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Abstract

We study an open discrete-time queueing network. We assume data is

generated at nodes of the network as a discrete-time Bernoulli process. All

nodes in the network maintain a queue and relay data, which is to be finally

collected by a designated sink. We prove that the resulting multi-dimensional

Markov chain representing the queue size of nodes has two behavior regimes

depending on the value of the rate of data generation. In particular, we show

that there is a non-trivial critical value of the data rate below which the chain

is ergodic and converges to a stationary distribution and above which it is

non-ergodic, i.e., the queues at the nodes grow in an unbounded manner. We

show that the rate of convergence to stationarity is geometric in the sub-critical

regime.
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1. Introduction

We study an open discrete-time queueing network whose interconnections are de-

scribed by an undirected simple graph. Some of the vertices of the graph produce

“data packets” according to a discrete-time Bernoulli process. One vertex of the graph

is designated as a “data sink” and packets disappear when they reach this vertex. Each

node apart from the sink maintains a queue and relays at most one packet in a time slot

in the manner of the “gossip” models widely studied in the networking and distributed

computing literature [13][2][25]. The packet is relayed to a random neighbor after the

fashion of a random walk on the graph. Viewing the sink as a vertex that “collects”
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the packets being generated and relayed through the graph, we call this process the

Data Collection Process.

The Data Collection Process is defined on a graph G = (V,E) equipped with a

positive edge-weight function w : E → R+. The edge weights determine the probability

of a packet moving to a neighbour. The process takes two parameters, a relative rate

vector J ∈ R|V |+ and a rate β ∈ (0, 1); we assume that node v ∈ V produces a packet

with probability βJ(v) in a given time slot. For a given relative rate vector, the process

has two behavior regimes and undergoes a sharp transition between these two regimes,

the controlling parameter being the rate β. Specifically, we will show that for a critical

value β∗ we have that when β > β∗ the process is non-ergodic, and the size of the

queues grows to infinity, whereas, when β < β∗ process is ergodic such that all queues

are almost surely finite and the system converges to a stationary distribution. For this

latter regime, we also show that the rate of convergence is geometric, i.e., the Data

Collection Process is geometrically ergodic whenever β < β∗.

For β < β∗ the process also has an unexpected connection with a subclass of systems

of linear equations, which we refer to as “one-sink” Laplacian systems. This connection

allows us to give a lower bound on the critical rate β∗ in terms of the eigenvalues of

the transition matrix of the natural random walk defined on G: Pw = D−1A where

Auv = wuv for all (u, v) ∈ E and 0 otherwise, and D is a diagonal matrix with

Duu =
∑
v:(u,v)∈E wuv. The parameters of the random walk also make an appearance

in our geometric ergodicity result. We find that for β = β∗(1− δ) the Data Collection

Process converges exponentially at a rate proportional to the hitting time of the random

walk with transition matrix Pw and inversely proportional to δ, the relative distance

of the rate from the critical value. A feature of the proof of geometric convergence

is an interesting use of the “backward analysis” argument of Leighton, Maggs and

Ranade [17] that is a highlight of the theory of packet routing in networks.

1.1. Related work

The Data Collection Process is an open queueing network [14] that can be viewed

as a multi-dimensional Markov Chain. The question of ergodicity of such chains was

investigated by Tsybakov and Mikhailov in the context of computer networks in their

work on Slotted ALOHA systems [32]. Subsequently, Georgiadis and Szpankowski
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proved a non-trivial stability regime for another networking-inspired model, the Token

Passing ring [7] and, later, Szpankowski extended this result to general random access

systems including Slotted ALOHA networks [30]. While the area of open queueing

networks is vast we identify these models in particular since they are similar to our

Data Collection Process and we will see in Section 3 that Szpankowski’s program for

establishing the ergodicity of Slotted ALOHA can be carried out for the Data Collection

Process as well.

The Data Collection Process also shows connections to other fields of study. In the

area of computer networking we note that such a process can be used as a traffic

benchmark and, in fact, Kamra et. al. use exactly such a benchmark to test a

coding scheme in [12]. In the area of distributed computing we have shown in another

work that the Data Collection Process can be used to analyze an in-network function

computation scenario [11]. In the area of information dissemination Markov chains

similar to our Data Collection Process have been used to analyze the timeliness of

information received by nodes in a network, c.f., e.g., the work of Tripathi, Talak and

Modiano [31].

In a different setting the Data Collection Process also shows an interesting con-

nection with Laplacian system of equations whose solutions find wide applicability in

network analysis, computer vision, operations research, machine learning, and compu-

tational biology. After Spielman and Teng gave the first efficient methods for solving

such system in [28], a number of efficient Laplacian solvers have been proposed over the

years by Koutis, Miller and Peng [15], Cohen et al. [5], and Kyng and Sachdeva [16]

among others. Most of these solvers are based on similar ideas; they use Chebyshev

iteration or the conjugate gradient method with complex graph-theoretic constructions

or sampling. However, Laplacian systems can also be related to random walks. In

particular, the electrical flow in a network can be written as a Laplacian equation and

the relations between electrical quantities and statistical properties of random walks

have been known for a long time, and have been discussed at length by, e.g., Doyle and

Snell [6], and Levin, Peres and Wilmer [19]. Becchetti, Bonifaci, and Natale [1] exploit

this connection to solve such Laplacian equations using simple random walk primitives.

In this work, we also show how the steady-state equation of the Data Collection Process

maps to such Laplacian system of equations. This provides a framework that we were
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able to use in a subsequent work to design and analyze a simple and efficient Laplacian

solver [8].

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we discuss our main

results. In Section 3, we prove the existence of a non-trivial critical data rate below

which the Data Collection Process is ergodic and above which it is non-ergodic. Then,

in Section 4 we characterize this rate in terms of the underlying graph’s parameters.

In Section 5, we prove that the process is not only ergodic but geometrically ergodic

and find the rate at which the associated Markov chain converges to its stationary

distribution. Finally, in Section 6 we conclude and give some directions for future

work.

2. Main results and discussions

2.1. Our model: The Data Collection Process

We consider a stochastic process on a network modeled by an undirected graph

G = (V,E,w), where V is the set of n nodes, E is the set of edges such that |E| = m,

and a positive weight function w : E → R+. We say that u ∼ v if (u, v) ∈ E

and Nbd(u) := {v ∈ V |(u, v) ∈ E}. We consider a diagonal matrix D such that

Duu = deg(u) where deg(u) :=
∑
v∈Nbd(u) wuv is the generalized degree of node u.

We denote the maximum and minimum generalized degree among all nodes in the

network by dmax and dmin respectively.

We consider time to be discrete and define the process in terms of the generation,

movement and disappearance of “packets” from the system. In order to do this we

are given a relative rate vector J ∈ Rn with the properties that (i) J(v) < 0 for

exactly one node and (ii)
∑n
i=1 J(i) = 0. The node v for which J(v) < 0 is called

the sink and we will use us to denote it hereafter. We also define a set of source

nodes: Vs = {v : J(v) > 0}. We are also given a rate parameter β ≥ 0 such that

maxni=1 βJ(i) ≤ 1. We assume that each node in V \ {us} is equipped with a queue.

The number of packets in the queue at u at time t is denoted by Qt(u).

Packets appear in the system at the source nodes v ∈ Vs which receive external
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packet arrivals as an independent Bernoulli process with rate βJ(v). The packet

received externally is placed in the queue at v. Packet movement at time t takes

place as follows: For each u ∈ V \ {us}, if QJ,βt (u) > 0 a single data packet is picked

at random from the queue and sent to v with probability wuv/deg(u). So, each node

sends at most one packet from its queue in one time step and may receive multiple

packets, up to one from each neighbour. A packet is removed from the system when a

neighbour of us decides to transmit that packet to the us.

In the following we will refer to the |V | − 1-dimensional Markov chain
{
QJ,βt

}
t≥0

as the Data Collection Process on G with relative rate vector J and rate parameter β.

