# CS105L: Discrete Structures I semester, 2006-07 

Tutorial Sheet 1: Sets, Relations and Functions<br>Instructor: Amitabha Bagchi

July 27, 2006

1. Prove that for any binary relations $\mathcal{R}$ and $\mathcal{S}$ on a set $A$,
(a) $\left(\mathcal{R}^{-1}\right)^{-1}=\mathcal{R}$
(b) $(\mathcal{R} \cap \mathcal{S})^{-1}=\mathcal{R}^{-1} \cap \mathcal{S}^{-1}$
(c) $(\mathcal{R} \cup \mathcal{S})^{-1}=\mathcal{R}^{-1} \cup \mathcal{S}^{-1}$
(d) $(\mathcal{R} \backslash \mathcal{S})^{-1}=\mathcal{R}^{-1} \backslash \mathcal{S}^{-1}$
2. Show that a relation $\mathcal{R}$ on a set $A$ is
(a) reflexive if and only if $\mathcal{I}_{A} \subseteq \mathcal{R}$;
(b) antisymmetric if and only if $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}_{A}$;
(c) transitive if and only if $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$
(d) connected if and only if $(A \times A) \backslash \mathcal{I}_{A} \subseteq \mathcal{R} \cup \mathcal{R}^{-1}$.
3. Prove that there exists a bijection from $\mathbb{N}^{2}$ to $\mathbb{N}$, where $\mathbb{N}$ denotes the set of natural numbers.
4. Prove that for any relation $\mathcal{R}$ on a set $A$
(a) $\mathcal{S}=\mathcal{R}^{*} \cup\left(\mathcal{R}^{*}\right)^{-1}$ and $\mathcal{T}=\left(\mathcal{R} \cup \mathcal{R}^{-1}\right)^{*}$ are both equivalence relations.
(b) Prove or disprove: $\mathcal{S}=\mathcal{T}$.
