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1.2 Basic Concepts in Probability Theory

In this section we will introduce some basic concepts in probability theory.
Let us consider a random experiment of which all possible results are included in a non-empty set�

, usually called the sample space. An element ��� � is called a sample point or outcome of the
experiment. An event of a random experiment is specified as a subset of

�
. Event � is called true if

an outcome ��� � has been chosen with ����� . Otherwise � is called false. A system � of events
(or, in general, subsets of

�
) is called an algebra if	 � �
� ,	 if ����
��
� , then ����
��
� and ����
��
� , and	 if ����� , then ������ .

Given an algebra � , a function �������  !#" is called a measure on � if for every pair of disjoint sets����
��
� we have �%$&����
('%)*�+$,�-'/.��%$0
1'32
This definition clearly implies that �%$045'+)*6 and that for any set of pairwise disjoint events �(78�92:2:29�;�=<-�� we have � > <?@BA 7 � @DC ) EF@BA 7 �%$&� @ 'G2
Furthermore, it implies that for any pair of sets ����
��
� we have

�%$&����
('%)H�%$&�-'I.��%$0
1'KJL�%$,���M
('G2
We say that a function N����O� PQ6R�:S9T is a probability measure if	 N is a measure on � and	 NU$ � '%)�S .
Given a probability measure N , the probability of an event � to be true is defined asV+W PX�YTZ)�NU$,�['\2
We say that a triple $ � �]�^�_N`' is a probability space if � is an algebra over

�
and N is a probability

measure on � .

1.2.1 Events

Starting from a given collection of sets that represent events, we can form new events by means of
statements containing the logical connectives “or,” “and,” and “not,” which correspond in the language
of set theory to the operations “union,” “intersection,” and “complement.”

If � and 
 are events, their union, denoted by ����
 , is the event consisting of all outcomes
realizing either � or 
 . The intersection of � and 
 , denoted by �H�a
 , consists of all outcomes
realizing both � and 
 . The difference of 
 and � , denoted by 
�b=� , consists of all outcomes that
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belong to 
 but not to � . If � is a subset of
�

, its complement, denoted by �� , is the set of outcomes
in
�

that do not belong to � . That is, �� ) � b\� .
Two events � and 
 are called disjoint if �*��
 is empty. In probability theory, 4 is called the

impossible event. The set
�

is naturally called the certain event.
If
�

is a countable sample space (i.e., its elements can be arranged in a sequence so that the � th
element is identifiable for any � �� � ), we define the size of an event � , denoted by � ��� , to be the
number of outcomes it contains.

1.2.2 The Inclusion-Exclusion Principle

Let � 7 �:2:2:2 �]� E be any collection of events. The inclusion-exclusion principle stated in Section 1.1.1
implies that

V+W�� E?@BA 7 � @�� ) EF< A 7 $ J S ' <�"Z7 F@
	��5@�
�������� �5@�� V+W��� <�� A 7 � @����� 2 (1.1)

For the special case of ��) � we obtainV+W PQ� 7 � ��!]TZ) V+W PQ� 7 T . V+W PX��!;T J V%W PQ� 7/�M��!;T 2
In cases where it is too difficult to evaluate (1.1) exactly, Bonferroni’s inequalities may be used to find
suitable approximations:	 For every odd " ,

V+W � E?@BA 7 � @ �$# %F< A 7 $ J S ' <]"Z7 F@ 	 �5@ 
 ������� �5@ � V%W �� <�� A 7 � @�� �� 2
	 For every even " ,

V+W � E?@BA 7 � @ �$& %F< A 7 $ J S ' <]"Z7 F@ 	 �5@ 
 ������� �5@ � V%W �� <�� A 7 � @�� �� 2
Special cases of these inequalities are Boole’s inequalities:

V%W � E?@BA 7 � @ � # EF @ A 7 V%W PQ� @ T
and V+W'� E?@BA 7 � @(� & EF@BA 7 V+W PX� @ T J F7�) @
�*� ) E

V+W PQ� @ � � � T 2
We demonstrate the usefulness of the inclusion-exclusion principle by some simple examples.
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Example 1: Consider the problem of coloring the nodes of a hypergraph � with the help of 2 colors
such that no hyperedge is monochromatic (i.e., no hyperedge only contains nodes of a single color).
We would like to identify a class of hypergraphs for which this is always possible. Such a class is
given in the following claim.

