CS105L: Discrete Structures I semester, 2006-07

Tutorial Sheet 5: group theory.

Instructor: Amitabha Bagchi

August 30, 2006

1. Let n be a positive integer and let G be the set

$$
G=\{k \mid k \text { is an integer with } 0<k<n \text { and } \operatorname{gcd}(k, n)=1\}
$$

Prove that G is a group under operation \otimes defined as multiplication modulo n.
2. Prove the Chinese remainder theorem using the previous question. In other words prove that:

If m and n are positive integers with $\operatorname{gcd}(m, n)=1$, then there are integers a and b such that $a m+b n=1$.
3. Let us define a group with two generators $\{a, b\}$ and let us say that the following relations hold $a b=b^{2} a$ and $b a=a^{3} b$.
(a) Reduce $a b a^{-1} b^{-1}$ to a string of length 1.
(b) Reduce $b a b^{-1} a^{-1}$ to a string of length 2.
(c) Prove that $b=a^{-2}$.

