procedure can then
be used to construct a near linear clustering algorithm.

Observe that if v is present in a good cluster, then a random walk starting
from v would mostly be contained within the cluster. Thus the set of vertices
which had the highest probability of reaching would be a good guess for the
cluster. Hence our procedure would be to estimate the probability of reaching
each vertex from v by performing a random walk starting from v, select k
nodes which have the highest probability, and check if they form a good
cluster. If not repeat till some predetermined limit is reached.

To show that the above algorithm works, we need to show some local
bounds instead of global bounds involving λ2 (the second largest eigenvalue of
the adjacency matrix). Such bounds are given to us by the Lovász-Simonovits
Theorem.

1Õ(·) hides constants and polylog factors
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1.2 Preliminaries

Graphs and Random Walks

We are given a weighted graph G = (V,E) with the adjacency matrix A and
weight function a where edge (u, v) has weight au,v. We define the normalized
adjacency matrix M for the graph G as

mu,v =
au,v∑
w

au,w

A random walk over G is defined as follows. If the position at time t is
at vertex u, then mu,v is probability with which we will be at v at time t+ 1.
Thus a random walk is a Markov process with the transition matrix defined
by M .

For node u ∈ V denote by du the total weight of edges going out of u,
i.e. du =

∑
w|(u,w)∈E auw. Let D be the diagonal matrix diag(d1, d2 . . . , dn)

consisting of weighted degrees of all nodes. Note that by the definition of M ,
the vector mu· =

au·
du

, giving M = D−1A. Thus given any matrix A with non-
negative entries, we can obtain the corresponding transition matrix M by this
normalization procedure. Also note that if p is a probability distribution on
V , then pM denotes the probability distribution after a single step of the
random walk.

Definition 1. A matrix M is said to be diagonally dominant if for every
row the magnitude of the diagonal entry is at least as much as the sum of
absolute values of all other entries in the row, i.e.

|mii| ≥
∑
j 6=i

|mij| for all i

A random walk whose normalized adjacency matrix M is diagonally dom-
inant is said to be a lazy random walk. Note that mii ≥ 1/2 for each i and
so at each step we remain at the current vertex with probability at least 1

2
.

It is known that diagonally dominant matrices with non-negative entries are
positive semi-definite [1] and eventually converge to a stationary distribution
[2] given by

q(u) =
du∑
v∈V dv
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po denotes the initial probability distribution and pt similarly denotes the
probability distributions after t steps of the random walk.

pt = poM
t

Conductance of Sets

We call a clustering good if it has many more internal edges than external
edges. This notion is formalized by the conductance of a set.

Definition 2. For a set S ⊆ V such that
∑

u∈S du ≤
1

2

∑
v∈V dv, the con-

ductance of the set is

Φ(S) =

∑
u∈S,v∈V \S

auv∑
u∈S

du

The conductance of the graph Φ(G) = min
S⊂V

Φ(S).

When the graph G being considered is obvious from context, Φ(G) is
simply denoted by Φ. The conductance of the set S can alternatively be
seen as the probability of a random walk on G leaving the set S in a single
step, given that the initial probabilities over the vertices are the stationary
distribution restricted to S.

Theorem 1. Given that po(u) =
du∑

v∈S
dv

for u ∈ S, and 0 elsewhere, Pr[

leaving S in a single step] = Φ(S)

Proof. Pr[leaving S] =
∑

u∈S,v∈V \S
Po(u)muv =

∑
u∈S,v∈V \S

du∑
w∈S dw

auv
du

= Φ(S).

Alternatively, the above can be restated as given the initial distribution
is Po, the set S leaks or loses a probability mass of Φ(S) in one step. Thus
the conductance of the graph represents a bottleneck for random walks to
converge to stationary distribution. Let S∗ denote the set for which Φ(S∗) =
Φ. In each step of the random walk starting from Po defined on S∗, we lose

atmost Φ. Thus to lose a probability mass of 1/4, we need at least
1

4Φ
.
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Remark 1. We had initially proved the same bound on the mixing time
tmix(

1
4
) ≥ 1

4Φ
, which is the time for which the distance of the probability from

uniform to be 1
4
. This had been derived from the definitions of mixing time,

conductance and markov chains (refer to Theorem 7.3 of [3] for the formal
statement and proof).