Claim 1.5 For every hypergraph � with � hyperedges in which every hyperedge is of size at least����� � . � , there is a 2-coloring of the nodes such that no hyperedge is monochromatic.

Proof. Consider the random experiment of choosing for each node independently and uniformly at
random one of the two possible colors. In this case, the probability that a hyperedge of size � is
monochromatic is equal to ��� �
	 < ) ��	 <�"Z7 . Assume the hyperedges to be numbered from 1 to � and
let � @ be the event that hyperedge � is monochromatic. Then, by the inclusion-exclusion principle,V+W PQ� 7 � 2:2:2 � � E T # EF @BA 7 V+W PX� @ T # EF@BA 7 � 	�
������ E "Z7�� ) S� 2
Hence, V+W P`�� 7/� 2:2:2:� �� E TZ)�S J V+W PX� 7/��2:292 ��� E T & S� �
and therefore there must exist a 2-coloring such that no edge is monochromatic. ��
Example 2: Assume that we have � balls and � bins. Each ball is placed in a bin that is chosen
independently and uniformly at random. The goal is to provide an upper bound for the maximum
number of balls in a bin. This will be given in the following claim.

Claim 1.6 With a probability of at least S�� � , the maximum number of balls in a bin is at most $ S .� $ S ';' ����� ��� ����������� � .
Proof. Let � )! ����� ��� ����������� � for some non-negative  that will be specified later. For every�G� P��`T , let the event � @ be true if and only if bin � has at least � balls. Furthermore, let " 7 denote the
event that there exists a bin with at least � balls. Then, by Boole’s inequality,V+W P#"-7 TZ) V%W PQ� 7 ��2:2:2 �M� E T # EF @BA 7 V+W PX� @ T 2
For any subset $&% P��`T , let the event � @�' ( be true if and only if all balls in $ are placed in bin � . Then,
again by Boole’s inequality,V+W PX� @ T`) V+W �� ?(*),+ E - '/. (�. A < �

@�' ( �� # F(�),+ E - '/. (�. A <
V+W PX� @�' ( T

for all � . Since ��01$2%�P��`T_� �#$�� )3�54�� )76 E </8 and
V+W PQ� @�' ( T ) S��*� . (
. for all $&%�P��ZT , we obtainV+W P9"[7 T # �:� > � � C<; S�>= <# �:� ;@? � �� = < ; S� = < ) �A� ;B?� = <# �:� � 	
CED FHGJID FHGJD FHGJI
K ����� $ML D FHGJIN D FHGJD FHGOI '# �:� � 	P����� E 	 7 # S�
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if  )�S3. � $ S ' and � are sufficiently large. ��
We note that the bound for the maximum number of balls in Claim 1.6 is essentially best possible,

since the probability that the maximum number of balls is at least $ S-J � $ S ';' ����� � � ����������� � can be
shown to be also at least S�� � .
Example 3: Again, consider the situation that we have � balls and � bins, and each ball is placed in
a bin chosen independently and uniformly at random.

Claim 1.7 The probability that bin 1 has at least one ball is at least S�� � .
Proof. For any �%��P��ZT , let � @ be the event that ball � is placed in bin 1. Then, by Boole’s inequality,

V+W P bin 1 has at least one ball T ) V%W �� ?@ � + E - �
@ ��

& F7�) @ ) E
V%W PQ� @ T J F7�) @
�*� ) E

V+W PX� @ ��� � T
) F7�) @ ) E

S� J F7�) @
�*� ) E
S� !

