CS105L: Discrete Structures I semester, 2006-07

Tutorial Sheet 10: Graph Theory continued

Instructor: Amitabha Bagchi

October 8, 2006

- 1. Show that every 2-connected graph contains a cycle.
- 2. Determine $\kappa(G)$ (vertex connectivity) and $\lambda(G)$ (edge connectivity) for P^k (a path on k vertices), C^k (a cycle with k vertices), K^k (a complete graph on k vertices), $K_{m,n}$ (a complete bipartite graph with m vertices on one side and n vertices on the other side.)
- 3. A connected acyclic graph is called a *tree*. Prove that the following assertions are true for a graph T.
 - (a) T is a tree.
 - (b) any two vertices of T are linked by a unique path in T.
 - (c) T is minimally connected i.e. T is connected but T e is disconnected for every edge $e \in T$.
 - (d) T is maximally acyclic i.e. T contains no cycles but T + xy does for any two non-adjacent vertices $x, y \in T$.
- 4. An independent set in a graph G is a set of vertices which induce a subgraph on G which has no edges. The chromatic number of G, denoted $\chi(G)$, is the minimum number of independent sets which cover the entire graph i.e. the minimum number of independent sets whose union is the entire vertex set, V, of G. If d is the maximum degree of the graph show that

$$\chi(G) \le d+1.$$