CS105L: Discrete Structures I semester, 2006-07

Tutorial Sheet 10: Graph Theory continued
Instructor: Amitabha Bagchi

October 8, 2006

1. Show that every 2 -connected graph contains a cycle.
2. Determine $\kappa(G)$ (vertex connectivity) and $\lambda(G)$ (edge connectivity) for P^{k} (a path on k vertices), C^{k} (a cycle with k vertices), K^{k} (a complete graph on k vertices), $K_{m, n}$ (a complete bipartite graph with m vertices on one side and n vertices on the other side.)
3. A connected acyclic graph is called a tree. Prove that the following assertions are true for a graph T.
(a) T is a tree.
(b) any two vertices of T are linked by a unique path in T.
(c) T is minimally connected i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$.
(d) T is maximally acyclic i.e. T contains no cycles but $T+x y$ does for any two non-adjacent vertices $x, y \in T$.
4. An independent set in a graph G is a set of vertices which induce a subgraph on G which has no edges. The chromatic number of G, denoted $\chi(G)$, is the minimum number of independent sets which cover the entire graph i.e. the minimum number of independent sets whose union is the entire vertex set, V, of G. If d is the maximum degree of the graph show that

$$
\chi(G) \leq d+1
$$

