
CSL860: Routing in the presence of faults Amitabha Bagchi
IIT Delhi Scribe: Amitabha Bagchi

Lecture 3: The effect of faults on expansion I:
Adversarial faults

20th and 26th August and 9th September 2008

In this lecture and a subsequent lecture we will study the effect of faults
on the expansion of a network. We will begin in this lecture by studying the
effect of adversarial faults i.e. faults placed by a malicious adversary whose
goal is to degrade the expansion of the network.

More formally let us consider a graph G = (V, E). An adversary with
power f is a process which can delete at most f nodes from V to obtain a
vertex set Vf . The subgraph Gf = (Vf , Ef) induced by the vertex set Vf on
G is referred to as the faulty graph.

We will be concerned with the edge expansion α of G and Gf . Clearly
in the process of transforming G to Gf , an adversary intent on ruining the
expansion of a graph can create bottlenecks to make the expansion arbitrarily
bad. For example in Figure 1 we see that with with something like θ(

√
n)

faults the adversary can reduce the expansion of the
√

n×√n mesh to θ(1

n
).

√
n

√
n

Figure 1: An adversarial selection of faults on the mesh

However, it may still be possible to identify a large portion of the graph
whose expansion is relatively unaffected. A simple approach to this might
be to simply cut away those parts of the graph whose expansion has fallen
below a desired threshold and then see how much we have left. In the rest of
this lecture we prove that this intuitive approach actually works. We show

1

in Section 3.1 that if an adversary is given at most c · α · |V | faults to work
with, for some suitably small constant c, then it is always possible to obtain
a subgraph of Gf that has size θ(|V |) and expansion at least a constant times
α. We will also show, in Section 3.2, that up to a constant factor this is a
tight result in the sense that there is a class of graphs such that an instance
of this class with n vertices fall into pieces of size o(n) if the adversary has
the power to remove c1 · α · n vertices for a suitably large constant c1.

3.1 Tolerating a bounded number of adversarial faults

If the number of vertices in G is n, we show that if an adversary is allowed
no more than c · α · n faults, there always exists a subgraph of Gf called
H which has Θ(n) nodes and an expansion of Ω(α). In order to find this
H we proceed by pruning away those parts of Gf that have bad expansion.
We formalize this process below as an algorithm called Prune described in
Figure 2. First, we need to introduce some notation. Given a graph G, we
define ΓG(S) to be the set of nodes in the neighborhood of a node set S in
G. The algorithm generates a sequence of graphs G0 to Gm, where the final
graph Gm is the graph H we are looking for.

Algorithm Prune(ǫ)

1. G0 ← Gf ; i← 0

2. while ∃Si ⊆ V (Gi) such that |ΓGi
(Si)| ≤ ǫ · α|Si|

and |Si| ≤ |V (Gi)|/2

(a) Gi+1 ← Gi \ Si

(b) i← i + 1

3. end while

4. H ← Gi; m← i

Figure 2: The pruning algorithm

Note that we do not claim that Prune(ǫ) is a polynomial time algorithm.
In fact, any polynomial time implementation of this algorithm would be able
to find us the expansion of a graph in polynomial time, and that problem is

2

known to be NP-hard. This algorithm simply helps us prove the following
existential result:

Theorem 3.1 Let G be a graph with n nodes, maximum degree δ and node
expansion α. Suppose that the adversary can select at most f = αn

4δk2 faulty
nodes for some constant k > 1. Then, Prune(1− 1

k
) returns a subgraph H of

size at least n− f ·k

α
with expansion at least (1− 1

k
) · α.

Proof. Let us argue first that H has the required expansion. This clearly
follows from the fact that if it did not, then there would be a set with small
expansion which would qualify as a candidate for pruning. Now we move
on to proving the bound on the size of H given the restriction on f . Let S
be the union of all the regions culled by Prune(1 − 1

k
). We will show that

|S| ≤ k·f

α
by contradiction.

In order to do this we follow the simple intuition that in order to degrade
the expansion of a particular subset of nodes, it is necessary for the adversary
to make a large number of nodes in the neighbourhood of that subset faulty
where by large we mean a quantity linear in α ·n. But while it is easy to see
that this holds for individual sets, it is not clear that this holds for groups of
sets pruned by the algorithm, especially the ones that have edges into each
other. How can we say that a set which was a bad (in the sense that it’s
expansion had dropped below (1 − 1

k
) · α) in the round that it was pruned

remained bad at the end of m rounds? Can we claim that entire connected
components of S have the same property in Gf that a particular set Si had
in Gi? The following lemma answers these questions in the affirmative:

Lemma 3.1 For all j with 0 ≤ j < m,

∣

∣

∣

∣

∣

ΓGf

(

⋃

0≤i≤j

Si

)
∣

∣

∣

∣

∣

≤
∑

0≤i≤j

|ΓGi
(Si)| ≤ α ·

(

1− 1

k

)

·
∣

∣

∣

∣

∣

⋃

0≤i≤j

Si

∣

∣

∣

∣

∣

.

