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In this lecture, we will study some routing parameters of a network viz
diameter, edge expansion and node expansion which can have a major bearing
on the number of steps required to route packets through it.

2.1 Diameter of a Graph

The diameter of a graph is an important parameter to study routing in
networks. Consider a network represented by a line graph on n nodes.

Figure 1: A line graph

To send m packets in the network, it can take (n − 1 + m) steps. The
factor n in this expression is due to the fact that the diameter of a graph
is a natural lower bound on the number of steps required, since it is the
maximum distance a packet may have to travel.

Definition 2.1 Let G = (V, E) be a graph. For any u,v ∈ V , let d(u, v)
denote the shortest distance between u and v. Then the diameter of the

graph G, denoted by Diam(G) is defined as:

Diam(G) = max
u,v∈V

d(u, v).

Before proceeding further, let us look at diameters of some standard graphs
having n nodes.

• When G is a complete graph of n vertices, Diam(G) = 1.

• When G is a Star of n vertices, Diam(G) = 2. (See figure 2)
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Figure 2: A star graph on n nodes
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Figure 3: A mesh on n nodes
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• When G is a line/path graph of n vertices, Diam(G) = n − 1. (See
figure 1).

• When G is a
√

n ×√
n mesh, Diam(G) = 2

√
n. (See figure 3)

So one can see that there’s a lot of variation in the diameters of the graphs.
One can also see that as the maximum degree ∆ of the graph increases, the
diameter decreases.

The next theorem formalises this correlation between maximum degree
of a graph and its diameter.

2.1.1 Relation between Diameter and degree of a graph

Theorem 2.2 Let G = (V, E) be any graph with maximum degree d > 2 and

size n, then Diam(G) is at least ⌊logd−1 n⌋ − 1

Proof. Let v be any arbitary vertex in V . Consider the breadth first traversal
of V starting with v. Now the BFS tree formed will have v at level 0. v will
have at most d neighbors which occupy the level 1 of the tree. So level 1
will have at most d nodes. Each node at level 1 has at most d neighbors and
one of these is in level 0 while the rest occupy level 2. So level 2 will have
at most d(d− 1) nodes. Let ni denote the number of the nodes in the graph
covered up to level i of the BFS tree rooted at v. From the above discussion
we conclude that:

n0 = 1

n1 ≤ 1 + d

n2 ≤ 1 + d + d(d − 1)

ni ≤ 1 + d

i−1∑

k=1

(d − 1)k

Suppose the Breadth First Traversal of V finishes at level k. Hence, Diam(G) ≥
k because for every vertex u in the level k of the BFS tree, d(u, v) = k. Also,
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nk = n. Hence it follows:

n ≤ 1 + d

k−1∑

j=1

(d − 1)j

≤ 1 +
d[(d − 1)k − 1]

d − 2

≤ 1 +
d(d − 1)k

d − 2

Since d > 2,

d(d − 1)k

d − 2
> 1

Hence it follows that

n ≤ 2d(d − 1)k

d − 2

Taking logd−1 on both sides,

logd−1 n ≤ k + logd−1 2 + logd−1

d

d − 2

logd−1
2d

d−2
is smaller than 1 for d > 4 while for d = 3 and d = 4, its only

slightly bigger than 1. Hence

⌊logd−1 n⌋ − 1 ≤ k (1)

Since the vertex v was arbitarily chosen, for any u,v ∈ V , d(u, v) ≤ k. So,
Diam(G) = k and from equation (1) we get,

Diam(G) ≥ ⌊logd−1 n⌋ − 1

This concludes the proof.
The above theroem gives the minimum diameter of graphs with maximum

degree greater than 2. What about graphs with maximum degree equal to 2?
Such graphs are either line/path graphs or they are cycles. So the minimum
diameter for such graphs is ⌊n

2
⌋ when the graph is a cycle.
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For a complete binary tree which has maximum degree d = 3, the diam-
eter is 2⌊log2 n⌋ which is asymptotically the same as the lower bound stated
by theorem 2.2.

The natural question that arises now is that does any graph match the
lower bound given by theroem 2.2 exactly i.e. is the lower bound tight? The
following result throws some light on this.

Theorem 2.3 For every even d > 2, there is an infinite family Gn of graphs

with maximum degree d and diameter at most ⌊log d

2

n⌋.
The proof of the above result is beyond the scope of this course but it shows
that the lower bound given by theorem 2.2 is indeed tight.

