Homework I

Use single precision (24 bits) unless specified otherwise. Whenever you are asked to explain some results, you should explain the observation in a quantitative manner. For example, if a curve has a bend at say $n=1000$, you need to explain why you would expect the bend to happen roughly around this value of n.

1. (10 marks) Consider the function $f: \Re^{2} \rightarrow \Re$ defined by $f(x, y)=x \cdot y$. Measure the size of the input (x, y) by $|x|+|y|$. What is the condition number of this function? When is the condition number very high ? Can you intuitively explain why it is high ?
2. In class, we defined the notion of a backward stable algorithm as follows: an algorithm for computing a function $f(x)$ computes $f(\widehat{x})$. Then the algorithm is backward stable if $\frac{|\widehat{x}-x|}{|x|}$ is $O\left(\varepsilon_{\text {mach }}\right)$. Sometimes, it is more convenient to work with a slightly more general defintion. We say that the algorithm for computing $f(x)$ is stable if it computes a quantity y which is close to $f(\widehat{x})$ for some vector \widehat{x} in the following sense:

$$
\frac{|y-f(\widehat{x})|}{|f(\widehat{x})|}=O\left(\varepsilon_{\mathrm{mach}}\right), \text { where } \quad \frac{|\widehat{x}-x|}{|x|}=O\left(\varepsilon_{\mathrm{mach}}\right) .
$$

(i) (5 marks) Show that if an algorithm for computing f is stable, then the relative error in the output is roughly $O\left(k_{f}(x) \cdot \varepsilon_{\text {mach }}\right)$, where $k_{f}(x)$ is the condition number of f at x. Hence, we can use either the notion of stability or backward stability.
(ii) (5 marks) Consider the function $f(x)=1+x$. Show that if we compute this function using this expression, then the algorithm may not be backward stable, but is always stable.
(iii) (5 marks) Suppose we compute $f(x)=\sin (x)$ for $x \in[0,2 \pi]$ using an algorithm that outputs a value in the range $\sin (x)\left(1 \pm \varepsilon_{\text {mach }}\right)$. Show that such an algorithm may not be backward stable, but is always stable.
3. Consider the function $f(x)=\frac{e^{x}-1}{x}$.
(i) (2 marks) Show that the function is well-conditioned for x close to 0 .
(ii) (5 marks) Suppose we compute $f(x)$ as in the expression above. Assume that the computation of e^{x} has relative error at most $\varepsilon_{\text {mach }}$. Prove that this computation is not backward stable or stable (i.e., you need to show that the relative error can be large and since the problem is well-conditioned, it must be the case that the algorithm is unstable).
(iii) (3 marks) Suppose we compute $f(x)$ as $\frac{e^{x}-1}{\ln \left(e^{x}\right)}$. Assume that the computation of the exponential and the logarithm function have relative error at most $\varepsilon_{\text {mach }}$. Prove that this algorithm is backward stable or stable.
4. Consider the function

$$
f(x)=\frac{1}{1-x}-\frac{1}{1+x}
$$

assuming $x \neq \pm 1$.
(a) (2 marks) When is the above function ill-conditioned?
(b) (3 marks) Suppose we compute this function using the expression above. Show that the algorithm is unstable for values close to 0 .
(c) (5 marks) Suppose we compute the function as $f(x)=\frac{2 x}{1-x^{2}}$. Show that this computation is stable or backward stable for all x.
5. The fibonacci numbers f_{k} are defined by $f_{0}=1, f_{1}=1$, and

$$
\begin{equation*}
f_{k+1}=f_{k}+f_{k-1} \tag{1}
\end{equation*}
$$

for any integer $k>1$. A small perturbation of them, the pib numbers, p_{k}, are defined by $p_{0}=1, p_{1}=1$ and

$$
\begin{equation*}
p_{k+1}=c \cdot p_{k}+p_{k-1} \tag{2}
\end{equation*}
$$

for any integer $k>1$ where $c=1+\frac{\sqrt{3}}{100}$.
(a) (5 marks) Plot the numbers f_{n} and p_{n} together in one log scale plot. On the plot, mark $1 / \epsilon_{\text {mach }}$ for single and double precision arithmetic.
(b) (4 marks) Rewrite (1) to express f_{k-1} in terms of f_{k} and f_{k+1}. Use the computed f_{n} and f_{n-1} to recompute f_{k} for $k=n-2, n-3, \ldots, 0$. Make a plot of the difference between the original $f_{0}=1$ and the recomputed f_{0} as a function of n. What n values result in low accuracy for the recomputed f_{0} ? How do the results in single and double precision differ?
(c) (6 marks) Repeat part (b) for the pib numbers. Comment on the striking difference in the way precision is lost in the two cases. Explain the results.
6. Write a program to generate the first n terms in the sequence given by the difference equation:

$$
x_{k+1}=111-\left(1130-3000 / x_{k-1}\right) / x_{k},
$$

with starting values $x_{1}=11 / 2, x_{2}=61 / 11$ (2 marks). Use $n=10$ for single precision.
(i) (2 marks) The exact solution is monotonically converging to 6 , but what do you observe?
(ii) In order to explain the results, consider the function $F: \Re^{2} \rightarrow \Re^{2}$ as

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
111-(1130-3000 / y) / x \\
x
\end{array}\right]
$$

The recurrence above can be expressed as $\left[\begin{array}{c}x_{k+1} \\ x_{k}\end{array}\right]=F\left(\left[\begin{array}{c}x_{k} \\ x_{k-1}\end{array}\right]\right)$. A vector z is a fixed point of F if $F(z)=z$. What are the possible fixed points of this function? (3 marks)
(iii) (5 marks) To understand the behaviour of the above recurrence, give 2D plots of how the vector $\left[\begin{array}{c}x_{k} \\ x_{k-1}\end{array}\right]$ evolves as we start from points close to $\left[\begin{array}{c}5 \\ 5\end{array}\right]$. Use high precision here so that rounding errors do not affect your conclusion.