2.2. Ergodicity is a critical phenomenon for the Data Collection Process

For a given Data Collection Process on a network modeled by an undirected graph

G = (V,E,w), there is an associated |V | − 1-dimensional vector QJ,βt where each

QJ,βt (u) represents the queue size at a given node u ∈ V \ {us} given a data rate β.

Since the Data Collection Process is a queueing system, the question of stability arises,

i.e., we need to understand whether the system is able to successfully transfer data at

a given value β which is the controlling parameter for the rate at which packets appear

in the system. For this, following Loynes [21] and Szpankowski [30], we formally define

a notion of a stable data rate as follows.

Definition 1. (Stable rate.) Given a weighted undirected graph G = (V,E,w) and a

relative rate vector J with J(v) < 0 for exactly one v ∈ V , the process QJ,βt is said to

be stable and a value β ≥ 0 of the rate parameter is said to be a stable rate if

lim
t→∞

P
[
||QJ,βt ||∞ < x

]
= F (x), and lim

x→∞
F (x) = 1 (1)

where F (x) is the limiting distribution function.

However, if a weaker condition holds i.e.,

lim
x→∞

lim inf
t→∞

P
[
||QJ,βt ||∞ < x

]
= 1 (2)

the process is said to be substable and otherwise unstable. So, a stable process is

necessarily substable and for a substable process to be stable its distribution function

should tend to a limit.
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Thus, for the Data Collection Process by stability we mean the distribution of QJ,βt

as t→∞ exists. In particular, we show that the given process has two distinct regimes,

one ergodic and one non-ergodic, as we vary β and there is a sharp transition between

them. We find that there is a non-trivial β∗ > 0 such that the chain
{
QJ,βt

}
t≥0

is

ergodic for β below this value and converges to a stationary distribution. Above β∗ the

queue sizes grow unbounded as t→∞. Specifically we show the following theorem:

Theorem 1. Consider a weighted undirected graph G = (V,E,w) and a relative rate

vector J with J(v) < 0 for exactly one v ∈ V . If the random walk on G with transition

matrix Pw where Pw[u, v] = wuv/deg(u) is irreducible and aperiodic then there exists a

β∗ > 0 such that the resulting multi-dimensional Markov chain
{
QJ,βt

}
t≥0

is ergodic

for all β < β∗ and non-ergodic for all β ≥ β∗.

There are multiple ways of proving this theorem. In Section 3 we prove it by using

the induction-based technique developed by Georgiadis and Szpankowski [7], and later

summarized by Szpankowski in his study of slotted ALOHA [30]. This technique gives

nice insights into the workings of the Data Collection Process.

2.3. A lower bound on the critical rate

When β < β∗ the Data Collection Process is ergodic and has a stationary distribu-

tion so we can define ηβ(v) = limt→∞ P
[
QJ,βt (v) > 0

]
for all v ∈ V \ {us}. We will

show in Section 4 that at stationarity the vector η extended to us by setting η(us) = 0

is a solution to a linear system

ηT (I − Pw) = βJT ,

where Pw is the transition matrix of the random walk defined on G by the weight

function w. In Section 4.1 we discuss the relationship of this system to the Laplacian

of G and the implications of this relationship. For now, we state one important

consequence of this relationship: a lower bound on β∗.

Theorem 2. Suppose we have a Data Collection Process with relative rate vector J

such that J(v) > 0 for v ∈ Vs and J(v) < 0 only for v = us, defined on a graph

G = (V,E,w) that satisfies the conditions of Theorem 1 and has critical rate β∗. Then

if Pw is the transition matrix of the random walk defined by w on G and λw2 is the
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second largest eigenvalue of Pw then

β∗ ≥ (1− λw2 )∑
i∈Vs J(i)

√
dmindeg(us)

(dmax + deg(us))
. (3)

We also prove an upper bound on the critical data rate for the special case where

Vs = V \ {us}. In order to present this bound, we need to define some terms. For

any vertex u ∈ V , we define its measure as, ρ(u) :=
∑
v∈V

Pw[u, v]. Similarly, for any

U ⊂ V we define the measure ρ(U) =
∑
u∈U

ρ(u). We also define the edge boundary as

∂U := {(u, v) : u ∈ U, v /∈ U}, so, ρ(∂U) =
∑

u∈U,v/∈U
Pw[u, v]. We have the following

upper bound result.

Proposition 1. Given a graph G = (V,E,w) with |V | = n nodes out of which there is

one sink us and set Vs = V \ {us} of source nodes running a Data Collection Process

having critical data rate β∗ as defined by Theorem 1. To achieve stable queues β∗ must

satisfy

β∗ ≤ min
{
ĥ(G),

∑
u:u∼us

Pw[u, us]

n− 1

}
(4)

where Pw is the transition matrix of random walk defined by w, ĥ(G) = min
U⊂V,us /∈U

ρ(∂U)
ρ(U)

is a constant and ĥ(G) is at most h(G), the edge expansion of graph G.

Table 1: Rate lower bounds for various graphs with w : E → 1 and |Vs| = S

Graph β ≥ (1−λw2 )∑
i∈Vs J(i)

√
dmindeg(us)

(dmax+deg(us))
Exact rate

Star Graph with sink at centre

and ε as self loop probability at each node
1

2S
√
n− 1

1− ε

Star Graph with sink and source

at outer nodes
1

Sn

1

S(n− 1)

Complete graph
n

2S(n− 1)

n

(S + 1)(n− 1)

Random Geometric Graph
log n

2Sn
-
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Table 2: Rate lower bounds for various graphs with w : E → 1 and |Vs| = 1

Graph β ≥ (1−λw2 )∑
i∈Vs J(i)

√
dmindeg(us)

(dmax+deg(us))
Exact rate

Cycle
1

2n2
2

n

Wheel Graph Wn+1 with sink at centre

and source at one of the cycle vertices
log n

√
3n

2n2
1

3

Wheel Graph Wn+1 with source at centre

and sink at one of the cycle vertices
3 log n

n(n+ 1)

5

3n

Complete Binary tree with both

source and sink at leaves
1

4n

1

6 log n− 3

k-times star of star graph

with both source and sink at leaves
1

n2 + n
2k−1
k

1

1 + (2k − 1)n1/k

k-times star of star graph

with source at center and sink at leaf
1

2n
4k−1
2k

1

1 + (k − 1)n1/k

Table 3: Rate upper bounds for various graphs with w : E → 1 and Vs = V \ {us}

Graph β ≤ min
{
ĥ(G),

∑
u:u∼us

Pw[u,us]
n−1

}
Exact rate

Cycle
1

n− 1

4

n2

Star Graph with sink at centre

and ε as self loop probability at each node 1− ε 1− ε

Star Graph with sink and source

at outer nodes
1

(n− 1)2
1

(n− 1)2

Complete graph
1

n− 1

1

n− 1
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In Table 1 and 2, we present lower bound on the critical data rate for the stochastic

Data Collection Process on various graphs for the case where the source set size is

|Vs| = S and |Vs| = 1 respectively. We also present the exact values of data rate which

are easy to calculate using elementary algebra for these topologies. In all these cases,

we assume that all edges have unit weight w : E → 1 i.e., random walk defined by Pw

is simple random walk.

If we consider the complete graph topology it is easy to see that the exact rate is

n/(S+1)(n−1). As, the spectral gap of the simple random walk on the complete graph

of n nodes is n/n− 1, we note that for this case our lower bound is tight i.e., both the

exact value and the lower bound have order Θ(1/S) where |Vs| = S. Similarly, for the

star graph with sink at outer node, our lower bound is tight and is of order Θ(1/Sn).

Hence it is clear that our lower bound cannot admit any asymptotic improvement in

general. On the other hand, consider cycle topology which shows that for specific cases

a better lower bound may be possible. We note that our spectral gap-based lower bound

is a Θ(1/n) lower than the exact value for this case. Similarly, for other topologies like

wheel graph, complete binary tree and k-times star of star graph (n1/k-regular tree

defined on k levels) a better lower bound is possible.

Regarding the upper bound, we achieve tight upper bound in case of the complete

graph and the star graph with both sink at centre and at outer node. However, for the

cycle graph our upper bound is Θ(1/n) higher than the exact rate for this setup.