Lovász-Simonovits Theorem

We now have the required background to state the Lovász-Simonovits The-
orem.

Theorem 2. Let A be a non-negative diagonally dominant matrix corre-
sponding to the adjacency matrix of a graph G = (V,E). Let M be the
transition matrix realizing the corresponding random walk. Let p0 be any
initial probability distribution on the vertices, and let pt = p0M

t, for each
positive integer t. Further, for each t, let πt be the permutation such that

pt(πt(1))

dπt(1)

≥ pt(πt(2))

dπt(2)

≥ · · · ≥ pt(πt(n))

dπt(n)

For some T ≥ 1, let

φ := min
0≤t≤T

min
1≤k<n

Φ({πt(1), πt(2), . . . , πt(k)})

Then for each W ⊆ V ,

|
∑
w∈W

pT (w)− q(w)| ≤ min{
√
x,
√
σ − x}

(
1− φ2

2

)t
,

where x =
∑

w∈W dw, σ =
∑

v∈V dv and q denotes the steady-state distribu-
tion.

For some time t and k, the term Φ({πt(1), πt(2), . . . , πt(k)}) is called a
sweep-cut. Thus φ is the smallest sweep-cut seem by the random walk in the
T steps of the random walk. This captures the local nature of the bounds
we want as opposed to the global bounds captured by Φ.

Remark 2. We know that
∑
v∈V
|pT (v) − q(v)| ≤

√
n(1 − λ2)t. For a proof

of this see Chapter 4.3 of [3]. Though the forms look similar, two crucial
differences exist in the L-S theorem - the restriction to any arbitrary W ⊆ V
and that the summation is inside the modulus. The former makes the L-S
theorem stronger, while the latter makes it weaker.
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We are going to prove the Lovász-Simonovits Theorem (Theorem 2) for
the special case when the weights are binary, i.e. auv ∈ {0, 1} for all u 6= v,
and G is obtained from a simple (self-loop free) undirected graph by replacing
each edge by two oppositely directed edges between the same nodes and
adding the minimal number of self-loops to make A diagonally dominant.
Clearly, this corresponds to the addition of one self-loop for each (directed)
edge.2 In this case, |E| = 2m, where m denotes the number of self-loops in
the graph. We remark that the present arguments can be readily extended
to establish the theorem in the general case.

Given a probability distribution p on V , we define an edge measure ρp(e)
as the probability that a single step random walk will cross the edge e starting
from initial distribution p, i.e.

ρp(u, v) =
p(u)

du

Note that ρp(u, v) depends only on u and hence can be shortened to
just ρp(u). Note that for the stationary distribution q(u) = du

2m
, we have

ρq(e) = 1
2m

for each edge e ∈ E.
We will mostly be working with the distributions pt, 0 ≤ t ≤ T in the

statement of Theorem 2. Hence, for notational convenience we will often
write ρpt(u, v) and ρpt(u) as simply ρt(u, v) and ρt(u) in the following. Also,
we might drop the distribution p from the subscript when it is evident from
context. The key insight of the proof is to study the variation with time of
what we define below as the Lovász-Simonowitz curve.

Definition 3. The Lovász-Simonowitz curve is a function I : [0, 2m]→ [0, 1]
associated with a distribution p on V . If ρ is the edge measure induced by p,
we order the edges in E = {e1, e2, . . . , e2m}, as

ρ(e1) ≥ ρ(e2) ≥ · · · ≥ ρ(e2m)

and define for each integer k ∈ [0, 2m]

I(k) =
k∑
i=1

ρ(ei)

2More formally, starting with a simple undirected graph G′ = (V ′, E′), we place two

directed edges (u, v) and (v, u) in the place of each undirected edge (u, v). If d̂u denotes

the out-degree of a vertex u in this graph, we place exactly d̂u self loops at u and denote
the new degree of this vertex by du = 2d̂u. The adjacency matrix A of the final graph
G = (V,E) is given by au,u = d̂u, au,v = 1 iff (u, v) ∈ E, u 6= v and 0 otherwise.
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At the remaining points x ∈ (k, k + 1) (where k ∈ Z ∩ [0, 2m]), I(x) is given
by the straight line joining (k, I(k)) and (k + 1, I(k + 1)), i.e.

