CS105L: Discrete Structures I semester, 2006-07

Tutorial Sheet 1: Sets, Relations and Functions

Instructor: Amitabha Bagchi

July 27, 2006

- 1. Prove that for any binary relations \mathcal{R} and \mathcal{S} on a set A,
 - (a) $(\mathcal{R}^{-1})^{-1} = \mathcal{R}$
 - (b) $(\mathcal{R} \cap \mathcal{S})^{-1} = \mathcal{R}^{-1} \cap \mathcal{S}^{-1}$
 - (c) $(\mathcal{R} \cup \mathcal{S})^{-1} = \mathcal{R}^{-1} \cup \mathcal{S}^{-1}$
 - (d) $(\mathcal{R} \setminus \mathcal{S})^{-1} = \mathcal{R}^{-1} \setminus \mathcal{S}^{-1}$
- 2. Show that a relation \mathcal{R} on a set A is
 - (a) reflexive if and only if $\mathcal{I}_A \subseteq \mathcal{R}$;
 - (b) antisymmetric if and only if $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}_A$;
 - (c) transitive if and only if $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$
 - (d) connected if and only if $(A \times A) \setminus \mathcal{I}_A \subseteq \mathcal{R} \cup \mathcal{R}^{-1}$.
- 3. Prove that there exists a bijection from \mathbb{N}^2 to \mathbb{N} , where \mathbb{N} denotes the set of natural numbers.
- 4. Prove that for any relation \mathcal{R} on a set A
 - (a) $S = \mathcal{R}^* \cup (\mathcal{R}^*)^{-1}$ and $\mathcal{T} = (\mathcal{R} \cup \mathcal{R}^{-1})^*$ are both equivalence relations.
 - (b) Prove or disprove: S = T.