2.4. Geometric Ergodicity

We show that when β < β∗ the Data Collection Process converges to its stationary

distribution at a geometric rate, i.e., the process is geometrically ergodic. Following

Meyn and Tweedie [24], we define geometric ergodicity formally:

Definition 2. (Geometric ergodicity.) Given an irreducible and aperiodic Markov

chain Φ defined on state space X with transition probability P[·, ·] and stationary

distribution π, the chain is said to be geometrically ergodic if there exist constants

ρ < 1, R > 0, and, for every state x ∈ X there exists a Cx < ∞, such that for all

t > 0,

‖Pt[x, ·]− π‖ ≤ RCxρt. (5)
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We use the coupling method to prove that convergence happens at a geometric rate.

The convergence rate is in terms of the hitting time, thit, of the random walk Pw defined

on G which has been widely studied since long time, see [3, 26, 33]. In particular, it

is defined as follows. If {Xt}t≥0 is a random walk on G and τv = min{t : Xt = v},

then thit = maxu,v∈V E [τv | X0 = u], i.e., the maximum over all pairs (u, v) of vertices

of the expected time taken for a random walk begun at u to first reach the vertex v.

We show the following convergence theorem.

Theorem 3. Consider
{
QJ,βt

}
t≥0

defined on G = (V,E,w) such that there is a

critical β∗ as described in Theorem 1. Let β = β∗(1 − δ) for δ ∈ (0, 1) and denote

by P the transition matrix for the resulting multi-dimensional Markov Chain. Suppose

we have x,y ∈ (N ∪ {0})|V |−1 with
∑|V |−1
i=1 xi = N (x),

∑|V |−1
i=1 yi = N (y). Then

||Pt[x, ·]− Pt[y, ·]||TV ≤ 2

(
1+

(max{N(x),N(y)}−1)δ
2thit

)
·
(

1

2

) δ
2thit

·t

. (6)

Convergence to stationarity can be derived as a special case of Theorem 3 by

choosing y ∈ (N ∪ {0})|V |−1 according to the π, the stationary distribution of chain{
QJ,βt

}
t≥0

. This establishes the geometric ergodicity of the Data Collection Process

in the subcritical regime.

Corollary 1. Consider the multi-dimensional Markov chain
{
QJ,βt

}
t≥0

with β =

β∗(1− δ) for δ ∈ (0, 1) as defined in Theorem 3 and denote its stationary distribution

by π. For x ∈ (N ∪ {0})|V |−1 such that
∑|V |−1
i=1 xi = N (x),

||Pt[x, ·]− π||TV ≤ 2

(
1+N(x)δ

2thit

)
·
(

1

2

) δ
thit((1−δ)β

∗+2)
·t

. (7)

Moreover, for the special case that x = 0, i.e., the system begins with empty queues,

the Markov chain mixes to within 1/M of its stationary distribution in terms of total

variation distance for any parameter M > 0 in time t that is Θ
(
thit logM

δ

)
.

3. Ergodicity as a critical phenomenon

In this section, we prove Theorem 1, i.e., we show the existence of a non-trivial

critical data rate β∗ for the multi-dimensional Markov chain
{
QJ,βt

}
t≥0

associated

with the Data Collection Process such that the chain is ergodic for all values below β∗

and non-ergodic above it.
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We first state two lemmas that we will need: Szpankowski’s “isolation lemma”

(Lemma 1) and Loynes’ scheme [21] as adapted to our situation (Lemma 2).

Lemma 1. (Szpankowski [29].) Given Nt = (N1
t , N

2
t , · · · , NM

t ), an M -dimensional

Markov chain.

1. If it is defined on a countable state space, then the stability of N j
t for all j ∈ M

implies the stability of the multi-dimensional Markov chain Nt.

2. If for some j, say j∗, N j∗

t is unstable, then Nt is also unstable.

Lemma 2. (Loynes [21].) Given a pair (Xj
t , Y

j
t ) of a strictly stationary and ergodic

process, let U jt = Xj
t − Y

j
t . Then, the following holds:

1. If E
[
U jt

]
< 0, then N j

t is stable.

2. If E
[
U jt

]
> 0, then N j

t is unstable and limt→∞N j
t =∞ (a.s.).

We will also need the following property of the Markov chain QJ,βt associated with

the Data Collection Process: The queue occupancy probability of a node P
[
QJ,βt (u) > 0

]
is an increasing function of β for all u ∈ V \ {us} and it is continuous for all β < β∗

where β∗ is the critical rate above which the queues are unstable and below which they

are stable.

Lemma 3. Given an undirected graph G = (V,E,w) running a Data Collection Pro-

cess. Let QJ,βt represent the queues at time t for all nodes u ∈ V \ {us}. Then, for all

such nodes P
[
QJ,βt (u) > 0

]
is

1. an increasing function of β, and

2. continuous for all β < β∗ where β∗ is the critical data rate such that all data

rates β < β∗ are stable and β ≥ β∗ are unstable.

Proof. (1). To prove this property, we will first establish that the multi-dimensional

Markov chain QJ,βt is stochastically ordered i.e., stochastically larger initial states will

produce stochastically larger chains at all times. For this, let us consider a coupling

as used by Szpankowski of two trajectories of this chain {QJ,βt } and {Q̄
J,β
t } such that

Q̄J,β0 �SD Q
J,β
0 . Now, assume the stochastic dominance relation between the two holds
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at time t i.e., Q̄J,βt �SD Q
J,β
t . Then, at time step t + 1 for both QJ,βt and Q̄J,βt from

the one-step basic queue evolution equation at all nodes u ∈ V \ {us} we have

E
[
QJ,βt+1(u) | QJ,βt (u)

]
= QJ,βt (u)− 1{QJ,βt (u)>0}

∑
v:v∼u

Pw[u, v]

+
∑
v:v∼u

Pw[v, u]1{QJ,βt (v)>0} +At(u) (8)

where At(u) is the number of packets generated at u, which is 0 if u /∈ Vs and is 1

with probability βJ(v) if v ∈ Vs, so, E [At(u)] = βJ(u). Now consider any node u at

time t + 1, from the induction hypothesis queues at node u as well as its neighbours

in QJ,βt will dominate over the ones in Q̄J,βt , so the first three terms on the right of

Eq. (8) in QJ,βt (u) will dominate the ones for Q̄J,βt (u) and since β is same, the last

term is same for both cases. So, we have Q̄J,βt+1(u) �SD QJ,βt+1(u). This is true for all

nodes u ∈ V \ {us}, so we have at time t+ 1, Q̄J,βt+1 �SD Q
J,β
t+1. Hence, by induction the

Markov chain QJ,βt is stochastically ordered.

Now to prove monotonicity, for β < β′ let us consider a coupling similar to the

one used before of two stochastically ordered Markov chains QJ,βt and QJ,β
′

t such that

QJ,β0 �SD Q
J,β′

0 . Then, as we know for all u ∈ V \{us}, βJ(u) < J , β′J(u), so by using

induction and evolving queues using one-step queue evolution equation (Eq. (8)), we

can show that QJ,βt �SD Q
J,β′

t for all t. Hence, by induction we have P
[
QJ,βt (u) > 0

]
is an increasing function of β for all u ∈ V \ {us}.

(2). To prove the continuity of the given function for β < β∗, we will again consider

a similar coupling, however between two stochastically ordered Markov chains QJ,βt

and QJ,β−dβt with infinitesimal dβ. For the data generation rule in the two chains, we

have whenever new data packet is generated at any node in QJ,β−dβt chain then, it is

definitely generated at the corresponding node in QJ,βt chain but not vice-versa. To

understand the difference in the two chains, let Nβ−dβ
t and Nβ

t denote the total number

of packets in the respective chains till time t and Λβt = Nβ
t − N

β−dβ
t . Now, consider

g : [0, 1]→ R to be a function dependent on β such that g(β) = E
[
QJ,βt+1(u)−QJ,βt (u)

]
which is bounded by definition. So, if we look at the derivative of this function, the

term where Λβt = 0 will be zero by definition of coupling, as the two chains behave

differently only when there is an extra generated packet. Similarly, terms with Λβt ≥ 2

will have higher powers of dβ which will become zero as dβ → 0. Hence, the derivative
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g′(β) only depends on Λβt = 1 term i.e.,

g′(β) = lim
dβ→0

(
g(β)− g(β − dβ) | Λβt = 1

)(
|Vs|t(1− dβ)|Vs|t−1

)
where Vs ⊂ V is the set of data sources. So, the total number of data packets generated

in the two Markov chains upto time t differ by one and hence, the queues at nodes in

the two chains differ by at most one data packet at any time step. Now, for the given

coupled chains let t′ be the time by which an extra packet is generated in chain QJ,βt .

