CS105L: Discrete Structures I semester, 2005-06

Solution to Tutorial Sheet 3, Problem 1

Instructor: Amitabha Bagchi

August 21, 2005

Important Clarification. In the lectures I said that the statement of Zorn's Lemma was: If every chain L of a partial order P has an upper bound which lies in L then P has a maximal element.

This is wrong, especially the highlighted part. Shubham brought this to my attention. The upper bound of a chain does not need to lie in the chain, it just has to lie in the partially ordered set. In other words the statement of Zorn's Lemma should be: If every chain of a partial order P has an upper bound that lies in P then P has a maximal element.

I apologise for this confusion and for the time and effort wasted as a result of my error.

The proof of the first tutorial problem is now relatively straightforward. I am putting it down here. The first problem in HW 3 can be solved using a similar construction.

Theorem 3.1 Zorn's Lemma implies the Axiom of Choice.

Proof. Given a family of sets C indexed by an index set I, i.e. the sets of C are called X_i where $i \in I$, we want to show that if Zorn's lemma holds, there is a choice function f such that $\forall i \in I : f(X_i) \in X_i$.

To do this we consider a partial order on the set P which is a set of partial functions from I to $\bigcup_{i\in I}X_i$ with the property that e(i) is either not defined or $e(i) \in X_i$. Since a partial function from A to B can be thought of as a subset of $A \times B$, we consider the subset relation between the elements of P. In other words, for $g, h \in P$, $g \leq h$ if g(i) = h(i) whenever g(i) is defined. This relation, \leq , is a partial order on P.

To apply Zorn's lemma we have to satisfy ourselves that each chain in (P, \preceq) has an upper bound in P. Note that this upper bound does not necessarily have to lie in the chain.

Consider a chain L in P. Now consider $h_L = \bigcup_{e_i \in L} e_i$. h_L is a partial function because if there is an i such that both (i, a) and (i, b) are in h_L where $a \neq b$, this means there are two elements in L which have differing images for i which would mean they are not comparable, hence contradicting the fact that L is a chain. Since h_L is a partial function it is definitely in P, and because it is the union of all the elements of L it is definitely an upper bound for L.

Since each chain has an upper bound, by Zorn's Lemma a maximal element exists in P. This maximal element, let us call it f, has to be a total function from I to $\bigcup_{i \in I} X_i$ because if it were not defined for any $i \in I$ it would be possible to find an element larger than it which was also defined for that i. By the property of all elements of P that they map $i \in I$ to an element of X_i , it is clear that F is a choice function for C.