2.2 Edge Expansion and Node Expansion of a Graph

S1

S2

Figure 4: Interface of two sets

To understand the next routing parameter, consider two disjoint subsets
S1 and S2 of V in a graph G = (V, E), and we have to send packets from S1

to S2. Then we would be interested in the ratio of edges going from S1 to S2

to the size of S1. This basically gives us the idea of how many packets can
be simultaneously sent from the set S1 to set S2,that is, the size of interface

between S1 and S2 (see figure 4), ignoring the internal travel of packets inside
the sets. Clearly, this affects how many steps it will take to send m packets
in the above situation.
Let us formalize this concept:
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Definition 2.4 Let G = (V, E) be a graph and let S ⊆ V . Let S̄ = V − S

and let C(S, S̄) denote the cut between the partition S and S̄. Sparsity of the

subset S is denoted as α(S) and is defined as:

α(S) =
|C(S, S̄)|
min{S, S̄}

Definition 2.5 Let G = (V, E) be a graph. The Edge Exapnsion of G de-

noted as α is defined as:

α = min
S⊆V

α(S)

The edge expansion of a graph is a measure of the maximum load any bipar-
tition in the vertex set of the graph will put on the interface separating the
2 vertex sets. As we did in section 2.1, let us look at the edge expansion of
some standard graphs having n nodes.

• When G is a line/path graph of n vertices, edge expansion of G is 1
⌊n

2
⌋
.

The cut which achieves this minimum is the edge which divides the line
graph into 2 equal halves.

• G = (V, E) is a complete graph of n vertices.

Claim 2.6 The edge expansion of a complete graph of n vertices is n
2
.

Proof. Let S and S̄ be any cut in G. Let |S| = x. Without loss of
generality, let x ≤ n

2
. Then:

α(S) =
|C(S, S̄)|
min{S, S̄}

=
x(n − x)

x
= n − x

Since x ≤ n
2
, from definition of edge expansion we have α = n

2
. This

concludes the proof of the claim.

• G is a Star of n vertices.

Claim 2.7 The edge expansion of a star of n vertices is 1.
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Proof. Let S and S̄ be any cut in G. Let |S| = x. Without loss of
generality, let x ≤ n

2
. Now either the (n − 1) degree vertex lies in S or

in S̄.

In the former case,

|C(S, S̄)| = n − x

α(S) =
|C(S, S̄)|
min{S, S̄}

=
(n − x)

x
≥ 1

When the (n − 1) degree vertex lies in S̄,

|C(S, S̄)| = x

α(S) =
|C(S, S̄)|
min{S, S̄}

=
x

x
= 1

Hence the minimum value of α(S) for any subset S of V is 1. This
concludes the proof of the claim.

Note that the star and a complete graph with n vertices have diameters
of the same order but their edge expansions have a significant difference. So
how do these 2 characteristics of a graph relate to each other? Let us try
to relate the two parameters we have studied till now, Diamater and Edge
Expansion. It is intuitively clear that more the degree of the vertices, greater
will be the edge expansion. We also proved a relation where maximum degree
of a graph was negatively correlated to the diameter of the graph. Hence,
on combining these two intuitions, we should get that edge expansion should
also be negatively correlated to diameter. This is indeed the case as we’ll see
below.

2.2.1 Relation between Diameter and Edge Expansion

Theorem 2.8 Every graph G = (V, E) of size n and maximum degree d has

diameter at most 2 log(1+ α

d
) n.
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Proof. For any k, Diam(G) ≤ k iff for every u, v ∈ V , d(u, v) ≤ k.
Choose any two vertices u and v in G. Consider the Breadth First Traver-

sal of V starting with u.
Let S(u,i) denote the nodes which have been covered uptil the level i of the

BFS tree rooted at u. Let ku be the largest number such that |S(u,ku)| < n
2
.

Hence, S(u,ku+1) ≥ n
2
. Also for any i ≤ ku, |S(u,i)| < n

2
. Since, |S(u,i)| < n

2
,

there are at least α|S(u,i)| edges in the cut (S(u,i), V −S(u,i)). Out of these, at
most d edges will go the same vertex. Hence, it follows that for every i ≤ ku,

|S(u,i+1)| ≥ |S(u,i)| +
α

d
|S(u,i)|

≥ |S(u,i)|(1 +
α

d
)

Hence, it follows that:

n

2
> |S(u,ku)| ≥ (1 + (

α

d
))ku

Taking log1+ α

d

on both sides,

ku < log1+ α

d

n

2
< log1+ α

d

n − log1+ α

d

2 (2)

Since u was arbitarily chosen, the inequality (2) holds for the BFS Tree rooted
at v also that is:

kv < log1+ α

d

n − log1+ α

d

2 (3)

Since |S(u,ku+1)| ≥ n
2
, |S(v,kv+1)| ≥ n

2
and |S(u,ku+1) ∪ S(v,kv+1)| ≤ n, the inter-

section of S(u,ku+1) and S(v,kv+1) is non-empty. Let w ∈ S(u,ku+1) ∩ S(v,kv+1).
So there’s a path from u and v to w in at most ku + 1 and kv + 1 steps
respectively. Hence, there’s a path from u to v in at most ku + kv + 2 steps.
Hence,

d(u, v) ≤ ku + kv + 2

And from equations (2) and (3) it follows:

d(u, v) ≤ 2log1+ α

d
n + 2 − 2 log1+ α

d

2
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Since d is the maximum degree, α
d
≤ 1. Hence, log1+ α

d

2 ≥ 1 and therefore
we obtain that for any two vertices u,v ∈ V ,

d(u, v) ≤ 2log1+ α

d
n

and therefore we conclude that:

Diam(G) ≤ 2log1+ α

d
n.