So, we have,

P
[
QJ,βt (u) > 0|QJ,β−dβt (u) = 0

]
=

P
[
QJ,βt (u) > 0 ∩QJ,β−dβt (u) = 0

]
P
[
QJ,β−dβt (u) = 0

] =

t∑
t′=1

dβPt′

(9)

where Pt′ is the probability that the extra packet generated in chain QJ,βt is present

at node u ∈ V \ {us}. This means

P
[
QJ,βt (u) > 0

]
− P

[
QJ,β−dβt (u) > 0

]
≤

t∑
t′=1

dβPt′ . (10)

So, if P
[
QJ,βt (u) > 0|QJ,β−dβt (u) = 0

]
is defined, as, dβ → 0 from the above equa-

tion we have, P
[
QJ,βt (u) > 0

]
− P

[
QJ,β−dβt (u) > 0

]
→ 0. Similarly, for the other side

if P
[
QJ,β+dβt (v) > 0|QJ,βt (u) = 0

]
is defined, so as dβ → 0, similar to Eq.(10) we have,

P
[
QJ,β+dβt (u) > 0

]
−P

[
QJ,βt (u) > 0

]
→ 0. Now, if both these conditions are true then

the function is continuous as it has both left and right continuity respectively.

Now, consider all data rates β < β∗ where β∗ is the critical rate below which all rates

are stable and above which all are unstable. So, for such rates both the probabilities

P
[
QJ,βt (u) > 0|QJ,β−dβt (u) = 0

]
and P

[
QJ,β+dβt (v) > 0|QJ,βt (u) = 0

]
are defined, so

as discussed above the function is continuous on both sides for all β < β∗. Now consider

the case of data rates β ≥ β∗. At β∗, we know P
[
QJ,β

∗

t (u) > 0
]
−P

[
QJ,β

∗−dβ
t (u) > 0

]
is defined (see Eq. (9)), as rate β∗−dβ is stable by definition, hence, the function is left

continuous for this rate. However, for the other side since we know β∗ is not stable i.e.,

limt→∞ P
[
QJ,β

∗

t (v) = 0
]

= 0, hence, P
[
QJ,β

∗+dβ
t (v) > 0|QJ,β

∗

t (u) = 0
]
will not be

defined and function is not right continuous. So, for β ≥ β∗ function is left continuous

but not right continuous. However, for all u ∈ V \{us}, P
[
QJ,βt (u) > 0

]
is a continuous

function (both limits exist) for all β < β∗. �
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Proof of Theorem 1. We first proceed by proving the sufficient part i.e., existence

of a non-trivial β∗ > 0 such that the multi-dimensional Markov chain is ergodic for all

β < β∗ and then the necessary part of the argument i.e., for all β ≥ β∗ the chain is

non-ergodic.

Sufficiency. Given a partition (P,U) of V \ {us} queues we define a modification,

Q̄β,Ut , of the |V | − 1-dimensional chain QJ,βt . In this modification all nodes in U have

the same behavior as in QJ,βt but the nodes in V \ {us} \ U are not allowed to have

empty queues. Let us now first set U = ∅ (we will call these nodes “non-persistent”)

and P = V \ {us} (we call these “persistent” nodes). For any β ∈ (0, 1), we know the

one step basic queue evolution equation under the Data Collection Process for any u

is as follows.

E
[
QJ,βt+1(u) | QJ,βt (u)

]
= QJ,βt (u)− 1{QJ,βt (u)>0}

∑
v:v∼u

Pw[u, v]

+
∑
v:v∼u

Pw[v, u]1{QJ,βt (v)>0} + βJ(u).

So, at each node u we have an arrival from v with probability Pw[v, u] in Q̄β,∅t since

the queue of v is always non-empty and the departure is the usual
∑
v:v∼u Pw[u, v].

Now, since we know Pw[us, v] = 0 for all v ∈ V \ {us}, so the sum of the outgoing

probabilities from V \ {us} is greater than the sum of the incoming probabilities, i.e.,∑
u∈V \{us}

∑
v:v∼u Pw[u, v] >

∑
u∈V \{us}

∑
v:v∼u,v∈V \{us} Pw[v, u]. Therefore, there

must be a vertex u∗ ∈ V \{us} for which
∑
v:u∗∼v Pw[u∗, v] >

∑
v:u∗∼v,v∈V \{us} Pw[v, u∗].

So, from Eq. (8) for this u∗ we note that the expected drift is

−
∑

v:u∗∼v
Pw[u∗, v] +

∑
v:u∗∼v,v∈V \{us}

Pw[v, u∗] + βJ(u∗)

which is negative for an appropriately small but non-zero value of β, let’s call it βu∗ .

Now, to apply Loynes’ scheme to vertex u∗ we need to ensure that the sequence

(It(u
∗), Ot(u

∗)) is strictly stationary where It(u∗) is the number of incoming packets

to u∗ at time t and Ot(u∗) is the number of outgoing packets from u∗. Since all nodes

u ∈ P , so u∗ as well as its neighbours always have a packet in the queue, so, both

Ot(u
∗) and It(u∗) are sequences of independent Bernoulli random variables and hence

are stationary and ergodic. So, we can apply Loynes’ scheme (Lemma 2) to claim that

the one-dimensional process Q̄βu∗ ,∅t (u∗) is stable, and, hence, Qβu∗t (u∗) is stable.
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Now, we assume there is a non-empty set U of non-persistent users and a βU > 0 such

that Q̄βU ,Ut (U) is stable and has a stationary distribution. To apply Loynes’ scheme

to a vertex, u ∈ P = V \ {us} \ U we need to ensure that the sequence (It(u), Ot(u))

is strictly stationary. Since u ∈ P there is always a packet in the queue at u and so

Ot(u) is a sequence of independent Bernoulli random variables which takes value 1

with probability
∑
v:v∼u Pw[u, v] and 0 otherwise. We decompose It(u) as the sum 0-1

random variables Auvt , where Auvt = 1 if u receives a packet from v at time t. Then

It(u) =
∑
v∈U

Auvt +
∑
v∈P

Auvt .

Since all v ∈ P have a packet in their queue at all t ≥ 0, each
∑
v∈P A

uv
t is the sum of

Bernoulli random variables and hence taken from a strongly stationary sequence. If we

start the Q̄βU ,Ut from an initial state picked according to this stationary distribution

which ensures that the process stays in the stationary state for all t ≥ 0. In particular,

this implies that for any v ∈ P , number of incoming packets from v at time t ≥ 0 is a

sequence of random variables that is strongly stationary. Therefore (It(u), Ot(u)) is a

strongly stationary sequence and we can apply Loynes’ scheme. The expected drift at

time t ≥ 0 at any u ∈ P for any β ≤ βU is given by

−
∑
v:u∼v

Pw[u, v] +
∑

u∼v,v∈P
Pw[v, u] +

∑
u∼v,v∈U

Pw[v, u]Pw[Q̄β,Ut (u) > 0] + βJ(u). (11)

Since the graph is connected and so there is at least one pair (w1, w2) such that

w1 ∈ U,w2 ∈ P and Pw[w1, w2] > 0, therefore we know that
∑
u∈P

∑
v∼u Pw[u, v] >∑

u∈P,v∈U
∑
v∼u Pw[v, u]. This means that there is a u∗ ∈ P such that

∑
u∗∼v Pw[u∗, v] >∑

u∗∼v,v∈P Pw[v, u∗]. For this u∗ the first two terms in Eq. (11) add up to a value

which is negative. Further from Lemma 3 we note that the third term is continuous

and increasing in β and tends to 0 as β ↓ 0. Hence, it is possible to find a value βU∪{u∗}

which lies in (0, βU ) such that the expected drift is negative. So, from Loynes’ scheme

(Lemma 2) this implies that Q̄β,Ut (U ∪{u∗}) is stable for β < βU∪{u∗}. Moreover, from

Lemma 1 since the stability of all the one-dimensional Markov Chains associated with

the vertices in U ∪ {u∗} implies the stability of the overall multi-dimensional chain.

