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1 Random Fourier Features

In this discussion, we will study the random lifting trick from HW2. This technique was first introduced
in the context of machine learning by [2]. Recall that given a set of points txiuni“1 with xi P Rd, we
constructed a random feature map φ : Rd ÝÑ RD as follows

φpxq “

c

2

D

»

—

—

—

—

—

–

cospwT
1 x` b1q

cospwT
2 x` b2q
...

cospwT
Dx` bDq

fi

ffi

ffi

ffi

ffi

ffi

fl

, wi
iid
„ Np0, σ2Iq , bi

iid
„ Unifpr0, 2πsq . (1)

We then used the map φ to do learning with the dataset tφpxiquni“1. The question now is, why does
this work? What is the principle behind such a map? Our eventual goal will be to show that φ is an
approximation to the feature map induced by a kernel. We first start by reviewing basic kernel definitions.

1.1 Positive definite kernel functions

Recall the following definition of a positive definite kernel.

Definition 1. Let X be a set and k : X ˆX ÝÑ R be a symmetric function. We say that k is a positive
definite kernel if for all n ě 1, x1, ..., xn P X , and α1, ..., αn P R,

n
ÿ

i“1

n
ÿ

j“1

αiαjkpxi, xjq ě 0 .

This definition means that for any dataset txiuni“1, the nˆn kernel gram matrixK defined asKij “

kpxi, xjq is a positive semi-definite matrix.
We now consider a special class of kernel functions, which are called translation-invariant kernels.

For the rest of this note, we will only consider kernels onRd, but we note that these ideas can be extended
more generally to locally compact abelian groups. We now state another definition.

Definition 2. Let k : RdˆRd ÝÑ R be a positive definite kernel. We say that k is translation-invariant
if kpx1, x2q “ gpx1 ´ x2q for some function g : Rd ÝÑ R.

Note that since k is symmetric, it must be the case that gpxq “ gp´xq, i.e. g is symmetric around the
origin. Let us now consider several examples of translation-invariant kernels on Rd. The most classical
example, which we have already seen, is the Gaussian kernel

kpx1, x2q “ gpx1 ´ x2q , gp∆q “ expp´‖∆‖2
2{2σ

2q .

A few more examples include the Laplacian kernel

kpx1, x2q “ gpx1 ´ x2q , gp∆q “ expp´‖∆‖1{σq ,
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and the sinc kernel

kpx1, x2q “ gpx1 ´ x2q , gp∆q “
sinpapx´ yqq

πpx´ yq
.

1.2 Fourier features of the Gaussian kernel

We will momentarily focus on the Gaussian kernel and derive a nice property of its Fourier transform.
We first recall the definition of the Fourier transform of a function.

Definition 3. Let f : Rd ÝÑ C be an L1pRdq function. The Fourier transform of f , which we denote as
pf , is defined as

pfpξq “

ż

Rd

fpxqe´jξ¨x dx .

Some remarks are in order. First, the operator f ÞÑ pf can be extended uniquely to map L2 functions
to L2; this is the content of Plancherel’s theorem. Second, in the above expression j “

?
´1 and the

notation ξ ¨ x refers to the inner product ξTx. Third, the Fourier transform is often defined with different
constants (so the definition above may or may not be the one you are used to).

We now show a very fundamental fact about Fourier transforms.

Lemma 1. Let fpxq “ e´zx
2{2 for some positive z ą 0. Then

pfpξq “ p2πq1{2z´1{2e´ξ
2{2z .

Proof. Define the function gpξq “ pfpξq. We exhibit an ordinary differential equation (ODE) which g
satisfies. Observe that by differentiating under the integral,

d

dξ
gpξq “

d

dξ

ż 8

´8

e´zx
2{2e´jξx dx

“

ż 8

´8

e´zx
2{2p´jxqe´jξx dx “ pj{zq

ż 8

´8

e´jξx
d

dx

´

e´zx
2{2

¯

dx .

Integrating by parts,

pj{zq

ż 8

´8

e´jξx
d

dx

´

e´zx
2{2

¯

dx “ pj{zq

„

e´jξxe´zx
2{2

ˇ

ˇ

ˇ

ˇ

8

´8

´

ż 8

´8

p´jξqe´jξxe´zx
2{2



“ ´
ξ

z
gpξq .

Therefore,

d

dξ
gpξq “ ´

ξ

z
gpξq . (2)

It is straightforward to check that the function gpξq “ Ce´ξ
2{2z satisfies the ODE in (2) for any constant

C. We now derive the correct C by satisfying the boundary condition C “ gp0q “
ş

e´zx
2{2 dx. But

gp0q is the normalization constant of a Np0, 1{zq distribution. Hence, C “ p2πq1{2z´1{2, which is the
desired result.
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Now let us consider the d-dimensional Gaussian function fpxq “ e´z‖x‖
2
2{2 for z ą 0. Taking the

Fourier transform and using the previous result,

pfpξq “

ż

Rd

e´z‖x‖
2
2{2e´jξ¨x dx “

ż

Rd

d
ź

i“1

e´zx
2
i {2e´jξixi dx “

d
ź

i“1

ż 8

´8

e´zx
2
i {2e´jξixi dxi

“

d
ź

i“1

pfpξiq “ p2πq
d{2z´d{2e´‖ξ‖

2
2{2z .

