CSL860: Routing in the presence of faults Amitabha Bagchi
IIT Delhi Scribe: Amitabha Bagchi

Lecture 1: Introduction: Models for routing and faults
30th July, 5th and 6th August, 2008

1.1 Introduction: A simple network model

A computer network is a collection of computers interconnected through
a medium. In this class we will model computer networks using graphs.
The set of computers is represented by the vertex set V' and the medium is
represented by the edge set £. Implicit in this model is the understanding
that only certain pairs of computers may communicate ”directly”. Those
pairs of computers that are not directly connected need to rely on other
computers to relay information between them. This restriction gives rise to
the problem of routing, i.e., what is the "best” way to get information from
one computer to another in a computer network.

Before we proceed we will have to model the network and the capabilities

and constraints of its various elements. We do not attempt to describe in
detail all the different kinds of computer networks that exist or all the vary-
ingly nuanced models that exist for them. Instead here we introduce a simple
network model that allows us to illustrate certain fundamental aspects of the
routing problem.
The model. A network is modelled by a graph G = (V, £'). Each communi-
cation in this network takes the form of a discrete object known as a packet.
Each packet p is a tuple of the form (s,,t,) where s,,t, € V. We assume
that each node u € V' has the following capabilities:

e It can generate a packet of the form (u,v) for all v € V' \ {u}.

e It can consume a packet of the form (v, u) for all v € V'\ {u}.

e It can receive a packet from all v € I'(u) = {(u,v) : v € V, (u,v) € E}.
e It can buffer packets of the form (v, w) for v,u € V' \ {u}.

e It can forward a packet of the form (v,w) according to a routing
algorithm which is a function f : V' x V — T'(u). If more than one
packet is waiting in the buffer to cross a particular edge, the algorithm
must also incorporate a tie-breaking rule.

Further we assume that the network is synchronousi.e. all nodes operate
with a common clock. We take time to move in discrete steps and we assume
that each edge can carry only one packet in one each direction in a given
time step. With such a restriction its clear that at one time there may be
multiple packets waiting at a node to cross an edge. So we allow for buffering
at each node. Typically buffers cannot be of arbitrary size but for now we
ignore this aspect and allow each node to buffer as many packets as it needs
to.

In this model an routing problem is a set of packets with the times at
which they are injected into the system. An important criterion in such a
model is the number of time steps taken to successfully route every packet
to its destination. Let us now study this model for a simple network.

1.2 Routing: A simple example

We consider a ring network: n nodes numbered 0 to n — 1 with edges of the
form (i, (z + 1) mod n). We study a routing problem in which m packets
are injected into this network at time 0. Any packet has only two possible
routes to its destination so we consider the family of algorithms wherein the
packets take the shorter of the two paths to their destination. We refer to
this as a family since there are a number of possible tie-breaking rules that
can be employed to determine which packet is taken out of the buffer and
forwarded. We will analyze the algorithm in which the packet with more
distance left to cover is given priority. In case more than one packet has the
same distance left to cover then tie-breaking is done on the basis of packet
id i.e. the packet with the higher id number gets to go first. We call this
algorithm Furthest-to-go.

Theorem 1.1 Given m packets injected into the ring network on n nodes at
the same time, Furthest-to-go requires at most m + |n/2] — 1 steps to send
all packets to their destinations.

Proof. Let P = {p1,p2,...,pm} be the set of packets. For packet p; at
node v we define a rank, r,(p;) as the number of edges left for the packet to
travel plus i/(m + 1). Note that no two packets can have the same rank at
a particular node.

With this definition we can say that Furthest-to-go is the algorithm that
picks the packet with the highest rank from the buffer and forwards it.

We analyze the number of steps taken by Furthest-to-go by arguing back-
wards from the last packet to be delivered. Let this packet be ¢ € P. Let
us call it’s destination vy. We will now build two sequences, ¢1, s, ...qs of
packets and vg, v1, ..., v, of nodes as follows:

e First, we follow ¢; back in time till we reach the first node (moving
backwards) where ¢; was delayed because another packet had to be
sent along the edge ¢; wanted to travel on.

e We call this node v; and we denote the packet that was sent in prefer-
ence to q; as ¢g. Note that ¢; might have had to wait for several time
steps at vy, so it is not clear which of the various packets that were sent
before it should be labelled ¢. We specify that the first packet that
was sent out after ¢ reached v; should be called gs.

e In general, we trace a packet ¢; backwards from node v;_; till the first
vertex where it was delayed. This vertex is denoted v; and the packet
which delayed ¢; is denoted ¢;;.

e If, at some point we trace back a packet g; to it’s source i.e. we trace
it back and it is never delayed all the way back to it’s source, then we
set s = j, name its source v, and terminate the process of building the
sequences.

