Homework 2

Due: 22nd February 2013, 11:59PM

Q1. (Billingsley 5.17, page 83)

(a) Suppose that $X_{n} \rightarrow_{P} X$ and that f is a continuous function. Show that $f\left(X_{n}\right) \rightarrow_{P} f(X)$.
(b) Show that $\mathrm{E}\left[\left|X-X_{n}\right|\right] \rightarrow 0$ implies $X_{n} \rightarrow_{P} X$. Show that the converse is false.

Q2. (Billingsley 6.1, page 89) Show that $Z_{n} \rightarrow Z$ with probability 1 if and only if for every positive ϵ there exists an n such that $\mathrm{P}\left[\left|Z_{k}-Z\right|<\right.$ $\epsilon, n \leq k \leq m]>1-\epsilon$ for all m exceeding n. This describes convergence with probability 1 in "finite" terms.

In all the following problems $S_{n}=X_{1}+\cdots+X_{n}$.
Q3. (Billingsley 6.7, page 90)
(a) Let x_{1}, x_{2}, \ldots be a sequence of real number and put $s_{n}=x_{1}+\cdots+x_{n}$. Assuming that $n^{-2} s_{n^{2}} \rightarrow 0$ and that the x_{n} are bounded (i.e. each of them is finite), show that $n^{-1} s_{n} \rightarrow 0$.
(b) Suppose that $n^{-2} S_{n^{2}} \rightarrow 0$ with probability 1 and that the X_{n} are uniformly bounded (i.e. $\sup _{n, \omega}\left|X_{n}(\omega)\right|$ is finite). Show that $n^{-1} S_{n} \rightarrow 0$ with probability 1. Here the X_{n} need not be identically distributed or independent.

Q4. (Billingsley 6.11, page 90) Suppose that X_{1}, X_{2}, \ldots are m-dependent in the sense that random variables more than m apart in the sequence are independent. More precisely, let $\mathcal{A}_{j}^{k}=\sigma\left(X_{k}, \ldots, X_{k}\right)$ and assume that $\mathcal{A}_{j_{1}}^{k_{1}}, \ldots, \mathcal{A}_{j_{l}}^{k_{l}}$ are independent if $k_{i-1}+m<j_{i}$ for $i=2, \ldots, l$. Suppose that X_{n} have this property and are uniformly bounded and that $\mathrm{E}\left[X_{n}\right]=0$. Show that $n^{-1} S_{n} \rightarrow 0$.