This concludes the proof.
Note that the factor of α

d
occurs instead of α because the value of α tells

us about the minimum size of any cut (S, V −S) in the graph but in this case
we are interested in the number of vertices in V − S which are adjacent to
vertices in S. The node expansion of a graph covers precisely this property.

Definition 2.9 Let G = (V, E) be any graph. Then node expansion of G

denoted as αv is defined as:

αv = min
|U |≤

|V |
2

|Γ(U)|
|U |

where Γ(U) is the set of vertices in V −U that are adjacent to vertices of U .

Note that node expansion of a graph is never greater than 1 because for any
U ⊆ V such that |U | = |V |

2
, |Γ(U)| ≤ |U |.

Now in Theorem 2.8, we can replace α
d

by αv and the theorem still holds.
The proof will proceed on the same lines and instead of using |S|α

d
as the

lower bound for number of vertices in V − S that are adjacent to vertices in
S , we use the lower bound |S|αv for any subset S of V statisfying |S| ≤ n

2
.

Hence, for any graph G of size n,

Diam(G) ≤ 2log(1+αv)n

2.2.2 Edge expansion is achieved by connected sets

Theorem 2.10 Given a graph G = (V, E) with edge expansion α, there

exists S ⊆ V such that G[S] and G[V − S] are connected and α(S) = α,

where G[S] denotes the subgraph of G induced by S.
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Proof. We will prove the above theorem by contradiction. So let us assume
that there exists no such subset S. Let U be the set whose α(U) = α.

Without loss of generality, |U | ≤ |V |
2

.
If U and its complement are connected, we have found the subset S. If

that is not the case, then the following cases arise:
Case 1: G[U ] isn’t connected. Then, let U1,U2 · · ·Uk be the components of
G[U ]. So for any distinct i,j there’s no edge between Ui and Uj . Now

C(U, Ū) =
k⋃

i=1

C(Ui, Ū)

Since there’s no edge between Ui and Uj for i 6= j, it follows:

C(U, Ū) =

k⋃

i=1

C(Ui, Ūi)

α =
|C(U, Ū)|

|U |

Since C(U, Ū) is a disjoint union of C(U1, Ū1), C(U2, Ū2) · · ·C(Uk, Ūk), it
follows that:

α =

∑k

i=1 |C(Ui, Ūi)|∑k

i=1 |Ui|

So there exists i such that:

|C(Ui, Ūi)|
|Ui|

≤ α

α(Ui) ≤ α

Since α is the minimum among all sparsities, it follows that α(Ui) = α. Also,

G[Ui] is connected. Hence we can always find a subset U such that ,|U | ≤ |V |
2

,
G[U ] is connected and α(U) = α. Hence this case isn’t valid.
Case 2: G[U ] is connected and G[V − U ] is not. Then, let U1,U2 · · ·Uk be
the components of G[V − U ] (See figure 5).

We know that:

C(U, Ū) =

k⋃

i=1

C(U, Ui)
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U1

U2

U3

U4

U

Figure 5: Theorem 2.10 case 2.2

Again since there’s no edge between Ui and Uj for i 6= j, it follows:

C(U, Ū) =
k⋃

i=1

C(Ui, Ūi) (4)

Note that the above union is disjoint. Now let us consider two subcases:
Case 2.1: Every component U1, U2 · · ·Uk of V −U has size less than or equal
to n

2
.

Now since |U | ≤ n
2
, |U | ≤ |Ū |. It follows that

α =
|C(U, Ū)|

|U |

≥ |C(U, Ū)|
|Ū |

≥
∑k

i=1 |C(Ui, Ūi)|∑k

i=1 |Ui|
So there exists i such that:

|C(Ui, Ūi)|
|Ui|

≤ α
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Since |Ui| ≤ n
2
, it follows:

α(Ui) ≤ α

Since α is the minimum among all sparsities, it follows that α(Ui) = α. Also,
G[Ui] and G[V − Ui] are connected which contradicts our assumption that
such a subset doesn’t exist. Hence, this subcase isn’t valid.
Case 2.2: There exists a component Uj of V − U such that |Uj| > n

2
.

α =
|C(U, Ū)|

|U |

=

∑k

i=1 |C(Ui, Ūi)|
|U | (5)

Now consider the sparsity of V − Uj .

α(V − Uj) =
|C(V − Uj , Uj)|

|V − Uj |

=
|C(Uj, Ūj)|

|U | + |U1| + · · · |Uj−1| + |Uj+1| · · · |Uk|
(6)

From Equations (5) and (6), we observe that numerator of α is greater than
or equal to the numerator of α(V −Uj) and the denominator of α is less than
or equal to the numerator of α(V −Uj). So, α(V −Uj) ≤ α. Moroever G[Uj ]
and G[V − Uj] are connected which contradicts our assumption that such a
subset doesn’t exist. Hence, this subcase isn’t valid.

Hence, in all cases we obtained a contradiction. Therefore, there exists a
subset S such that G[S] and G[V − S] are connected and α(S) = α. This
concludes the proof.
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