) S J > � � C S� ! & S J S� ) S� 2 ��
Observe that the probability bound in Claim 1.7 is not far away from the exact bound:V+W P bin 1 has at least one ball TZ) S\J ; S J S� = E E ���) S J S? 2

1.2.3 Conditional Probability

The conditional probability of event 
 assuming an event � with
V+W PX�YT�� 6 is denoted by

V+W PQ
 ���YT
and defined as V+W P 
 � �YTZ) V+W PQ����
 TV+W PQ� T 2
From this definition it follows that for all events � and 
 with

V+W PX�YT�� 6 ,V%W PQ����
 TZ) V+W PX�YT�� V+W P 
 � �YT 2 (1.2)

This can be generalized as follows: If � 7 �:2:2:2 �]� E are events with
V+W PX� 7/��2:292 �M� E 	 7 T�� 6 , thenV+W PX� 7/��292:2 ��� E T`) E	@BA 7 V+W PQ� @ � � 7 ��2:2:2 �M� @ 	 7 T 2

Suppose that � and 
 are events with
V+W PX�YT�� 6 and

V+W PQ
 T�� 6 . Then, in addition to the equality (1.2),
we have V+W PX����
 TZ) V+W P 
 T�� V+W PX� � 
 T 2 (1.3)
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From (1.2) and (1.3) we obtain Bayes’s formulaV+W PX� � 
 TZ) V+W PX�YT � V%W P 
 � �YTV+W PQ
 T 2
Two events � and 
 are called independent if and only ifV+W PQ
 � �YTZ) V+W PQ
 T 2

Note that, due to Bayes’s formula, in this case also
V%W PQ� �+
 T-) V+W PQ� T , that is, the independence

property is symmetric.
If
V+W PQ
 � � T��) V+W PQ
 T , then � and 
 are said to be correlated. � and 
 are called	 negatively correlated if

V+W P 
 � �YT�� V+W P 
 T and	 positively correlated if
V+W PQ
 � �YT�� V+W PQ
 T .

By Bayes’s formula, all of these correlation properties are also symmetric.
As an example, any two disjoint events � and 
 with positive probabilities cannot be independent,

since
V+W P 
 � �YT ) 6 . However, they are always negatively correlated. Furthermore, they have the

property that V+W PX����
 TZ) V+W PQ� T . V+W P 
 T 2
To illustrate negative and positive correlation, let us give a very simple example.

Example: Consider the problem of throwing � balls into � bins, where each ball is placed in a bin
chosen independently and uniformly at random. Let � be the event that bin 1 has no ball, and let 
 be
the event that some fixed bin � �HS has no ball. For ��) � it holdsV+W P 
 � �YTZ) 6 # S� ) V+W PQ
 T �
and for ��)�� it holds V+W P 
 � �YTZ) S� # ��	� ) V+W PQ
 T 2
Thus, � and 
 are negatively correlated for these � . (One can observe that this also holds for higher� .)

Now, let � be the event that bin 1 has exactly one ball, and let 
 be the event that some fixed bin� ��S has exactly one ball. Since the expected number of balls in a bin is 1, one may assume that �
does not influence 
 . However, for ��) � it holdsV+W P 
 � �YTZ) S & S� ) V+W PQ
 T �
and for ��)�� it holds V+W P 
 � �YTZ) S� & � 
 ) V+W PQ
 T 2
Thus, � and 
 are positively correlated for these � . However, one can observe that

V+W PQ
 � � T tends toV%W P 
 T for �M� � .
If we define � and 
 to be events for which a bin has exactly � � S balls, one can show that � and
 are, as in the first case, negatively correlated.
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1.2.4 Random Variables

Any numerical function � )���$ �3' defined on a sample space
�

may be called a random variable.
In this thesis we will only consider real-valued random variables, i.e., functions of the form � � � � ! . It has been found convenient to separate the random variables into three categories: discrete,
continuous, and mixed.

A discrete random variable is supposed to take only isolated values with nonzero probabilities. The
number of values it is allowed to take may be infinite, but it is essential that they are countable. That
is, it must be possible to arrange its values in a sequence so that the � th number is identifiable for any� �  � . An (absolutely) continuous random variable � is one for which

V+W P � #�� T can be expressed
as the integral ��� $ � '%) �	�	 � N � $ � '�
 �
of a function N � $ � ' commonly called the probability density of � .

