# CS105L: Discrete Structures I semester, 2005-06 

Tutorial Sheet 12: Graph Theory: Connectivity<br>Instructor: Amitabha Bagchi

November 9, 2006

For the first three exercises, let $G$ be a graph and $a, b \in V(G)$. Suppose that $X \subseteq V(G) \backslash\{a, b\}$ separates $a$ from $b$ in $G$. We say that $X$ separates $a$ from $b$ minimally if no proper subset of $X$ separates $a$ from $b$ in $G$.

1. Show that $X$ separates $a$ from $b$ minimally if and only if every vertex in $X$ has a neighbour in the component $C_{a}$ of $G \backslash X$ containing $a$, and another in the component $C_{b}$ of $G \backslash X$ containing $b$.
2. Let $X^{\prime} \subseteq V(G) \backslash\{a, b\}$ be another set separating $a$ from $b$, and define $C_{a}^{\prime}$ and $C_{b}^{\prime}$ acoordingly. Show that both

$$
Y_{a}=\left(X \cap C_{a}^{\prime}\right) \cup\left(X \cap X^{\prime}\right) \cup\left(X^{\prime} \cap C_{a}\right)
$$

and

$$
Y_{b}=\left(X \cap C_{b}^{\prime}\right) \cup\left(X \cap X^{\prime}\right) \cup\left(X^{\prime} \cap C_{b}\right)
$$

seperate $a$ from $b$.
3. Do $Y_{a}$ and $Y_{b}$ separate $a$ from $b$ minimally if $X$ and $X^{\prime}$ do? Are $\left|Y_{a}\right|$ and $\left|Y_{b}\right|$ minimum for vertex sets separating $a$ from $b$ if $|X|$ and $\left|X^{\prime}\right|$ are?
4. Let $X$ and $X^{\prime}$ be minimal separating vertex sets in $G$ such that $X$ meets at least two components of $G \backslash X^{\prime}$. Show that $X^{\prime}$ meets all the components of $G \backslash X$, and that $X$ meets all the components of $G \backslash X^{\prime}$.