Consequently, the same holds for QJ,βt (U ∪ {u∗}). Therefore by induction there is a

β∗ such that for β < β∗, QJ,βt is stable.



16 Gillani et al.

Necessity. Corresponding to the sequence by which the stability region is expanded

to include all the vertices of V \{us} there is a sequence βu1
, βu2

, . . . , βu|V \{us}| such that

β∗ = min{βu1
, βu2

, . . . , βu|V \{us}|}. Let w be the vertex for which βw = β∗. Assume

for the sake of simplicity of presentation that βw < min{βu : u ∈ V \ {us} \ {w}}.

Hence we can choose any β such that βw < β < min{βu : u ∈ V \ {us} \ {w}}. For

this β we know that Qβ,V \{us}\{w}
t (V \ {us} \ {w}) is stable. If we start this chain

from its stationary distribution then the number of packets that are transmitted from

V \ {us} \ {w} to w form a strongly stationary sequence. Since w is persistent in

this setting the packets leaving it are also strongly stationary. Hence Loynes’ scheme

(Lemma 2) can be applied. By the choice of β we know that the expected drift at

w is strictly positive and so Q̄
β,V \{us}\{w}
t (w) is unstable and hence by Lemma 1,

Q̄
β,V \{us}\{w}
t is unstable.

In order to show that QJ,βt is also unstable for this choice of β we will show there

is a coupling of QJ,βt and Q̄β,V \{us}\{w}
t with an appropriately chosen initial condition

such that the two models behave exactly similarly. We know on the set of sample

paths (of positive probability) on which the queue at w remains strictly positive the

two coupled models behave exactly similarly because the difference only arises if the

queue at w becomes 0 at time t, in which case Q̄β,V \{us}\{w}
t+1 (w) is automatically set to

1 since w is persistent and QJ,βt+1(w) remains 0. Now, we know that Q̄β,V \{us}\{w}
t (w)

is unstable, so when we start Q̄β,V \{us}\{w}
t (V \ {us} \ {w}) according to its stationary

distribution and we set the queue at w to 1, there is positive probability that this queue

never reaches 0. So, for those cases QJ,βt (w) behaves similarly as Q̄β,V \{us}\{w}
t (w) i.e.,

it is unstable. Therefore with these initial conditions QJ,βt (w) is not substable since

with positive probability limt→∞ P
[
QJ,βt (w) > m

]
, for all finite m. Hence, QJ,βt (w) is

unstable and, by Lemma 1, QJ,βt is unstable for our choice of β and, by the monotonicity

of the process (see Lemma 3), it is unstable for all choices of β ≥ β∗. �

Discussion on proof technique. Our proof of Theorem 1 follows a general method

for proving the existence of a “stability region” which is similar to the induction-based

technique used by Georgiadis and Szpankowski to characterize the stability region of

the multi-queue system described by token passing rings [7]. Szpankowski showed that

this technique applies to a class of multi-queueing systems with certain properties [30],
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and the Data Collection Process falls in this class.

A more direct approach to proving Theorem 1 would involve taking the sum of all

queues as a Lyapunov function and then proving that the 1-step drift of this Lyapunov

function is negative when the sum of queues is greater than some N > 0. There are

some challenges in this method. We want to show that

E

 ∑
v∈V \{us}

QJ,βt+1(v)−
∑

v∈V \{us}

QJ,βt (v) |
∑

v∈V \{us}

QJ,βt (v) > N

 < 0,

but in general this drift need not be negative. If none of the N packets currently in

the system are in a queue adjacent to the sink, then this drift cannot be negative, and,

in fact is strictly positive. Instead we may try to find an ` > 1 such that

E

 ∑
v∈V \{us}

QJ,βt+`(v)−
∑

v∈V \{us}

QJ,βt (v) |
∑

v∈V \{us}

QJ,βt (v) > N

 < 0.

However, even determining this ` would involve making non-trivial arguments.

This was one reason why we chose to use Szpankowski’s technique to prove Theo-

rem 1. The other reason was that the induction on the graph is a pleasing technique

which extends stability one vertex at a time to the entire graph.

4. Characterizing the critical rate

In section 3, we proved the ergodicity of the Markov chain associated with the

Data Collection Process and showed that its stationary distribution exists. Now, in

this section we will show that at steady-state the Data Collection Process satisfies a

special class of linear equations the we call the “one-sink” Laplacian system. Using

this equivalence we will derive a lower bound on the critical rate. Lastly, we will also

present an upper bound on the critical rate.
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4.1. Equivalence to one-sink Laplacian systems

The basic one step queue evolution equation under the Data Collection Process for

any node u ∈ V is as follows.

E
[
QJ,βt+1(u) | QJ,βt (u)

]
= QJ,βt (u)− 1{QJ,βt (u)>0}

∑
v:v∼u

Pw[u, v]

+
∑
v:v∼u

Pw[v, u]1{QJ,βt (v)>0} +At(u), (12)

where the second and third term on the right-hand side of the above equation represents

the transmissions sent to and received from the neighbours respectively and At(u) is the

number of packets generated at u, which is 1 with probability βJ(u) if u ∈ Vs, for the

sink βJ(us) = −β
∑
v∈Vs J(v), and for all other nodes J(u) = 0, where u /∈ {Vs∪{us}}.

Now, taking expectations on both sides of Eq. (12) and let ηβt (u) = P
[
QJ,βt (u) > 0

]
be the queue occupancy probability of node u and observing that E [At(u)] = βJ(u),

where J is the relative rate vector, we have

E
[
QJ,βt+1(u)

]
= E

[
QJ,βt (u)

]
−ηβt (u)

∑
v:v∼u

Pw[u, v] +
∑
v:v∼u

Pw[v, u]ηβt (v) + βJ(u). (13)

From Theorem 1, we know that for an appropriately chosen value of β the Data Col-

lection Process has a steady state. Moreover, at steady state E
[
QJ,βt (u)

]
is a constant,

so if we let ηβ(u) = limt→∞ P
[
QJ,βt (u) > 0

]
be the queue occupancy probability of

node u at the stationarity, then we have the steady-state equation for the given node

as

−ηβ(u)
∑
v:v∼u

Pw[u, v] +
∑
v:v∼u

Pw[v, u]ηβ(v) + βJ(u) = 0. (14)

We can also represent the steady-state equations of all |V | = n nodes in matrix form as

follows. For this, let us first order the nodes such that the nth node represents the sink.

Let η be an n element column vector representing the steady-state queue occupancy

probability ηβ(u) of nodes u ∈ V . We drop the superscript β assuming a stable rate.

So, we have η = [η(1) η(2) · · · η(n− 1) 0]. This is defined assuming that sink collects

all data it receives and has no notion of maintaining queue. Let J be another n element

column vector such that J(i) > 0 if i ∈ Vs, J(us) = −
∑
i∈Vs J(i) and 0 elsewhere,

and I be the usual n × n identity matrix. So, given the transition matrix Pw for the

random walk defined by w on graph G, the steady-state queue equations at the nodes
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can be written in matrix form as

ηT (I − Pw) = βJT . (15)

As we know transition matrix Pw = D−1A where D is the diagonal matrix of gener-

alized degrees and A is the adjacency matrix, so matrix (I − Pw) is also a Laplacian

as we can rewrite it as (I − Pw) = D−1(D − A) = D−1L. So, the above equation

(Eq. (15)) can be rewritten as

xTL = βJT (16)

where xT = ηTD−1 is a row vector such that x(u) = η(u)/deg(u) for all u where

η(u) is the steady-state queue occupancy probability and deg(u) =
∑
v:(u,v)∈E wuv is

the generalized degree of node u. Eq. (16) is similar to Laplacian systems of the form

Lx = b with a constraint that only one element in b is negative. We call such systems

“one-sink” Laplacian systems. In our subsequent work [8][9] we discuss this connection

in detail.