I(x) = (k + 1− x)I(k) + (x− k)I(k + 1)

Intuitively, It(k) measures how much probability is transported over the
k most utilized edges. Here we describe some of the properties of the L-S
curve.

1. As the walk converges, It should eventually converge to a straight line.

2. It(0) = 0, It(2m) = 1. On convergence to stationary, It(x) =
x

2m

3. The slope of It between k and k + 1 is given by It(k + 1) − It(k) =
ρt(ek+1).

4. Since all edges going out of a vertex u have the same ρt(u), we can
order the edges (according to πt) such that the outgoing edges are
consecutive.

5. It is non-decreasing and concave i.e. It((x+ y)/2) ≥ (It(x) + It(y))/2

By point 4 above, It can be viewed as |V | piecewise linear components. We
will refer to the end points of these components as the hinge points of the
curve It.

Figure 1: The Lovász Simonovitz Curve
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1.3 Proof of the L-S Theorem

Lemma 1. For any 0 ≤ c1, c2, . . . , cj ≤ 1, 1 ≤ j ≤ 2m

j∑
i=1

ciρ(ei) ≤ I(

j∑
i=1

ci)

Proof. This is immediate from the concavity and monotonicity of I. Let

c =
j∑
i=1

ci denote the sum of weights. Intuitively, we can use the fact that the

slope of I is non-negative and non-increasing and hence the weighted sum
(with weights at most 1) of slopes in the first j intervals of the form [k, k+1]
(for integer k) can only increase if the weights are shifted left to the interval
[0, c].

Before proving the next lemma, note that ρ becomes the uniform (con-
stant) measure at stationarity and hence I becomes a straight line joining
(0, 0) and (2m, 1). Since, It is concave initially (and for any non-stationary
distribution) with the same end points, it seems natural to conjecture that
the curve decreases at each step till it finally becomes a straight line. This
is indeed the case, as we show next.

Lemma 2. For any 0 < t ≤ T and k a hinge point of It,

It(k) ≤ It−1(k)

Proof. Let W denote the multiset of source vertices corresponding to the
first k edges (Et) according to permutation πt, and W ′ be the corresponding
set. Let N(u) = {v ∈ V | (u, v) ∈ E} for each u ∈ V denote the neighbors
of node u. Since k corresponds to a hinge point of It, {(u, v) | u ∈ W ′, v ∈
N(u)} = {(u, v) | u ∈ W ′, (u, v) ∈ E} = Et. Now

It(k) =
k∑
i=1

ρt(ei) (where ei are ordered according to πt)

=
∑
u∈W

ρt(u)

=
∑
u∈W

pt(u)

du

=
∑
u∈W ′

pt(u) (since k is a hinge point of It)
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Further, since G is assumed to have been obtained from an undirected graph,
u ∈ N(v) if and only if v ∈ N(u). This gives

It(k) =
∑

u∈W ′,u∈N(v)

pt−1(v)mvu

=
∑

u∈W ′,v∈N(u)

pt−1(v)

dv

=
∑

(u,v)∈Et

ρt−1(v)

Now we use Lemma 1 about the LS-curve with j = 2m, ci = 1 if ei ∈ Et and

ci = 0 otherwise. Here
j∑
i=1

ci = |Et| = k. This gives

It(k) =
∑
i

ciρt−1(ei)

≤ It−1(k)

as desired.