Now, let us set z “ σ2 and γ “ 1{σ and study this equation. We have shown that

e´‖ξ‖
2
2{2σ

2
“

1

p2πγ2q´d{2

ż

Rd

e´jξ¨xe´‖x‖
2
2{2γ

2
dx .

If we look at the right hand side for a moment, we will notice that it is simply the expectation over a
multivariate Gaussian. That is, if w „ Np0, γ2q, then

e´‖∆‖22{2σ2
“ Ewre´j∆¨ws .

The left hand side, however, simply the Gaussian kernel. Hence, if we define ϕwpxq “ ejx¨w,

kpx1, x2q “ Ewre´jpx2´x1q¨ws “ Ewre´jx2¨wejx1¨ws “ Ewrϕwpx1qϕwpx2qs . (3)

We now take advantage of the fact that kpx1, x2q is real valued to simplify the expectation on the right
hand side.

Lemma 2. Let w be a random vector such that for every pair x1, x2 P Rd the expectation

Ewrϕwpx1qϕwpx2qs

exists and is real valued. Define φw,bpxq “
?

2 cospwTx` bq. Then

Ewrϕwpx1qϕwpx2qs “ Ew,brφw,bpx1qφw,bpx2qs ,

where b „ Unifpr0, 2πsq and is independent of w.

Proof. First, recall the following identity,

cospα´ βq “ cosα cosβ ` sinα sinβ .

By Euler’s identity and this cosine identity,

ϕwpx1qϕwpx2q “ pcospwTx1q ` j sinpwTx1qqpcospwTx2q ´ j sinpwTx2qq

“ cospwTx1q cospwTx2q ` sinpwTx1q sinpwTx2q

` jpsinpwTx1q cospwTx2q ´ cospwTx1q sinpwTx2qq

“ cospwTpx1 ´ x2qq

` jpsinpwTx1q cospwTx2q ´ cospwTx1q sinpwTx2qq .

Hence, since Ewrϕwpx1qϕwpx2qs P R, we have that

Ewrϕwpx1qϕwpx2qs “ EwrcospwTpx1 ´ x2qqs . (4)
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On the other hand, using another identity

2 cosα cosβ “ cospα´ βq ` cospα` βq ,

we have that

φw,bpx1qφw,bpx2q “ 2 cospwTx1 ` bq cospwTx2 ` bq

“ cospwTpx1 ´ x2qq ` cospwTpx1 ` x2q ` 2bq .

Taking expectations we conclude that

Ew,brφw,bpx1qφw,bpx2qs “ EwrcospwTpx1 ´ x2qqs ` Ew,brcospwTpx1 ` x2q ` 2bqs

“ EwrcospwTpx1 ´ x2qqs ` EwrEbrcospwTpx1 ` x2q ` 2bqss

paq
“ EwrcospwTpx1 ´ x2qqs

pbq
“ Ewrϕwpx1qϕwpx2qs .

The identity (a) holds since
ş2π
0 cospa` 2xq dx “ 0 for any fixed a P R, and (b) holds by (4).

Combining (3) and Lemma 2, we have that

kpx1, x2q “ Ew,brφw,bpx1qφw,bpx2qs . (5)

In light of (5), the feature map we defined in (1) now makes sense. For a fixed x1, x2, we have that

xφpx1q, φpx2qy “
1

D

D
ÿ

i“1

φwi,bipx1qφwi,bipx2q « Ew,brφw,bpx1qφw,bpx2qs “ expp´σ2‖x1 ´ x2‖2
2{2q .

We will make the middle approximate equality precise in a little bit, but the intuition is clear. Note that
the variance from which we draw our random vectors wi is the inverse of the variance which shows up in
the kernel– this is a consequence of the way the variance scales with the Fourier transform of a Gaussian.

1.3 Beyond Gaussian kernels: Bochner’s theorem

The calculations of the preceding section showed that we can do random Fourier features for the Gaussian
kernel. But it turns out this construction above extends to all translation-invariant kernels via a nice
theorem in harmonic analysis called Bochner’s theorem.

Theorem 1. (Bochner’s theorem, informally stated and specialized toRd) Let k be a translation-invariant
kernel on Rd, i.e. kpx1, x2q “ gpx1 ´ x2q. Then g is the Fourier transform of a non-negative Radon
measure, i.e.

gpξq “

ż

Rd

e´jξ¨x dµ .

Furthermore, the Fourier transform of any non-negative Radonmeasure gives rise to a translation-invariant
kernel.

See Section 1.4.3 of [3] for a proof of Bochner’s theorem. Bochner’s theorem is important because
it says the following in the context of random features: one can always (after scaling the kernel by some
irrelevant constant factor) write any translation-invariant kernel in the same way we wrote the Gaussian
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kernel as an expectation in (3), except for a general translation-invariant kernel the distribution will be
different (given by the inverse Fourier transform). Then one can apply Lemma 2, as we did for Gaussian,
and recover a very similar random feature map construction.