4.2. A lower bound

Now having established the steady-state equation for the Data Collection Process,

we will use it for characterizing the critical data rate. In particular, we will prove a

lower bound on such rate.

Proof of Theorem 2. For a given graph G = (V,E,w), with source set Vs ⊆ V \{us}

and transition matrix Pw for random walk defined by w on graph G, recall that the

steady-state queue equations at nodes can be written in matrix form as

ηT (I − Pw) = βJT . (17)

Now, in order to bound the maximum stable data rate β at which the source

nodes generate data in terms of the underlying graph parameters, we will consider

eigendecomposition of the left hand side of Eq. (17). For this, we will deviate from the

usual inner product on the vector space RV i.e., 〈f, g〉 =
∑
x∈V f(x)g(x) and define

another inner product on RV which is given by 〈f, g〉µ :=
∑
x∈V f(x)g(x)µ(x) where µ

is the stationary distribution of random walk defined by w on graph satisfying µ = µPw.

From Lemma 12.2 [19], it is known that the inner product space (RV , 〈·, ·〉)µ has an
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orthonormal basis of real-valued eigenfunctions {fj}|V |j=1 corresponding to real eigenval-

ues {λj}. Using this lemma and writing the vector ηT in terms of the eigenvectors, we

have ηT =
∑|V |
i=1〈ηT , fi〉µfi. This gives us that ηT (I−Pw) =

∑|V |
i=1(1−λwi )〈ηT , fi〉µfi,

where λwi is the ith eigenvalue of transition matrix Pw. Moreover, from Lemma 12.1

of [19], we also know that the absolute value of any eignevalue of a transition matrix

can be at most 1, so, λw1 = 1 > λw2 ≥ · · · ≥ λwn . So, we have

ηT (I − Pw) =

|V |∑
i=2

(1− λwi )〈ηT , fi〉µfi (18)

≥ (1− λw2 )

 |V |∑
i=2

〈ηT , fi〉µfi

 . (19)

Note, that f1, . . . , f|V | form an orthonormal basis so,
∑|V |
i=1〈ηT , fi〉2µ = ‖ηT ‖2µ. Hence

we have
n∑
i=2

〈ηT , fi〉2µ = ‖ηT ‖2µ − 〈ηT , f1〉2µ. (20)

The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be a constant

vector 1, so 〈ηT , f1〉µ =
n∑
i=1

η(i)µ(i), where µ(i) =
∑
v∈V µ(v)Pw[v, i] . Also, ‖ηT ‖2µ =

n∑
i=1

η2(i)µ(i). So, using these results in Eq. (20) we have

n∑
i=2

〈ηT , fi〉2µ =

n∑
i=1

η2(i)µ(i)−

(
n∑
i=1

η(i)µ(i)

)2

= Varµ(η(i)) =

n∑
i=1

(η(i)− η̄µ)2µ(i)

(21)

where, η̄µ =
n∑
i=1

η(i)µ(i) is the expected queue occupancy probability of nodes under

stationary distribution µ. Now, taking square of norm of Eq. (19) and using Eq. (21),

we have

‖ηT (I − Pw)‖2µ ≥ (1− λw2 )2Varµ(η(i)). (22)

Using Eq. (22) in the square of norm of Eq. (17), we have

β ≥ (1− λw2 )

‖JT ‖µ

√
Varµ(η(i)). (23)

Moreover, as
∑
i∈Vs J

2(i) ≤ (
∑
i∈Vs J(i))2, so we have

‖JT ‖µ =

√√√√∑
i∈Vs

J2(i)µ(i) +

(∑
i∈Vs

J(i)

)2

µ(us) ≤
∑
i∈Vs

J(i)
√
µm + µ(us) (24)
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where µm = maxi∈Vs µ(i)

Now to get a bound on Varµ(η(i)) =
n∑
i=1

(η(i) − η̄µ)2µ(i), we consider two nodes

whose queue occupancy probability we know precisely (1) the sink, us, which has

η(us) = 0 (as it has no notion of maintaining queue and it sinks data packets as soon

as it receives them), and (2) a node umax with maximum queue occupancy probability

for a given β, let it be ηβmax = maxu∈V \{us} η
β(u). Now, let β = (1 − δ)β∗ where β∗

is the critical data rate and δ ∈ (0, 1). From Eq. (15) we know η is linear in β and

ηβ∗max = 1, so ηβmax = β
β∗ and hence, we have ηβmax = 1− δ.

Let η̄µ =
∑n
i=1 η(i)µ(i) be the expected queue occupancy probability of nodes

under the stationary distribution µ. We can bound the variance Varµ(η(i)) using the

contributions of the nodes us and umax as follows.

Varµ(η(i)) ≥
(
1− δ − η̄µ)2µ(umax) + (η̄µ − 0)2

)
µ(us) ≥

(1− δ)2µ(umax)µ(us)

µ(umax) + µ(us)
. (25)

where the last inequality holds as (1− δ− η̄µ)2µumax
+ (η̄µ− 0)2µus achieves optimum

at η̄µ =
(1−δ)µumax

µumax+µus
. Now, using the fact that when β → β∗, δ → 0 in Eq. (25) and then

using the resultant bound on Varµ(ηi) and the value of ‖JT ‖µ (Eq. (24)) in Eq. (23)

we have

β∗ ≥ (1− λw2 )∑
i∈Vs J(i)

√
µ(umax)µ(us)

(µ(umax) + µ(us))(µm + µ(us))
. (26)

Now, we know µ(i) =
deg(i)∑

u∈V deg(u)
, and dmin∑

u∈V deg(u)
≤ µ(i) ≤ dmax∑

u∈V deg(u)
where,

dmin and dmax are the generalized minimum and maximum degrees of graph respec-

tively. So using the appropriate bounds on µ(i) in Eq. (26) we have

β∗ ≥ (1− λw2 )∑
i∈Vs J(i)

√
dmindeg(us)

(dmax + deg(us))
(27)

where λw2 is the second smallest eigenvalue of the transition matrix of random walk

defined by the weight function w and deg(us) is the generalized degree of the sink node.

�

4.3. An upper bound

We also prove an upper bound on β∗ for the case where Vs = V \ {us}. Here is the

upper bound result.
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Proof of Proposition 1. Given any vertex u ∈ V , recall its measure is defined as,

ρ(u) :=
∑
v∈V

Pw[u, v], and for any U ⊂ V we have ρ(U) =
∑
u∈U

ρ(u). Similarly, for edge

boundary as ∂U := {(u, v) : u ∈ U, v /∈ U}, we have ρ(∂U) =
∑

u∈U,v/∈U
Pw[u, v]. Now,

let us define constants h(U) := ρ(∂U)
ρ(U) and ĥ(G) := min

U⊂V,us /∈U
h(U) ≤ h(G) where h(G)

is the edge expansion of graph G.

We know, for any given set U ⊂ V , where us /∈ U the maximum data flow that can

move out of this set is the flow across the boundary ∂U , so

βρ(U) ≤ ρ(∂U) (28)

β ≤ min
U

h(U) = ĥ(G) ≤ h(G). (29)

Now, for set U = Vs = V \ {us}, we have ĥ(G)) ≤
∑

u:u∼us

Pw[u,us]
n−1 . So, from eq. (28)

β ≤
∑

u:u∼us

Pw[u,us]
n−1 . Hence, the upper bound on the critical data rate is given by,

β ≤ min
{
ĥ(G),

∑
u:u∼us

Pw[u, us]

n− 1

}
. (30)

�

Note that our derived upper and lower bound on the critical data rate relates directly

to the two sides of Cheeger’s inequality [4].

