CS105L: Discrete Structures
 I semester, 2006-07

Homework \# 6
Due before class on Thursday, September 21st, 2006

Instructor: Amitabha Bagchi

September 14, 2006

1. Find a recurrence relation for the number of ways to completely cover a $2 \times n$ chessboard with a 1×2 dominos. Solve the recurrence to determine this number of ways.
2. Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and n as their last term where n is a positive integer. That is, sequnces $a_{1}, a_{2}, \ldots, a_{k}$ where $a_{1}=1$ and $a_{k}=n$ and $a_{j}<a_{j+1}$ for $j=1,2, \ldots, k-1$. What are the initial conditions? How many such sequnces are there when n is a positive integer and $n \geq 2$?
3. Let $S(m, n)$ denote the number of onto functions from a set with m elements to a set with n elements. Show that $S(m, n)$ satisfies the recurrence:

$$
S(m, n)=n^{m}-\sum_{k=1}^{n-1}\binom{n}{k} S(m, k)
$$

whenever $m>n$ and $n>1$ with the initial condition that $S(m, 1)=1$.