Uo

U1
U2

Figure 1: Constructing the two sequences.
Figure 1 illustrates the structure that is formed. It also shows another se-

quence ly,ls,...,ls which is defined as follows: [; is the number of edges
between v,_; and v;, for all 1 <i < s.

Let us note three simple facts about these sequences:
1. ry(q1) > 0.
2. 7y (qir1) > 1o, (i)

3. TUi(Qi) = Ty (q2> + ll

All three of these facts follow from the way the sequences are defined. Putting
these three facts together we are able to show

Lemma 1.1
> n
Y < H .
: 2
i=1

Proof. We add all the instances of (2) and (3) along with (1) to get that

Ty, (qS) Z Z li>
1=1

and then rely on the fact that r,, (gs) < |[n/2] + 1 since all path lengths are
at most [n/2]. Further the [;s are all integers so we can dispense with the
additional 1. |

Note that although the construction does not specify that the packets in
the sequence should all be unique this is in fact the case. This follows from
the fact that the ranks are strictly increasing as we go up the sequence. If
we assume that packet ¢; and ¢; are the same packet for some values j < i
then we get the following contradiction using facts (2) and (3)

Tvi(qi) 2 Tvifl(qi) > Tvi—l(qi_l) Z Tv; o (qi—l) > > ij (qJ)'

Hence, we can claim that the number of packets in the sequence is less than
the total number of packets injected i.e. s < m. Since the total time the
last packet takes to get delivered is the sum of the [; values, plus one unit of
delay at each of vy, vs,...,vs_1, the total time taken for the last packet to be
delivered is s — 1+ 7, l;. Hence the result follows. u

Note that in the worst-case Furthest-to-go is an optimal strategy since we
can easily set up an instance of the problem where at least m+|n/2] —1 steps
are required. This instance occurs when all m packets are injected into the
same node and all their destinations are also the same: the node at distance
precisely |n/2| from the source.

1.3 Modeling faults

A system is said to be faulty if it does not function as per its specification.
An important part of the process of rectifying a fault is localizing it to a
specific component of the system and characterizing the faulty behaviour of
the component to the extent possible. For computer networks as we have
modelled them, faults could occur at nodes or at edges. Modelling faults is
an intricate process in general. The extent of the faulty behaviour of the
component must be taken into account, as must be the effect of that faulty
behaviour on the system’s performance both in terms of the correctness of
the output as well the efficiency of producing that output. In this class we
will consider the effect of faultiness on the ability of a computer network to
efficiently route packets between computers. We will take various parameters
into account in the course of the class. For now we just look at one important
and fundamental aspect of the routing problem:

What pairs of nodes in the network are unable to communicate
when faults occur.

We model faults simply: if a set U C V of nodes is faulty we consider the
faulty network to be transformed into the subgraph of G induced by the node
set V'\ U i.e. we remove all the faulty nodes and all the edges incident on
the faulty nodes. See Figure 2 for an example. In Figure 2, when the set

g Vi

Vy

Figure 2: Vi and V5 are disconnected when U becomes faulty.

U becomes faulty it divides the remaining graph into two components which
cannot communicate with each other. Clearly in a y/n X y/n mesh we can

achieve such a separation with as few as 2 faulty nodes although we can find
sets of nodes which are 6(n) in size whose removal would leave the remaining
graph in a single connected component. In a line network on n nodes, if one
of the end points gets faulty the other n — 1 nodes can communicate freely
among themselves although if the central node gets faulty then 0(n?) pairs
of vertices get disconnected. The size of the components of a faulty network
which has become disconnected is an important parameter in many real-
world scenarios. It may be that if the network has a large enough component
then it can fulfil its function without having to repair the faults. In other
scenarios it could be that service is affected only for small components while
large components get satisfactory service. We will study the usefulness of
faulty networks which retain large connected components in greater detail
through the course of this class.

Even in networks that don’t get disconnected faults can effect the effi-
ciency of routing. For example in the ring network of Section 1.2 the bounds
on the number of steps would go up to m+n — 2 if even a single node should
get faulty.

In order to be able to analyze the effects of faults we must have a model
for the occurence of faults. In this class we will consider two broad classes of
fault models. These two classes do not cover all possible fault models by any
means but form an important beginning in studying more general models.

1. Adversarial faults. Here we assume that there is a malicious entity,
known as the adversary, with a bounded amount of power k. The
adversary knows what the functionality of the network is and is allowed
to make up to k nodes faulty in order to degrade this functionality.

2. Random faults. This model has a parameter p such that 0 < p <1.
Faultiness is modelled by a stochastic process here i.e. a collection of
random variables. Each node in the network gets faulty with proba-
bility p. The process at each node is independent of the process at all
other nodes.