Proof of Lemma 3.1. Consider the first inequality. Any node v that lies
in the neighborhood of

⋃

i Si in Gf must lie in the neighborhood of some Si

in Gf . Thus, because v is outside of
⋃

i Si and therefore belongs to H , there
must be an Si such that v lies in the neighbourhood of Si in Gi. Therefore,
ΓGf

(
⋃

i Si) ⊆
⋃

i ΓGi
(Si). This proves the first inequality. Each set Si that

is culled by Prune(1− 1

k
) has the property that |ΓGi

(Si)| ≤ α · (1− 1

k
) · |Si|.

3

Since the sets Si are disjoint,
∑

i |Si| = |
⋃

i Si|. Hence the second inequality
follows.

Let us now assume towards contradiction that |S| > f ·k

α
. Then there

must be a j s.t.k·f

α
< | ∪0≤i≤j Si| . Now let us consider two cases.

Case 1.
k · f
α

< | ∪0≤i≤j Si| ≤
n

2
.

This is the case in which we assume the set Sj which takes the sum|∪0≤i≤j Si|
beyond kf

α
doesn’t take it beyond n

2
. So we can use the fact that the expansion

of the set ∪0≤i≤jSi was atleast α in G. Also it follows from Lemma 3.1 that

|ΓGf
(
⋃

0≤i≤j

Si)| ≤ α ·
(

1− 1

k

)

· |
⋃

0≤i≤j

Si|.

Hence, the number of faulty nodes in the neighbourhood of
⋃

0≤i≤j Si must

be at least α(1− (1− 1

k
)) · |⋃

0≤i≤j Si|, which is greater than α · 1

k
· k·f

α
= f .

Since the total number of faults the adversary is allowed to create is at most
f , we have a contradiction.
Case 2. In this case the value of j mentioned above has the following prop-
erty:

∣

∣

∣

∣

∣

⋃

0≤i<j

Si

∣

∣

∣

∣

∣

≤ k · f
α

and
n

2
− k · f

α
< |Sj| ≤

n

2
.

In other words this is the case in which we assume the set Sj which takes the
sum| ∪0≤i≤j Si| beyond kf

α
takes it beyond n

2
.

Let S ′ =
⋃

0≤i<j Si. It follows from the description of the pruning algo-
rithm that |ΓGj

(Sj)| ≤ (1 − 1/k)α|Sj|. However, in order to upper bound
|ΓGf

(Sj)|, we also have to consider the neighbors Sj might have in S ′. Ac-
cording to Lemma 3.1, |ΓGf

(S ′)| ≤ α|S ′| ≤ k · f , and therefore, there can
be at most k · f nodes in Sj that have neighbors in S ′. Since the maximum
degree of G is δ, it follows that

|ΓGf
(Sj)| ≤ α ·

(

1− 1

k

)

· |Sj|+ δ · k · f .

4

On the other hand, we know that |ΓG(Sj)| ≥ α|Sj|. Hence, the number of
faults in Gf must be at least α|Sj|/k − δ · k · f . Since we are in Case 2 and
from the definition of f it follows that

|Sj| ≥
n

2
− n

4δk
≥ 3n

8

because δ ≥ 2. Furthermore, δ · k · f = αn/(4k). Hence,

α|Sj|
k
− δ · k · f ≥ 3α · n

8k
− α · n

4k
≥ α · n

8k
.

But from k > 1 and δ ≥ 2 it follows that f = αn/(4δk2) < αn/(8k), a
contradiction. Hence, H is at least n − k·f

α
in size and has an expansion of

at least (1− 1

k
) · α.

3.2 A lower bound on adversarial faults

The result given in Theorem 3.1 is the best possible up to constant factors in
the sense that for every α > 0 smaller than some constant there is an infinite
family of graphs with expansion α which disintegrate into components of size
o(n) if f ≥ c · αn for some sufficiently large constant c.

Theorem 3.2 There exists a constant γ such that, given any α < γ, there
is an infinite family of graphs with expansion α for which there is an ad-
versarial selection of c · α · n faulty nodes causing the graph to break into
components of size o(n), where n is the number of nodes in the graph and c
is an appropriately chosen constant.

Proof. Consider an infinite family G of δ-regular expander graphs with
constant degree δ, i.e., δ-regular graphs with the property that every subset
of nodes containing at most half of the nodes in the graph has a constant
expansion. It is well-known that random δ-regular graphs with δ ≥ 3 almost
surely have this property.

For any fixed G ∈ G of size n and any k, let graph H be a copy of G with
each edge being replaced by a chain of k nodes (between its two endpoints),
where k is even. Then H has k · (δn)/2 + n = Θ(k · n) nodes. In Figure 3,
we show some edges of such a graph transformation with k = 6. Note that
since every node in G has δ neighbours the total number of edges in G are
δn
2

, and so the total number of vertices in H are nδk
2

+ n.

5

Claim 3.3 Graph H has expansion Θ(1

k
).