In the lecture, it was further conjectured that the above proof can be
extended to all k ∈ [0, 2m]. With some additional effort, it seems possible
to extend the above proof to this case. For sake of continuity, the proof of
this fact has been relegated to the appendix. Thus, the curve It decreases
at all points as t increases, losing its concavity at each step until it finally
becomes a straight line at steady-state. We now attempt to get a stronger
result, quantifying the decrease with t using the conductance Φ(G) = Φ. It
should then be possible to use this to bound the convergence rate.

Theorem 3. For every distribution p0 on V , 0 < t ≤ T we have the follow-
ing. If x ∈ [0,m], then

It(x) ≤ 1

2
(It−1(x− 2φx) + It−1(x+ 2φx))

Similarly for each x ∈ [m, 2m],

It(x) ≤ 1

2
(It−1(x− 2φ(2m− x)) + It−1(x+ 2φ(2m− x)))
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Proof. It is not a priori clear why the terms on the right hand side of the
above inequalities are even well-defined. We will show this later in the proof.
Assuming this is indeed the case, the theorem implies that It lies below a
chord of It−1. From Figure 2 it is further evident that if φ increases, then
the chord gets lowered, and hence the convergence rate increases.

Figure 2: Dependence of convergence on φ

We will prove the theorem only for hinge points k. As in Lemma 2 on
the monotonic decrease in the LS-curve, this case constitutes the heart of
the proof and with some additional care it is possible to extend the result to
any x ∈ [0, 2m].

Let k = x. Also let W = {u1, u2, . . . , uk} be the source vertices corre-
sponding to the edges e1, e2, . . . , ek sorted according to π(t), and v1, v2, . . . , vk
be the corresponding destination vertices. As noted in the proof of Lemma
2,

It(x) =
k∑
i=1

ρt(ui, vi) =
k∑
i=1

ρt−1(vi, ui) (1)

We note that the sum on the right is on set of the reversed edges E ′ =
{(vi, ui) | 1 ≤ i ≤ k}. Clearly, |E ′| = k = x. To handle both the cases of the
theorem simultaneously, we replace W by its complement in the following if
x > m and define y = m− |m− x|.

Define W1 = {(vi, ui) | (ui, vi) ∈ W, vi 6= ui} as the edges in E ′ internal to
the set W and W2 = E ′ \W1 as the union of external edges entering W and
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self-loops of W .3 Note that the cut defined by W is a sweep cut as defined
earlier. Thus, of the x edges starting in W , x

2
are self loops and at least φy

leave W . Thus,

|W1| ≤ x− x

2
− φy =

x

2
− φy

and
|W2| = x− |W2| ≥

x

2
− φy

For each edge e = (v, u) ∈ W1 we associate a unique self-loop e′ at node v.
We note that ρ(e) = ρ(e′) = ρ(v). Let W ′

1 denote the set of edges in W1 along
with these associated self-loops. Now

∑
e∈W ′1

ρt−1(e) = 2
∑

e∈W1
ρt−1(e) by

the previous observation. Applying Lemma 1 again with j = 2m and weights
ci = 1 if ei ∈ W ′

1, ci = 0 otherwise, we get∑
e∈W1

ρt−1(e) =
1

2

∑
e∈W ′1

ρt−1(e)

≤ 1

2
It−1(|W ′

1|)

Note that |W ′
1| = 2|W1| ≤ x − 2φx and It−1 is monotonic, and hence

1
2
It−1(|W ′

1|) ≤ 1
2
It−1(x − 2φy), giving us part of the right hand side of the

desired inequality. But this uses an upper bound on |W1|, and we cannot
adapt the above argument for the remainder of the inequality as we only
have a lower bound on the size of W2. We instead use concavity of I in a
clever way in the following.