���
is called the distribution

function of � . A random variable is called mixed if it has both discrete and continuous parts.
In the following, we will only consider discrete random variables. A random variable � is called

non-negative if ��$ �3' & 6 for all � � � . For the special case that � maps elements in
�

to 0 6R�9S�4 , �
is called a binary or Bernoulli random variable. A binary random variable � is called an indicator of
event � (denoted by 
�� ) if ��$ �3' ) S if and only if � ��� for all � � � .

For any random variable � and any number � �� ! , we define P�� ) � TI) 0:� � � �	��$ �3'%) � 4 .
Instead of using set operations to express combinations of events associated with random variables,
we will use logical expressions in the following, that is,	 instead of

V+W PDP � ) � T �aP�� )�� T T we write
V+W P � ) ��� ��)�� T , and	 instead of

V+W PDP � ) � T �aP�� )�� T T we write
V+W P � ) ��� ��)�� T .

For any discrete random variable � and any � �a ! , we defineV+W P � # � TZ) F� ) < V+W P � )�� T and
V+W P � & � TZ) F��� < V+W P � )�� T 2

The function N � $ � '%) V%W P�� ) � T is called the probability distribution of � , and the function
��� $�� '%)V%W P�� # �5T is called the (cumulative) distribution function of � . Furthermore, the function � � $ �R'G)V%W P�� & � T is called the survival distribution function of � . For any two random variables � and � ,

� is said to (stochastically) dominate � (denoted by ����� ) if � � $�� ' & �! 3$�� ' for all � �L ! .

1.2.5 Expectation

The most important measure used in combination with random variables is the expectation.

Definition 1.8 Let $ � �]�^�_N`' denote an arbitrary probability space and � � � �  ! be an arbitrary
discrete function. Then the expectation of � is defined as

" P���TZ) F
� �$# % � � V+W P � ) � T 2 (1.4)
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Assume that the set $*) 0 � 7 � � !:�:292:2 4 contains all values � can take, where � 7 � � ! ��2:2:2 . Let
the function � � �  !^�  !Z" be defined as

� � $ � '%)
��� �� 6 � � �� $� � � ) � 7� J � @ 	 7 � � ) � @ for some � & �

That is, � � $ � ' provides the distance to the predecessor of � in $ . If � is non-negative, it follows from
equation (1.4) and the definition of � � that

" P �
TZ) F
� ��� �

� $ � ' � V+W P � & � TZ) F
� ��� �

� $ � ' ��� � $ � 'G2 (1.5)

In the case that � is integer-valued, we can simplify this expression to

" P��
TZ) F
� �$# �

V+W P � & � TZ) F
� �$# � � � $ � 'G2 (1.6)

For binary random variables � it holds that

" P��
TZ) V+W P�� ) S T/2
Basic properties

The following fact lists some basic properties of the expectation.

Fact 1.9 For arbitrary random variables � and � and any �=�� ! it holds:	 If � is non-negative, then
" P��
T & 6 .	 � " P �
T � # " P � � � T .	 " P	� ����TZ)
� � " P �
T .	 " P�� . � T`) " P���T . " P�� T .

Two random variables � and � are called independent if, for all � � � �L ! ,V+W P � ) � � ��)��5T ) V%W P�� ) � TU2
Independent random variables have the following important property.

Claim 1.10 If � and � are independent random variables, then
" P�� � � TZ) " P��
T,� " P�� T .