For example, let us look at the sinc kernel. We know from standard Fourier calculations that for γ ą 0,

{rectpγxqpξq “
2

ξ
sinpξ{2γq .

On the other hand,

{rectpγxqpξq “

ż 8

´8

e´jξxrectpγxq dx “

ż 8

´8

e´jξx1t|x|ď1{2γu dx

“
1

γ

ż 8

´8

e´jξxpγ1t|x|ď1{2γuq dx “
1

γ
Ew„Unifpr´1{2γ,1{2γsqre

´jξws .

Hence,

π

p2γq´1

sinpp2γq´1ξq

πξ
“

2γ

ξ
sinpξ{2γq “ Ew„Unifpr´1{2γ,1{2γsqre

´jξws .

Therefore, for the sinc kernel kpx1, x2q “
sinpapx1´x2qq
πpx1´x2q

, we have

π

a
kpx1, x2q “ Ew„Unifpr´a,asqre

´jpx1´x2qws .

The sampling distribution on the RHS is not surprising once we note that the sinc kernel is the reproducing
kernel of the Paley-Wiener space of band-limited functions (see e.g. [1] for background on reproducing
kernel Hilbert spaces),

H “ tf P L2pRq : suppp pfq P r´a, asu “ spanty ÞÑ
sinpapy ´ xqq

πpy ´ xq
: x P Ru .

Above, the notation supp refers to the support of a function (i.e. supppgq “ tx : gpxq ‰ 0u1) and span

refers to the closure of the span of the input. Thus, functions that are represented as linear combinations
of the sinc kernel have band-limited Fourier transform within the range r´a, as, and the random feature
construction samples frequencies uniformly within this range.

1.4 Approximation error

The next question we consider is how much error is introduced in our random feature construction (1)
compared to directly using the kernel? We will first state some results concerning approximation over
finite sets, and then state a more general theorem over compact sets.

1.4.1 Finite sets

The main probabilistic tool we will use is Hoeffding’s inequality. The version we will use is stated below.

Theorem 2. (Hoeffding’s inequality) Let X1, ..., Xn be independent random variables such that Xi P

rai, bis almost surely. Put Xn “
1
n

řn
i“1Xi. Then,

P
`

|Xn ´ ErXns| ě t
˘

ď 2 exp

ˆ

´
2n2t2

řn
i“1pbi ´ aiq

2

˙

.

1This is not technically correct since we want to allow the function to be non-zero on a null set outside the support.
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We now fix x1, x2 and apply Hoeffding’s inequality to the random variables φwi,bipx1qφwi,bipx2q,
i “ 1, ..., D. Clearly, |φwi,bipx1qφwi,bipx2q| ď 2 for everywi, bi. Hence, applying Hoeffding’s inequality
we conclude that,

Pp|xφpx1q, φpx2qy ´ kpx1, x2q| ě tq ď 2 expp´Dt2{8q .

Now this only holds for a fixed x1, x2. Supposing we have n data points txiuni“1, a simple union bound
over all

`

n
2

˘

pairs yields

P
ˆ

max
1ďi,jďn

|xφpxiq, φpxjqy ´ kpxi, xjq| ě t

˙

ď n2 expp´Dt2{8q .

We can now fix an ε ą 0 and δ P p0, 1q, and ask how many random features D we need such that with
probability at least 1´ δ,

max
1ďi,jďn

|xφpxiq, φpxjqy ´ kpxi, xjq| ď ε .

A little bit of arithmetic yields that a sufficient condition on D is

D ě
16

ε2
log

´n

δ

¯

.

Next, we can ask how faithful of an approximation is the n ˆ n gram matrix rK defined as rKij “

xφpxiq, φpxjqy to the original nˆ n kernel matrixK.

Theorem 3. (Equation 6.5.7, [5]) Fix a ε ą 0. For a fixed dataset txiuni“1, we have that as long as D
satisfies

D ě
4

ε2

n

‖K‖
logp2nq ,

then the following operator norm error holds in expectation,

E‖ rK ´K‖ ď p1
ε
`

1

ε2
q‖K‖

Similar results also hold with high probability.

Proof. This is a standard application of the matrix Bernstein inequality. See [5] for more details on matrix
concentration inequalities.

1.4.2 Compact sets

We now turn to results concerning the approximation error of random features over a compact set. The
following result is an informal statement of Theorem 1 from [4], which improves the uniform convergence
result (Claim 1) from [2].

Theorem 4. (Informal statement of Theorem 1, [4]) Let S Ď Rd be a compact set, and let |S| denote its
diameter (i.e. |S| “ supx,yPS‖x´ y‖2). Fix any ε ą 0 and δ P p0, 1q. Then as long as

D ě O

ˆ

d

ε2
log

ˆ

|S| ` 1

δ

˙˙

,

we have that with probability at least 1´ δ,

sup
x1,x2PS

|xφpx1q, φpx2qy ´ kpx1, x2q| ď ε .

Note that the proof of Theorem 1 is quite technical. On the other hand, the proof of Claim 1 of [2] is
more approachable, at the expense of a sub-optimal rate.
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