Like the previous argument, we augment W2 to W ′
2 by adding edges out-

sideW2 with corresponding sources. As before we use a bijection between self-
loops and non-self-loops (sharing a common source) to get an edge e′ /∈ W2 for
each e ∈ W2. Explicitly, for each external edge e = (v, u) entering W we add
the corresponding self-loop e′ (outside of W ) and for each self-loop e ∈ W2

(inside of W ) we add the corresponding non-self-loop edge with the same
source (starting in W ). Thus, W ′

2 has 2|W2| distinct edges and reasoning
as above we get

∑
e∈W2

ρt−1(e) ≤ 1
2
It−1(|W ′

2|). Putting the two inequalities
together and using (1), we get

It(x) ≤ 1

2
It−1(|W ′

1|) +
1

2
It−1(|W ′

2|)

3This follows from the hinge point assumption on k and that G was constructed from
an undirected graph. Thus E′ consists of reversals of exactly the set of edges with source
in W .
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Also, we have

|W ′
1| = 2|W1| ≤ x− 2φy ≤ x+ 2φy ≤ 2|W2| = |W ′

2|

Figure 3: Using concavity of I to prove Theorem 3

Since 0 ≤ |W ′
1| and |W ′

2| ≤ 2m, the above implies that the inequalities in
the theorem are well-defined. Also, by concavity of It−1, the chord joining
(|W ′

1|, It−1(|W ′
1|)) and (|W ′

2|, It−1(|W ′
2|)) lies below the chord joining (|x −

2φy|, It−1(x−2φy)) and (x+2φy, It−1(x+2φy)) (see Figure 3). In particular,
this is true for the respective mid-points which coincide at x,4 and hence

It(x) ≤ 1

2
It−1(|W ′

1|) +
1

2
It−1(|W ′

2|) ≤
1

2
It−1(x− 2φy) +

1

2
It−1(x+ 2φy)

We now proceed to establish the Lovász-Simonovits Theorem (Theorem
2). To this end, we define a family of functions {Rt}t≥0 inductively as follows

Rt(x) =


min{

√
x,
√

2m− x}+ x
2m

if t = 0, x ∈ [0, 2m]
1
2

(Rt−1(x− 2φx) +Rt−1(x+ 2φx)) if t > 0, x ∈ [0,m]
1
2

(Rt−1(x− 2φ(2m− x)) +Rt−1(x+ 2φ(2m− x))) if t > 0, x ∈ [m, 2m]

We now make the following observation.

4Note that
|W ′

1|+|W
′
2|

2 = |W1|+ |W2| = x, x−2φy+x+2φy
2 = 2
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Lemma 3. It(x) ≤ Rt(x) for any 0 ≤ t ≤ T and x ∈ [0, 2m].

Proof. We do an induction on t. For t = 0, we have the following three cases

1. 1 < x < 2m− 1: I0(x) ≤ 1 ≤ R0(x).

2. x ∈ [0, 1]: I0(x) ≤ x ≤
√
x ≤ R0(x).

3. x ∈ [2m−1, 2m]: Note that R0(x) =
√

2m− x+ x
2m

. Let y = 2m−x ∈
[0, 1]. Then we have

R0(x) =
√
y +

2m− y
y

= 1 +
√
y − y

2m
≥ 1 +

√
y − y

≥ 1 ≥ I0(x)

For t > 0 we use the inductive hypothesis together with Theorem 3 to con-
clude that

It(x) ≤ 1

2
(It−1(x− 2φy) + It−1(x+ 2φy))

≤ 1

2
(Rt−1(x− 2φy) +Rt−1(x+ 2φy)) = Rt(x)

where y = m− |m− x|.

To finish the proof, it suffices to now show that

Rt(x) ≤ min{
√
x,
√

2m− x}
(

1− φ2

2

)t
+

x

2m
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For t = 0 this holds with equality. For t > 0, x ∈ [0,m]

Rt(x) =
1

2
(Rt−1(x− 2φx) +Rt−1(x+ 2φx))

≤ 1

2

(
min{

√
x− 2φx,

√
2m− (x− 2φx)}

(
1− φ2

2

)t−1

+

min{
√
x+ 2φx,

√
2m− (x+ 2φx)}

(
1− φ2

2

)t−1
)