Proof. For all � � � �L ! , let � � and 
�� be the events with

� � ) 0:� � � � ��$ �3'K) � 4 and 
�� ) 0:� � � � � $ �3'+)��54 2
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Since � and � are independent,
V+W PX� � � 
�� T ) V+W PX� � TB� V+W PQ
��8T for all � � � �O ! . Recall that, for

any event " , the indicator variable 
�� is equal to 1 if and only if ��� " . As � ) � � � � 
 ��� and
� ) � � �M� 
���� , we obtain

" P � � � T ) " �� �	 F
� � # % � � 
 � ��
� � �	 F� �$# % �M� 
���� 
� ��

) " �� F
� ' � � # % � � �M� 
 �
����� � �� ) F

� ' � �$# % � � � � V+W PQ� � ��
�� T) F
� ' � �$# % � � � � V%W PQ� � T,� V+W PQ
��8T

) �	 F
� �$# % � � V+W PX� � T 
� � �	 F� � # % � � V+W PQ
��8T 
� ) " P��
T,� " P�� T 2

��
A set � 78�92:2:29��� E of random variables is called (mutually) independent if, for all � � P��ZT and$ % P��`T b 0�� 4 , V+W �� � @ ) � @ ���� � ( � � ) � � �� ) V+W P � @ ) � @ T (1.7)

for all � @ �� ! and � � �� ! with � � $ . � 7 �:2:292 � � E are called � -wise independent if (1.7) holds for all$ % P��`T b 0�� 4 with �#$�� # � .

Modeling Dependence

The conditional expectation of a random variable � with respect to an event � is defined by" P � � �YTZ) F
� � # % � � V+W P ��) � � � T/2 (1.8)

If the event � is � )�� for some random variable � , this equation defines a function � with� $�� '+) " P�� � � )�� T 2
Thus,

" P�� � �
T is a random variable, namely the random variable � $ ��' . (Observe that it does not
hold in general that

" P � �$� T ) " P �
T@� " P�� � �
T . A way to study the relationship between
" P � �$� T

and
" P���T and

" P � T will be given in Section 1.2.6.)
A fundamental property of the conditional expectation is that" P � TZ) " P " P�� � �
T T

for any two random variables � and � (which is easy to check). If � is independent of � , then (1.8)
implies that

" P�� � ��T ) " P � T . An important case for which
" P�� T depends on � is given in the

following definition.

Definition 1.11 A sequence of random variables � � ��� 7 �92:2:2 is called a martingale if for all � & S ," P � @ � � � ��� 7��:2:2:2 � � @ 	 7 TZ)�� @ 	 732
Martingales will be considered in a later section.
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Tail estimates

We start with a fact that contains some straightforward probability bounds.

Fact 1.12 Let � be an arbitrary random variable. ThenV+W P � � " P���TDT � S and
V+W P � �

" P �
T T�� S 2
The next result provides a first, simple probability bound that depends on the deviation from the

expected value. It has apparently first been used by Chebychev (which is why some authors call it
Chebychev inequality [Shi96]), but it is commonly called Markov inequality.

Theorem 1.13 (Markov Inequality) Let � be an arbitrary non-negative random variable. Then, for
any � � 6 , V+W P�� & � T # " P �
T� 2
Proof. Obviously, " P �
TZ) F

� ��� � � V+W P � ) � T & � � V+W P � & � T 2
��

As we will show later, this inequality has a tremendous number of consequences. We will start
with some simple examples.

Example 1: A directed graph � is called a tournament if for every pair of nodes � ��� with � �)�� ,
either $�� ��� ' or $�� ���Z' is an edge in � . A Hamiltonian path in a directed graph � is a directed path that
visits every node of � exactly once. We will show the following claim.

Claim 1.14 There exists a tournament of size � with at least � � � � E 	 7 Hamiltonian paths.

Proof. Let � E be the complete undirected graph of size � . We generate a random tournament �
out of � E by choosing a direction for each edge independently and uniformly at random. Let � be
a permutation of the nodes in � . We define the binary random variable �
	 to be 1 if and only if �
defines a directed path in � . Clearly, for all �H� $ E , V+W P ��	�) S9T ) ��	�
 E 	 7�� . Let � be the random
variable counting the number of Hamiltonian paths in � , that is,

� ) F
	 � ( I ��	12

Since �#$ E � ) � � , we obtain " P �
TZ) F
	 � ( I

V%W P���	 ) S T`) � � � � E 	 7 2
According to Fact 1.12,

V+W P � � " P �
T T���S . Thus, there must exist a tournament with at least � � � � E 	 7Hamiltonian paths. ��


