CS105L: Discrete Structures I semester, 2006-07

Homework # 1

Due before class on Friday, August 4, 2006

Instructor: Amitabha Bagchi

July 28, 2006

1. Find the fallacy in the proof of the following "theorem."

Theorem 1.1 A symmetric and transitive binary relation is an equivalence.

Proof. Let \mathcal{R} be a symmetric and transitive binary relation on a set A. For any pair of elements $(a, b) \in \mathcal{R}$, it follows from symmetry that $(b, a) \in \mathcal{R}$. Further, from transitivity it follows that if (a, b) and (b, a) are in \mathcal{R} then (a, a) and (b, b) are in \mathcal{R} . Hence \mathcal{R} is also reflexive and therefore it is an equivalence.

- 2. Can you prove that there exists no bijection between \mathbb{N}^{ω} and \mathbb{N} ?
- 3. Given any preorder \mathcal{R} on a set A, prove that the *kernel* of the preorder defined as $\mathcal{R} \cap \mathcal{R}^{-1}$ is an equivalence relation.
- 4. Consider any preorder \mathcal{R} on a set A. We give a construction of another relation as follows. For each $a \in A$, let $[a]_{\mathcal{R}}$ be the set defined as $\{b \in A | a\mathcal{R}b \text{ and } b\mathcal{R}a\}$. Now consider the set $B = \{[a]_{\mathcal{R}} | a \in A\}$. Let \mathcal{S} be a relation on B such that for every $a, b \in A$, $[a]_{\mathcal{R}}\mathcal{S}[b]_{\mathcal{R}}$ if and only if $a\mathcal{R}b$. Prove that \mathcal{S} is a partial order on the set B.