+
x

2m

≤ 1

2

(√
x− 2φx

(
1− φ2

2

)t−1

+
√
x+ 2φx

(
1− φ2

2

)t−1
)

+
x

2m

=
1

2

(
1− φ2

2

)t−1√
x
(√

1− 2φ+
√

1 + 2φ
)

+
x

2m

≤ 1

2

(
1− φ2

2

)t−1√
x

((
1− φ− 4φ2

8

)
+

(
1 + φ− 4φ2

8

))
+

x

2m

=
1

2

(
1− φ2

2

)t−1√
x.2

(
1− φ2

2

)
+

x

2m

=

(
1− φ2

2

)t√
x+

x

2m

= min{
√
x,
√

2m− x}
(

1− φ2

2

)t
+

x

2m

where we have used the binomial expansion identity to obtain the last in-
equality and x ∈ [0,m] for the last equality. The case t > 0, x ∈ [m, 2m] is
similar,

Rt(x) =
1

2
(Rt−1(x− 2φ(2m− x)) +Rt−1(x+ 2φ(2m− x)))

≤ 1

2

(
min{

√
x− 2φ(2m− x),

√
2m− (x− 2φ(2m− x))}

(
1− φ2

2

)t−1

+

min{
√
x+ 2φ(2m− x),

√
2m− (x+ 2φ(2m− x))}

(
1− φ2

2

)t−1
)

+
x

2m
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≤ 1

2

(√
(2m− x) + 2φ(2m− x)

(
1− φ2

2

)t−1

+

√
(2m− x)− 2φ(2m− x)

(
1− φ2

2

)t−1
)

+
x

2m

=
1

2

(
1− φ2

2

)t−1√
2m− x

(√
1 + 2φ+

√
1− 2φ

)
+

x

2m

≤ 1

2

(
1− φ2

2

)t−1√
2m− x

((
1 + φ− 4φ2

8

)
+

(
1− φ− 4φ2

8

))
+

x

2m

=
1

2

(
1− φ2

2

)t−1√
2m− x.2

(
1− φ2

2

)
+

x

2m

=

(
1− φ2

2

)t√
2m− x+

x

2m

= min{
√
x,
√

2m− x}
(

1− φ2

2

)t
+

x

2m

This together with Lemma 3, which bounds the LS-curve from above by
Rt, establishes the proof of Theorem 2.

We can extend the proof of the Lovász-Simonovits Theorem to obtain the
following corollary.

Corollary 1. With the notation and assumptions as in Theorem 2, we have

|
∑
w∈W

pT (w)− q(w)| ≤ min{
√
x,
√
σ − x}

(
1− Φ(W )2

2

)t
,

(See [4] for proof.)
This corollary can be used to design local clustering algorithms for graphs

whose running time is nearly linear in the size of the cluster returned. [5]

1.4 Local Clustering Algorithm

We use Theorem 2 for clustering as follows. We will always start with a
probability distribution p0 that has all its weight concentrated on one vertex.
If there is a cut S in the graph of conductance less than φo which is an input
to our algorithm, and that vertex is chosen at random from S, Theorem
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1 shows that, after 1
4φo

steps, most of the probability mass will still be in
S. This means that the distance from stationary distribution will be large,
and φ will have to be small by Theorem 2. φ can be computed by simply
computing the sweep cuts after time T and checking the best of these cuts.

The problem with this approach is that computing all the probabilities
will be too slow. In particular after a constant number of steps we have too
many nonzero values. One solution proposed by Lovász and Simonovits is
to simply zero out the smallest probabilities and prove that it doesnt hurt
much.

Local Clustering in Linear Time

Let µ(S) =
∑

u∈S du for any S ⊆ V . Given a vertex v of G and parameters
0 < φ < 1 indicating bound on the conductance cluster and b ∈ Z+ governing
the size of the cluster returned, we have the following theorem.