5. Geometric rate of convergence

Next, we characterize the rate of convergence of Markov chain
{
QJ,βt

}
t≥0

for the

stable regime i.e., β < β∗. In particular, we first prove a general result about the

total variation distance between the probability distributions of two Markov chains

and their rate of convergence. Then, as a special case of this result we show that the

convergence of Markov chain
{
QJ,βt

}
t≥0

is geometric, i.e., starting from any initial

state, the distance from the stationarity reduces exponentially. Note that we drop the

superscript J , β from the Markov chain representation as a stable data rate value for

proving the convergence rate is assumed.

Proof of Theorem 3. We first note that our Markov chain Qt is stochastically ordered

(c.f. [22]). To understand what this means we define a natural partial order on (N ∪
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{0})|V \{us}| as follows: x � y if xv ≤ yv for all v ∈ V \ {us}. A function f :

(N ∪ {0})|V \{us}| → R is said to be increasing if x � y implies that f(x) ≤ f(y).

Given two random processes X and Y supported on (N∪{0})|V \{us}| or (N∪{0})|V |−1,

we say X is stochastically dominated by Y if E [f(X)] ≤ E [f(Y )] for every increasing

function f . For our Data Collection chain we state the stochastic orderedness property

as follows.

Claim 1. Given two instances of the Data Collection Process Qt and Q′t such that

Q0 � Q′0, Qt is stochastically dominated by Q′t, t ≥ 0. In particular this means that

P [Qt(v) > 0] ≤ P [Q′t(v) > 0] for all v ∈ V \ {us}.

The proof of this claim follows by constructing a coupling between the two chains such

that each of them performs exactly the same transmission actions. In case one of the

chains is empty then the transmission action is a dummy action. It is easy to see that

stochastic ordering follows naturally for the Data Collection chain.

To use this claim, for our irreducible and aperiodic Markov chain Qt described by

the Data Collection Process defined on (N∪ {0})|V |−1 having transition matrix P and

a stationary distribution π, let us define two other irreducible and aperiodic Markov

chains Q1
t and Q2

t , each with state space (N ∪ {0})|V |−1. Initially, suppose the data

is generated in the two chains in a coupled way such that one of them dominates the

other, i.e., either Q1
0(v) ≤ Q2

0(v) for all v ∈ V \ {us} or vice-versa.

Now, consider the coupling (Q1
t , Q

2
t ) on (N ∪ {0})|V |−1 × (N ∪ {0})|V |−1 defined

over random sequences {0, 1} × {
∏
v∈V \{us} Γ(v)} where Γ(v) is the set of one-step

destinations from node v, such that both the chains Q1
t and Q2

t are populated in a

coupled way. Such Markov chains are said to be stochastically ordered chains in the

queueing theory and have a property that the Markov chain which dominates the other

chain will always maintain dominance over it.

Under this coupling we allow the two chains to run in a way that any data generation

or data transmission decision made by any queue in one chain is followed by the

corresponding queue in the other chain as well. However, to distinguish the newly

generated packets in two chains from the existing ones, we assign colors to the data

packets: the existing packets in Q1
t chain are colored red and in Q2

t chain are colored

blue, and the newly generated packets in both the chains are colored green. Moreover,
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in both the chains green (newly generated) packets get a preference in the transmission.

Now, let Q1,green
t (u) represent the number of green packets in the queue of a given node

u in Q1
t and ηu be the steady-state queue occupancy probability of Markov chain Qt.

Since, the number of green packets in both the chains starts from zero and the chains

are stochastically ordered, green packet queue occupancy is always bounded by that of

the chain with stationary distribution i.e., P
[
Q1,green
t (u) ≥ 1

]
≤ ηu. Same holds true

for the other chain Q2
t as well.

To ensure both chains get coupled all the red and blue (old) packets in Q1
t and

Q2
t respectively need to be sunk. We consider Q1

t chain and the same will hold for

Q2
t as well. We know by our preference in transmission, the probability that red

packets move out of queue in one time step in Q1
t is equal to the probability that

there are no green packets in the given queue, i.e., 1 − P
[
Q1,green
t (u) ≥ 1

]
. Also, we

have 1 − P
[
Q1,green
t (u) ≥ 1

]
≥ 1 − ηu ≥ minu 1 − ηu ≥ 1 − ηmax, where ηmax =

maxu∈V \{us} ηu. Now, let N
(red) and N (blue) be the total number of red and blue data

packets in chains Q1
t and Q2

t respectively at the beginning which are assumed to be

finite. Also, let TN(red) and TN(blue) be the time taken by the the respective number of

packets to get sunk. We have the following lemma that bounds this time.

Lemma 4. Given a Data Collection Process on graph G with N (∗) < ∞ as the total

number of data packets present in the queues of all nodes initially, then the time taken

by all such packets to reach the sink, let it be TN(∗) is bounded as

P
[
TN(∗) ≥

2thit
1− ηmax

(log 1/ε+ 1) +N (∗) − 1

]
≤ ε

2
(31)

where thit is the worst-case hitting time of random walk on G and ηmax is the maximum

queue occupancy probability at stationarity.

The proof of the lemma proceeds by coupling the Data Collection Process to a

random walk with the property that the time taken by this random walk to hit us is

at most N (∗) steps less than the time for the Data Collection Process to sink all N (∗)

packets. The result then follows by bounding the hitting time of this random walk.

Proof of Lemma 4. Let us say that the set of N (∗) initial packets has color red

and the new packets generated thereafter are green in color. And let us say that the
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Markov chain Q∗t describes the Data Collection Process that begun with the set of

initial packets at some initial locations.

We now define three N (∗)-dimensional processes based on Q∗t .

• V 1
t : V 1

t (i) ∈ V is the position of red packet pi at step t in Q∗t .

• V 2
t : Here there are no green packets delaying the red packets, but at each time

step each vertex transmits no packet with probability ηmax, the maximum queue

occupancy probability of Q∗t at stationarity. V 2
t (i) again gives the position of the

i-th red packet at time t.

• V 3
t : In this process, we have only red packets but all of them have been assigned

distinct deterministically chosen ranks, let’s say 1, . . . , N (∗). Under this process,

at any queue the choice of packet to send is deterministic: the packet with the

lowest rank is chosen for transmission. Other than the choice of packet, all other

transmission decisions are similar to V 2
t . V 3

t (i) again gives the position of the

i-th red packet at time t.

Note that all three processes are absorbed by the state (us, . . . , us), i.e., when all red

data packets get sunk. Let τi be the time to absorption of the process V it , 1 ≤ i ≤ 3.

Then for every k ≥ 0, using a simple coupling argument we can prove

P [τ1 ≥ k] ≤ P [τ2 ≥ k] = P [τ3 ≥ k] . (32)

Now for V 3
t , let us define a collection of random variables {Yt}t≥0 by constructing

what is refered to as a delay sequence in [17]. We set Y0 = us. Let packet p1 be the

last packet to be absorbed in the sink in V 3
t . If p1 came to the sink from node u then

Y1 = u. This way, we move back `1 ≥ 1 steps till we reach the first queue where p1 was

delayed because a lower ranked packet, say p2 was preferred for transmission. Let’s

say this node is v1, i.e., Y`1 = v1. After this, we set Y`1+1 to the node from which the

preferred packet p2 came to v1. Now we trace p2 back till we reach the node v2 where

it was delayed by another packet p3. Let `2 represent the number of hops encountered

during this trace. Similarly, we continue this process till we reach a packet pk which

was never delayed and can be traced back to its initial position. At this point, we have

defined Y0, . . . , YD where D =
∑k−1
i=1 `i + `k where `i is the number of hops travelled

by packet pi till it reached a node where it got delayed by packet pi+1, and `k is the
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number of hops travelled by packet pk till it reaches its initial position vk.

Now consider the collection of random variables {Xt}Dt=0 with Xt = YD−t for 0 ≤

t ≤ D. From the way the Yts are constructed, it is clear that {Xt}Dt=0 is a random

walk beginning at X0 = YD followed till it hits us. This is a lazy walk that stays at the

same vertex with transition matrix ηmaxI + (1− ηmax)P. Let τ be the time taken for

a random walk starting at any node to hit us under the Data Collection Process. We

have the following claim relating this hitting time to the absorption time of process

V 3
t .

