CS105L: Discrete Structures I semester, 2005-06

Tutorial Sheet 12: Graph Theory: Connectivity

Instructor: Amitabha Bagchi

November 9, 2006

For the first three exercises, let G be a graph and $a, b \in V(G)$. Suppose that $X \subseteq V(G) \setminus \{a, b\}$ separates a from b in G. We say that X separates a from b minimally if no proper subset of X separates a from b in G.

- 1. Show that X separates a from b minimally if and only if every vertex in X has a neighbour in the component C_a of $G \setminus X$ containing a, and another in the component C_b of $G \setminus X$ containing b.
- 2. Let $X' \subseteq V(G) \setminus \{a, b\}$ be another set separating a from b, and define C'_a and C'_b accordingly. Show that both

$$Y_a = (X \cap C'_a) \cup (X \cap X') \cup (X' \cap C_a)$$

and

$$Y_b = (X \cap C_b') \cup (X \cap X') \cup (X' \cap C_b)$$

separate a from b.

- 3. Do Y_a and Y_b separate a from b minimally if X and X' do? Are $|Y_a|$ and $|Y_b|$ minimum for vertex sets separating a from b if |X| and |X'| are?
- 4. Let X and X' be minimal separating vertex sets in G such that X meets at least two components of $G \setminus X'$. Show that X' meets all the components of $G \setminus X$, and that X meets all the components of $G \setminus X'$.