Constant Value
l dlog2(µ(V )/2)e
t1 d 2

φ2
ln
(

200(l + 2)
√

(µ(V )/2)
)
e

th ht1
tlast (l + 1)t1

f1(φ)
1

280(l + 2)tlast

Table 1: Table of constants

Theorem 4. There exists an algorithm Nibble(G, v, φ, b) which runs in time
O(2b(log6m)/φ4) the output cluster C ⊆ V satisfies (see Table 1 for defini-
tions of l and f1(φ))

1. If C 6= ∅, Φ(C) ≤ φ and µ(C) ≤ 5/6µ(V ).

2. Let S ⊆ V be such that µ(S) ≤ 2/3µ(V ) and Φ(S) ≤ f1(φ). Then
∃S ′ ⊆ S with µ(S ′) ≥ 1/2µ(S) such that for any v ∈ S ′ if C =
Nibble(G, v, φ, b) 6= ∅, then µ(C ∩ S) ≥ 2b−1

3. S ′ can be partitioned into S ′0, S
′
1, . . . , S

′
l such that if v ∈ S ′b then C =

Nibble(G, v, φ, b) 6= ∅.
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We conclude the section with a presentation of the algorithm Nibble(G, v, φ, b).
For the definitions of various constants in Theorem 1 and Algorithm 1, see
Table 1.

Algorithm 1 Nibble(G, v, φ, b)

ε← 1

1800(l + 2)tlast2b

q0 ← χv (where χv(u) = δuv)
r0 ← [q0]ε ([.]ε denotes truncation of components below ε)
for t = 1 to tlast do

qt ← rt−1M
rt ← [qt]ε
Stj ← jth sweep set5 according to qt
if ∃j such that then

Φ(Stj) ≤ φ,
2b ≤ µ(Stj) ≤ 5/6µ(V ) and

Ix(2
b) ≥ 1

140(l+2)2b
(where Ix = ∂It(x)

x
)

Then C ← Stj
else

C ← ∅
Return C

1.5 Appendix

Lemma 4. For any 0 < t ≤ T and k ∈ [0, 2m],

It(k) ≤ It−1(k)

Proof. Note that since I is a linear extrapolation of its values at integral
points, it suffices to establish the lemma for all integral k ∈ [0, 2m]. Clearly,
It(k) = It−1(k) = 0. So we assume k > 0 in the following. As before, let W
denote the multiset of source vertices corresponding to the first k edges (Et)
according to permutation πt, W

′ be the corresponding set of vertices and
N(u) = {v ∈ V | (u, v) ∈ E} for each u ∈ V . Unlike Lemma 2, in this case
the vertex u∗ = argminu∈W ′ρ(u) may not have all its outgoing edges in Et.
Also, let W ′′ = W ′ \ {u∗}, E∗ = {(u∗, v) | (u∗, v) ∈ E} and d∗ = |E∗ ∩ Et|.
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Now

It(k) =
k∑
i=1

ρt(ei) (where ei are ordered according to πt)

=
∑
u∈W

ρt(u)

=
∑
u∈W

pt(u)

du

=
∑
u∈W ′′

pt(u) + pt(u
∗)
d∗

du∗

Further, since G is assumed to have been obtained from an undirected graph,
u ∈ N(v) if and only if v ∈ N(u). This gives

It(k) =
∑

u∈W ′′,u∈N(v)

pt−1(v)mvu +
∑

u∗∈N(v)

pt−1(v)mvu∗
d∗

du∗

=
∑

u∈W ′′,v∈N(u)

pt−1(v)

dv
+

∑
v∈N(u∗)

pt−1(v)

dv

d∗

du∗

=
∑

(u,v)∈Et\E∗
ρt−1(v) +

∑
(u,v)∈E∗

d∗

du∗
ρt−1(v)

Now we use Lemma 1 with j = 2m, and

ci(e) =


1 if e ∈ Et \ E∗
d∗

du∗
if e ∈ E∗

0 otherwise

Note that
j∑
i=1

ci = |Et \ E∗|+ |E∗| d
∗

du∗
= (k − d∗) + d∗ = k. This gives

It(k) =
∑
i

ciρt−1(ei)

≤ It−1(k)

as desired.
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