
CSL860: Routing in the presence of faults Amitabha Bagchi
IIT Delhi Scribe: Lukas Schwaighofer

Lecture 9: Emulating the faulty mesh with constant
slowdown

4th and 5th November, 2008

9.1 Motivation

In the last lecture we were showing that in a n×n p-faulty mesh with p > pc

we can achieve an embedding with O(log n) slowdown with high probability.
It is still an open problem if we can do better than that, i. e. if there is an
embedding with constant slowdown for p > pc. It can be shown, however,
that “holes”, regions containing too many faulty nodes, in the mesh of size
Θ(log n) will happen with high probability, resulting in an Θ(log n) dilation.

Θ(log n)

Figure 1: Holes of size Θ(log n)

Since the dilation has a direct influence on the slowdown we clearly cannot
achieve a constant slowdown with a direct embedding. We have to find a
smart way to avoid those holes.

9.2 A multi-embedding with constant slowdown

Theorem 9.1 Any computation on a fault-free m × m mesh G that takes

time T can be emulated by a faulty mesh H with at most log n
2

wost case faults

in O(T + n) time steps.

1

To prove this theorem we are first going separate areas containing defective
nodes in a way, that they are surrounded by enough functional nodes.

Definition 9.2 A finished box of size k is a 3k × 3k large part of the faulty

mesh that is divided into two regions as illustrated in Figure 2:

• The core, a square of size k × k in the middle of the box. This area

contains faulty nodes.

• The skirt, the area surrounding the core. All the nodes are functional

in this region.

core

skirt

3k

3k

k

k

k

Figure 2: A finished box of size k

Note that here we don’t care about the borders but assume that the nodes
on the left of the mesh are connected to the nodes on the right and same for
up and down.

The process of separating the errors into finished boxes can be achieved by
the following simple algorithm:

1. put each faulty node into a finished box of size 1

2. while there exist two finished boxes b1 and b2 that overlap:
Merge the two finished boxes to one larger finished box such
that the core of the new finished box is the smallest square
that covers the core of both b1 and b2. This step is illustrated
in Figure 3.

2

k1

k2 k2

k1

core of
merged box

< 2k1 + 2k2

overlapping
region

Figure 3: Merging two finished boxes with sizes k1 and k2

If this algorithm fails then we would have a finished box with core size > n
3
;

otherwise it has found a set of non-overlapping finished boxes where errors
are only found within the cores of finished boxes.

In Lemma 9.1 we will prove that a core of size n
3

contains at least log n/3
2

+

1 faulty nodes which is more than the log n
2

allowed faults. Therefore the
algorithm will always provide us with a set of finished boxes.

Lemma 9.1 With F (k) denoting the minimum number of faults in a core

of size k the following equation holds:

F (k) ≥
log k

2
+ 1

Proof by Induction: For k = 1, F (k) = 1 which satisfies the inequality. If a
core has size > 1, then it was created by merging two smaller finished boxes

with sizes 0 < k1, k2 < k. From Figure 3 we can easily see that

2k1 + 2k2 > k

k1 + k2 >
k

2

k1 + k2 ≥

⌊

k

2

⌋

+ 1 (1)

3

Using the induction hypothesis for the smaller boxes we get

F (k) ≥ F (k1) + F (k2)

≥
log k1

2
+

log k2

2
+ 2

using Equation 1 and setting k1 :=
⌊

k
2

⌋

and k2 := 1 in order to make this
inequality as small as possible we get

F (k) ≥
log

⌊

k
2

⌋

2
+

log 1

2
+ 2

≥
log k

2
+ 1

This concludes the proof for this lemma.

Knowing that we can separate all the errors within in the core of finished

boxes that do not overlap we will start working on the embedding. Since all
the nodes outside of finished boxes are fault-free, we will just map the nodes
in the original network corresponding to this region directly to these nodes.

In the next step, we construct a mapping to emulate a 3k×3k mesh with
a finished box of size k without using the core region, such that the slowdown
is constant. By applying this mapping to all regions corresponding to finished

boxes in our faulty mesh, Theorem 9.1 follows immediately.

To do this embedding we will define a new region, the patch, within the
3k × 3k mesh. The patch is a sub-mesh of size 2k × 2k centered in the
finished box. Note that the patch overlaps with the skirt in a ring-like area
around the core. This is illustrated in Figure 4.

The skirt and the patch now have two rings: a border ring, called b-ring, and
an internal ring, called i-ring. This is illustrated in Figure 5. The important
point here is, that the i-ring in both of the reason lies at least Θ(k) steps
away from the border. We will shortly take advantage of this fact.

Figure 5 also illustrates how we are going to embed the corresponding
3k × 3k subset of the fault-free mesh G within a finished box:

• The region corresponding to the skirt is mapped straight forward one-
to-one. This doesn’t cause any problems, because the skirt is fault-free.