We consider the latter model to be more representative of real-world
problem (although the independence assumption may not be particularly
realistic) and we will concentrate on it for a large part of this class.

1.4 Random faults: The existence of large components

In this section we will consider two networks with infinite vertex sets and try
and determine how the random fault model affects it. For ease of argument
we will assume that each edge is faulty with a certain probability independent
of all other edges rather than each node. In this section we begin to study
the size of the components of such a network and how the parameter p affects
this size.

The structure of the networks we study is a graph that we call the d-
dimensional lattice, denoted 2. Each vertex in this graph is a d-dimensional
vector of integers i.e. the vertex set is Z?. We denote the edge set by E? and
it is defined as follows:

d
E? = {(u,v) : u,v € Ed,z |u; —v;| =1},

i=1

where u; is the ith component of the vertex u. In this lecture we will look
at the cases d = 1 and d = 2 i.e. the infinite line and the two dimensional
mesh.

Faults which occur independently at each edge of such graphs with the
same probability are studied in Percolation theory. In what is known as the
bond percolation setting each edge e € E? has two states, open (corresponding
to a non-faulty state) and closed (corresponding to a faulty state). Each edge
is in an open state with probability p for some 0 < p < 1 and closed with
probability ¢ = 1 — p. Formally speaking we take a probability space in
which the sample space is Q = [, za{0, 1}, points of which are denoted by
w = (w(e) : e € EY) and are referred to as configurations. The value w(e) = 1
corresponds to the edge e being open and w(e) = 0 corresponds to it being
closed. The o-field of this probability space, F, is the subsets of {2 generated
by the finite dimensional cylinders i.e. each element of F corresponds to a
subset of the configurations in €2 in which the state of the edges in some
finite subset of E¢ is fixed. The measure defined on this space is a product

measure
Po= 1 ne

ecEy

where p(e) is a Bernoulli measure on {0, 1} for each e, given by

fre(w(e) = 1) = p and pe(w(e) =0) =1 —p.

For example, the probability of a configuration havinge; =1 ,e5 =0,e3=1
i8 fie; (€1 = 1) « fie, (€2 = 0) - e, (e1 = 1) = p*(1 — p).

We denote by C' the maximal component connected by open edges con-
taining the origin on LY. The percolation probability, denoted 6(p) is a key
figure in the study of percolation. It is defined as

0(p) = Pp(|C] = o0)

A fundamental fact of percolation theory is that there is a critical value
pe(d) (often written just p, when the dimension is understood) such that

0 if p < pe
H(p){ >0 ifp>p.

This value, p.(d) is called the critical probability and is defined as

pe(d) = sup{p: 0(p) = 0}.

Let us consider the case of d = 1. Here we claim that p. has the trivial
value 1. In order to do that we first introduce a result from probability
theory.

Given a sequence of events {A,} we note that the limsup A4, is also
referred to a A, infinitely often (or A, i. o.) since it can be thought of
as that set of outcomes whose occurence makes an infinitely large subset
of the events in the sequence happen. The Borel-Cantelli Lemma helps us
characterize the probability of A, i.o.

Lemma 1.2 (Borel-Cantelli Lemma 1) Given a probability space (2, F, P)
and a sequence {A,} such that Vi : A; € F, if >.5o P(A;) < oo then
P(A, i.0.) =0.

To put it simply, the Borel-Cantelli Lemma says that if the sum of prob-
abiilities of the events in the sequence is finite then an infinite subset of the
events occur simultaneously with probability 0. With this result in hand we
now proceed.

Claim 1.2
pe(l) = 1.

Proof. For i > 0 define A; to be the event that all edges starting from node
2% to 2F1 — 1 are open or the edges from —2**! + 1 to —2* are open. Note
that

P(A) =1—(1—-p*)P2<2.p%.

Hence, as long asp < 1. "2 P(A)) < 0o. And so, by the Borel-Cantelli
lemma we get that P(Ay i.0.) = 0 i.e. there must be some k for which Ay
is not true with probability 1. And this implies that as long as p < 1, the
probability of having an infinite component is 0. m

However for d > 2 we get non-trivial critical probabilites. The rest of this
lecture is devoted to establishing this. We begin by claiming that the critical
probability is a non-increasing function of the dimension.

Claim 1.3 Ford > 1,
pe(d+1) < pe(d).

This claim follows from observing that at any value of p, if you have a infinite

component in ¢ then you will also have an infinite component in L. We

claim, without the proof that a strict version of this inequality also holds.
We now show that p.(2) can be bounded away from 0 and 1.

