CS105L: Discrete Structures I semester, 2005-06

Tutorial Sheet 11: Discrete Probability: Sudoku

Instructor: Amitabha Bagchi

November 15, 2005

	6		1	4		5	
		8	3	4 5	6		
2							1
2 8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6 8	9		
	4		2 5	8		7	

Figure 1: Fill in the grid so that each row, each column and each of the 3×3 boxes marked contain all the digits 1 through 9.

1. Solve the puzzle given in Figure 1.

For the rest of the problems we will assume that each box in the grid is filled independently with a digit chosen uniformly at random from 1 to 9. A filling of any subset of squares in the grid is *feasible* if it does not violate any of the rules.

- 2. What is the probability of: a given row being feasible, all 9 rows being feasible?
- 3. What is the probability of a column being feasible, given that all the rows are feasible?
- 4. What is the probability that row 4 from the top is feasible given that the top left box is feasible? What is it if you're given that the central box is feasible?
- 5. Can you bound on the probability that the entire grib has been filled feasibly? Can this bound then be used to upper bound the total number of sudoku grids possible?
- 6. If we add in the rule that the two long diagonals of the grid should contain all the digits from 1 to 9, what is the probability of getting a feasible filling of the grid?