4

3k

2k

k

skirt

3k

2k

k

patch

overlapping

region

Figure 4: Skirt and patch

• The region corresponding to the patch is mapped to a k
2
× k

2
sub-mesh

located to the right of the core. Since the patch-region covers 4k2 and
the new region only k2

4
nodes, each node has a load of 16 plus 1 for the

already embedded node of the skirt.

Note that we have embedded all the nodes in the overlapping region twice.

skirt

patch

k
2

i-rings

b-rings

Figure 5: The embedding with i-rings and b-rings

The next step is to connect the i-rings with the b-rings by constructing paths.
We only need paths from i-rings to b-rings (and not the other way around).

5

We will (without proof) use the fact that we can construct paths between
those rings with constant congestion and a length of Θ(k).

Let BH be the area of the finished box we are currently working with and BG

be the 3k × 3k sub-mesh of the non-faulty mesh G that corresponds to this
region. To formalize a run of the mesh we will use the following terms:

• s-pebbles 〈v, t〉: the state of node v at time t, ∀v ∈ BG, ∀t.

• c-pebbles [e, t]: the information sent on edge e, ∀e ∈ E(BG), ∀t.

Now, for each time step t the each node v ∈ BG does the following:

• compute the s-pebble 〈v, t〉

• compute and send the 4 c-pebbels [e1, t], [e2, t], [e3, t], [e4, t], one on each
outgoing edge

To emulate this process in our faulty mesh we will define “macrosteps” that
have to be executed for each m ∈ BH . A macrostep consists of the following
three steps:

1. computation step: for each v ∈ BG mapped to m, m creates a
s-pebble 〈v, t〉 provided m has computed 〈v, t − 1〉 and received the
c-pebbles [e, t − 1] for every edge e incident on v.

2. communication step: for every v ∈ BG s. t. m created 〈v, t〉 in this
macrostep generate [e, t] for all edges e incident on v. If [e, t] is needed
by a neighbor m′ ∈ BH forward [e, t] to m′.

3. routing step: If m lies on an i-ring, then m makes copies and forwards
any c-pebble sent to it in this macrostep to the node on the b-ring
corresponding to m.
All nodes (whether or not they lie on an i-ring) forward any c-pebble
that has not yet reached its destination.

The time taken for one macro step is as follows:
computation step ≤ 17
communication step ≤ 17 × 4
routing step = congestion of the path system = constant
Therefore, the execution of one macrosteps takes constant time only.

6

To show that using this embedding and executing these macrosteps indeed
gives a constant slowdown we will trace back the very last s-pebble S = 〈v, T 〉
that was created by a run of the system. We do that by building a dependency
tree, as shown in Figure 6, with S as the root. The children of S are all the
resources required to compute S: that is the previous s-pebble from the same
node and the four c-pebbles from the neighbors in BG. We are descending
the tree on the path that contains the object that was waited for the longest.
Since from any c-pebble there is only one path that leads to a s-pebble, we
get a critical path of s-pebbles: ST , ST−1, . . . , S0.

[e1, T − 1] [e2, T − 1] [e3, T − 1] [e4, T − 1]

〈v, T − 1〉 〈u1, T − 1〉 〈u2, T − 1〉 〈u3, T − 1〉 〈u4, T − 1〉

...

〈v, T 〉

Figure 6: Dependency tree, starting from 〈v, T 〉

Let τ(s) denote the number of macrosteps that were executed when the s-
pebble s was created and li the number of macrosteps taken to get si from
si−1; the total time taken (counted in makrosteps) can be expressed as

T ′ =
∑

0≤i≤T

(τ(si) − τ(si−1)) =
∑

0≤i≤T

li (2)

If all li along the critical path are 1 then we have only constant slowdown
because each macrostep takes only constant time.

For each i ∈ {1, . . . , T} where li > 1 we are (by construction of the critical
path) tracing a c-pebble back from a b-ring to an i-ring. Because the paths
between the rings have constant congestion and length Θ(k) this takes Θ(k)
steps. After that, our critical path continues from a node on an i-ring, which

7

is Θ(k) steps away from any border. That means li−1, li−2, . . . , lmax(1,i−q) = 1
for a q = Θ(k). Because li = O(n) we have a total complexity of O(T + n).
This concludes the proof of Theorem 9.1.

9.3 Increasing the error bound

The number of worst case faults from Theorem 9.1 can be improved such that
(log n)k worst case faults are allowed for a constant value k. Even though we
will not prove this here, we will give an idea on how to achieve this.

When a finished box is completely contained within the skirt of another, we
can do the same embedding internally with this box - this only boosts the
constant factor. With this in mind, we call all newly created finished boxes
level 0 boxes. In the merging step, if we find that a level 0 box is completely
contained within the skirt of another box, we do not merge them but call the
outer box level 1 box instead.

level 0 boxes

Figure 7: A level 1 box

We are not limited to level 1 boxes here – we can go up to level k boxes for
some constant value k. This gives us a fault tolerance of up to (log n)k with
a running time of O(T + kn).

This result can be even further improved, such that we get a constant time
embedding with up to n1−ǫ worst case faults for some constant ǫ. This result
however requires considerably more work and will not be discussed here.

8