Theorem 1.4)

9
~ < p(2) < =
3_p()_3

Proof. Let us first show that p.(2) > 1/3. Denote by o(n) the number of
paths of length n in .2 beginning at the origin. We define a random variable
N(n) to be the number of these paths that are open. Now, if the origin
is a part of an infinite cluster then there exist paths of all possible lengths
starting at the origin. Restating this in terms of N(n) we can that the event
that the origin is part of an infinite cluster implies the event that N(n) is at
least 1 for each value of n i.e. for all n

0(p) < Py(N(n)>1) (1)
_ ZPP(N(n):i) (2)
< Zi~Pp(N(n):z') (3)
— E,(N(n)) (4)

9

Now, the probability of a given path of length n being open is p™ and there
are o(n) such paths, so

E,(N(n)) = p"a(n). ()

Let us now try to bound o(n). Every path starts at the origin so there are
four choices for the first edge. After that at each vertex on the path we have
at most 3 choices, eliminating the obviously wrong choice of going back to
the vertex we just came from. Hence

o(n) <4-3"1

Using this and (5) in (1-4) we get

0(p) < %(319)"-

Hence, if 3p < 1, (p) — 0 as n — oo, proving that for p < 1/3, the
origin cannot be part of an infinite cluster, hence p. must be at least 1/3.

Figure 3: The dual of L2,

In order to prove the second inequality i.e p. < 2/3, we will introduce
the dual of the lattice L? which we will denote L3. This is defined in the
way that the dual of a planar graph is usually defined in graph theory, by
placing a vertex in every face and by putting an edge between two vertices
corresponding to two faces that share an edge (see Figure 3.) Note that
there is a natural one-to-one correspondence between the edges of the dual
and the edges of IL?. We define a bond percolation process on the dual using

10

this correspondence by declaring an edge of the dual to be closed if it crosses
a closed edge of .2 and open if the edge of I.? it crosses is open.

By convention we denote the vertices of the dual as (z + %,y + 3) where
x and y are integers.

Now, to see the direction our proof will take, let us note that if the origin
was contained in a finite cluster that would mean there is a set of closed
edges surrounding this cluster. This set of edges corresponds to a circuit of
closed edges surrounding the origin in the dual. With this in mind we can
proceed.

First, let us count the number of circuits of length n surrounding the
origin in the dual. We denote this quantity v(n). Note that any such circuit
must touch on a point of the form (k+ %, %) for some 0 < k < n. We can now
consider each circuit as a walk of length n — 1 beginning from such a vertex
and returning to some neighbour of (k + %, %) Hence, given the number of
choices for k, and recalling the definition of o(n) from the earlier part of the
proof, we have

y(n) <no(n—1)< = -n-3"%

Let us denote by M (n) the number of these circuits of the dual of length
n surrounding the origin which are closed. Since a circuit of length n is closed
with probability (1 — p)"™ we get that

E,(M(n)) < 7 -n-(3(1—p)" " (6)

QO W~

Now, define two events G,,, and F;, as follows
e GG, : All edges in B(m) are open.
e [, : There is a closed circuit in L3 containing B(m) in its interior.

Note that if GG, occurs and F},, does not occur, then there is a path _of
length n starting at the origin for all values of n. Hence the event G, A F},
implies the event that the origin is part of an infinite component i.e.

0(p) = Pp(Gm A Fin) = Py(Gn) - Py(Frn).- (7)

11

The latter part following from the fact that GG, and F;,, are events depending
on disjoint sets of edges.

Let us now try to upper bound P,(F},) so that we can complete the lower
bound in (7).

We know that a circuit surrounding B(m) must have length at least as
much as the perimeter of B(m) i.e. 8m. So, for F,, to be true there must
be a circuit of length at least 8m surrounding the origin that is closed. Note
that all circuits of this length may not contain B(m) completely, and hence
we get the following inequality

Pp(FM)SPp<§: M(n) 21)

n=8m
Now, since P,(M(n) > 1) < E,(M(n)), using (6), we have

Py(F) < 3 2o (30 -p)

If 3(1—p) < 1 this sum converges, and it is possible to find a large enough
value of m* of m such that P,(F,+) < 3. Using this in (7), and noting the
fact that since m is a finite value P,(G,,) > 0 for any p > 0, we get

1
0(p) > 5 P,(Gpx) > 0.
Hence, if p > 2/3 we are definitely above the critical probability. And
this completes the proof of the second inequality. []
Notes

The example of routing on the ring in Section 1.2 is taken from Christian
Scheideler’s lecture notes from his class Theory of Network Communication,
Fall 2002, Lecture 1. The material in Section 1.4 is a simplified version of
a well-known proof taken from Grossglauser and Thiran’s lecture notes for
their class Models and Methods for Random Networks, 2006-07.2

! Available from http://www.cs.jhu.edu/ scheideler/.
Zhttp:/ /icawww1.epfl.ch/class-nooc/

12