Let us assume for a moment that this claim holds and see how we would
prove Theorem 3.2. If we make the middle most node on each edge chain
faulty, the graph H will break into such star-like components of size kδ

2
+ 1,

each having a vertex of G as its centre. So, on a graph Hof nδk
2

nk vertices,
we can make an adversarial selection of nδ

2
vertices and get components of

size o(n).
Now let us prove the claim.

Proof of Claim 3.3. It is clear that the expansion of H is O(1

k
). This can

be seen by looking at the k vertices on any chain between two vertices of G
in H . Proving a lower bound, i.e., every subset U of the node set of H such
that |U | < |H|/2 has expansion at least Ω(|U |/k), is a little trickier.

U

UC

G H

Figure 3: Distinguishing between two kinds of vertices for the lower bound.

For the lower bound, we have to show that every subset of nodes in H
of size at most |H|/2 has an expansion of Ω(1/k). Consider any subset U
of H-nodes with |U | ≤ |H|/2. We differentiate between two sets of nodes
within U . To do this we start by defining a set C as the set of all G-nodes
with the property that all nodes within a distance of k/2 from them in H
are in U . We name as UC the set consisting of all H-nodes within a distance
of k/2 of the nodes in C. Note that UC ⊆ U . The other set of nodes we will
consider is U ′ = U \UC . See Figure 3 for an illustration of this division of U
into two subsets. We will proceed by lowerbounding the size of the boundary
of U in two different ways corresponding to these two sets. Then we will take
the better of these two lowerbounds to give us the result.

6

Let us first consider UC . Since every G-node has exactly δ · k/2 + 1
many nodes within a distance of k/2 in H and |U | ≤ |H|/2, it follows that
|C| ≤ |G|/2. Hence, C has an expansion of at least γ in G for some constant
γ > 0. For every node v ∈ ΓG(C) there must be an H-node within a distance
of k/2 from v that is not in U . Hence there must be an H-node w which is
in the boundary of U for each v ∈ ΓG(C). In other words all such nodes w
are in ΓH(U). Note that this w belongs exclusively to v since it is within k/2
distance of it i.e. this w cannot be claimed by more than one node of ΓG(C).
Since |UC | = (δ · k/2 + 1)|C|, it holds that

|ΓH(U)| ≥ |ΓG(C)| ≥ γ|C| = γ

δ · k/2 + 1
· |UC | . (1)

Next, consider the set U ′ = U \ UC and let C ′ be the set of all G-nodes that
have at least one U ′-node within a distance of k/2 in H . From the definition
of U ′ and C ′ it follows that for each v ∈ C ′ there is at least one H-node
within a distance of k/2 from v that is not in U and hence there must be a
H-node w in the boundary of U i.e. all such nodes w belong to ΓH(U). Since
|U ′| ≤ (δ · k/2)|C ′|, we get

|ΓH(U)| ≥ |C ′| ≥ 1

δ · k/2
· |U ′| . (2)

Combining inequalities (1) and (2), it follows that

|ΓH(U)| ≥ max

{

γ

δ · k/2 + 1
· |UC |,

1

δ · k/2
· |U ′|

}

and since U = UC∪U ′, we immediately get that |ΓH(U)| = Ω(|U |/k). Hence,
the lower bound holds.

Notes

The results in this lecture are taken from [2]. Theorem 2.5 of [2] gives
another, more far-reaching, lower bound for the power of an adverary. The
authors show that even graphs with good “uniform expansion” (a version of
isoperimetric inequalities) fall into sublinear components on the removal of
c · α · n faults for a suitable value of c. See also [4] for an earlier work in
a similar flavour addressing the problem of finding a large component in a
graph made faulty by an adversary with bounded power.

7

The pruning algorithm, as mentioned earlier, is not a polynomial time
algorithm since it involves solving the sparsest cut problem, known to be
NP-hard. The best known approximation to the sparsest cut problem was
improved to

√
log n by Arora, Rao and Vazirani [1]. They had initially con-

jectured that the sparsest cut problem should be approximable in polynomial
time to within a constant factor. This would have had the effect of turning
the existential results in this paper into algorithmic ones, making it possible
to actually find large components with good expansion (perhaps by sacrfic-
ing additional constants) whose existence is proved here in polynomial time.
However, recently obtained lower bounds indicate that this might not be
possible [3].

References

[1] S. Arora, S.B. Rao, and U. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. In Proc. of 36th Annual ACM Symp. on
Theory of Computing, pages 222–231, 2004.

[2] A Bagchi, A Bhargava abd A Chaudhary, D Eppstein, and C Schei-
deler. The effect of faults on network expansion. Theor. Comput. Syst.,
39(6):903–928, November 2006.

[3] S. Khot and N. Vishnoi. The Unique Games Conjecture, integrality
gap for cut problems and embeddability of negative type metrics into
l1. In Proc. 46th Annu. IEEE Symp. on Foundations of Computer Sci-
ence (FOCS ’05), pages 53–62, 2005.

[4] E. Upfal. Tolerating a linear number of faults in networks of bounded
degree. Information and Computation, 115(2):312–320, 1994.

8