Claim 2. For all L ≥ 1, P
[
τ3 ≥ L+N (∗) − 1

]
≤ P [τ ≥ L].

Proof of Claim 2. Consider a trace of V 3
t and the corresponding random walk {Xt}.

We will synchronize the progress of a single packet in V 3
t to the progress of {Xt}, i.e.,

at every time t we will identify a packet pi and an 0 ≤ s ≤ k such that Xt = V 3
t+s(i).

The particular packet chosen for synchronization will change as we move along. The

first candidate will be pk, the last packet in the delay sequence. Note that the last

packet pk in the delay sequence makes its first move at same time for both V 3
t and

{Xt}, i.e., V 3
0 (k) = X0 = vk, where vk is the initial position of packet pk. So, both the

process and the random walk are synchronized with s = 0 in the beginning and will

remain synchronized till `k hops, i.e., V 3
`k

(k) = X`k = vk−1, where packet pk delays

packet pk−1 by one unit. After this, our choice of packet to follow will switch to pk−1.

Since the random walk follows packet pk−1’s progress so it is delayed by one unit while

the V 3
t process keeps on moving, i.e., the two are synchronized with s = 1. Continuing

in this way we eventually synchronize {Xt} with p1 with s = k − 1. So, we have, by

the coupling of V 3
t and Xt that

P [τ3 ≥ L+ k − 1] ≤ P [τ ≥ L] . (33)

Since k, the number of packets encountered in the delay sequence is a random variable

upper bounded by N (∗) the claim follows. �

Since {Xt} is a lazy walk, the time taken to hit us is at most thit
1−ηmax

where thit is

the hitting time for the random walk associated with P. So, by Markov’s inequality

P
[
τ ≥ 2thit

1−ηmax

]
≤ 1

2 . Now, consider the probability of a random walk not hitting the

sink us in 2(log 1/ε + 1) times thit
1−ηmax

, i.e., we consider 2thit
1−ηmax

(log 1/ε + 1) time and
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divide it into (log 1/ε + 1) slots of 2thit
1−ηmax

each. By the Markov property of random

walks, we know that the random walks in each of these slots are independent. So, we

have the following result.

P
[
τ ≥ 2thit

1− ηmax
(log 1/ε+ 1)

]
≤ ε

2
. (34)

Finally, using Eq. (32) in Claim 2 we get the result. �

Now, since both the chains Q1
t and Q2

t operate in parallel, the expected time for

the two chains to couple i.e., all red and blue packets get sunk is the maximum of

the time taken by each to get their respective packets sunk. So, using Lemma 4 for

both the chains we have the expected time for Q1
t , Q2

t to couple, let it be τ1,2couple =

max{TN(red) , TN(blue)} as

P
[
τ1,2couple ≥

2thit

1− ηmax

(
log

1

ε
+ 1

)
+ max{N (red), N (blue)} − 1

]
≤ ε. (35)

Note that this expected coupling time result is similar to the delay result of Leighton

et al. [18, 17] depicting the pipelining behaviour of Data Collection Process.

Now, to bound the distance between the two chains Q1
t and Q2

t we use the following

result from Levin et al. [19].

Lemma 5. (Theorem 5.2, Levin et al. [19].) Let {(Xt, Yt)} be a coupling with initial

states x,y ∈ X such that X0 = x and Y0 = y and coupling time defined as τcouple :=

min{t : Xs = Ys for all s ≥ t}, then,

||Pt[x, ·]− Pt[y, ·]||TV ≤ Px,y{τcouple > t}.

Let x,y ∈ (N ∪ {0})|V |−1 be the initial states of Q1
t and Q2

t chain then for ||Pt[x, ·]−

Pt[y, ·]||TV ≤ ε, using Lemma 5 and the expected coupling time from Eq. (35) we have

||Pt[x, ·]− Pt[y, ·]||TV ≤ 2

1+
max{N(red),N(blue)}−1

2thit
1−ηmax


·
(

1

2

) t
2thit

1−ηmax . (36)

Now, assume the stable data rate at which we are running these stochastic processes

is β = (1 − δ)β∗ where β∗ is the critical data rate and δ ∈ (0, 1). From Eq. (15) we

know η is linear in β. Also, for unstable data rates there exists a node whose steady-

state queue occupancy is 1 (see [23] and Lemma 5 of [7]), i.e., ηβ
∗

max = 1, so we have

ηβmax = β
β∗ , hence, 1− ηβmax = δ. Using this in Eq. (36) we prove the desired result. �
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To use Theorem 3 to prove the geometric ergodicity result (Corollary 1) we pick y

according to the stationary distribution π of the Data Collection Process Markov chain.

Proof of Corollary 1. Let us consider two instances of Data Collection Process Q1
t

and Q2
t such that the former starts from some finite state x ∈ (N ∪ {0})|V |−1 and the

latter starts from stationarity, i.e., initially all queues in Q1
t are occupied by some finite

number of packets and that of Q2
t are filled according to the stationary distribution π.

Then, from Theorem 3 we have

||Pt[x, ·]− π||TV ≤ 2

(
1+

(max{N(x),N(π)}−1)δ
2thit

)
·
(

1

2

) δ
2thit

·t

(37)

where thit is the worst-case hitting time of random walk on graph, N (x) and N (π) are

the total number of data packets in state x and at stationarity respectively and δ is

the relative distance from the critical data rate. Now, if we compare Eq. (37) with

the Definition 2 (Eq. (5)) we prove geometric ergodicity property for the Markov chain

QJ,βt .

Now for random variable N (π), let E
[
N (π)

]
be its expectation, i.e., the expected

number of data packets in QJ,βt at stationarity which by Little’s law [20] is equal to

the product of the data generation rate and the expected latency of a data packet to

reach the sink at the stationarity, i.e., E
[
N (π)

]
=

βthit
1−ηβmax

=
(1−δ)β∗thit

δ (from linearity

of η and β = (1 − δ)β∗) where β∗ is the critical data rate and δ ∈ (0, 1). Now, let

εx = max
{
α ∈ [0, 1] : N (x) ≤ (1−δ)β∗thit

δ ·
(
log 1

α + 1
)}

. So by the definition of εx we

have two regimes: ε ≤ εx where the E
[
N (π)

]
term is dominant and ε > εx where the

N (x) is dominant.

For the simple case of ε > εx, using Eq. (37) we have

||Pt[x, ·]− π||TV ≤ 2

(
1+N(x)δ

2thit

)
·
(

1

2

) δ
2thit

·t

. (38)

Similarly for ε ≤ εx we have

||Pt[x, ·]− π||TV ≤ 2

(
1+

(1−δ)β∗
2 (log 1/ε+1)

)
·
(

1

2

) δ
2thit

·t

. (39)

Setting the RHS of Eq. (39) to ε and solving for t we get that

||Pt[x, ·]− π||TV ≤ 2 ·
(

1

2

) δ
thit((1−δ)β

∗+2)
·t

. (40)
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Combining (38) and (40) gives us the result.

We observe that if we set x to 0 (all zeros), i.e., all queues are initially empty, then

ε0 is 1 so only Eq. (40) applies and we determine the mixing time by setting the RHS

to 1/M for a given value of M > 0. �

6. Some future directions

The fact that the Data Collection Process mixes fast to its stationary distribution

when started from the all-empty setting can be exploited to solve systems of equations

such as Eq. (16) simply by allowing the process to get close enough to stationarity

and then estimate the η by keeping track of the number of time slots for which each

queue is occupied. This opens up the possibilities of distributed algorithms for effective

resistance and other problems, some of which we have explored in [8][9][10]. Even if we

consider graph problems on very large graphs, Laplacian systems of equations become

tractable via this method since random walks can be simulated very fast in modern

computing systems for graphs with nodes in the millions (see, e.g., [27]).

The key shortcoming of our work is that the Data Collection Process in the subcriti-

cal region models only one-sink Laplacian systems of equations. A model that captures

the full generality of Laplacian systems of equations will open a more general class of

problems that can be attacked algorithmically using this method.
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