Homework III

1. ([TB] Q 33.2) Suppose we run the Arnoldi iteration on an $m \times m$ matrix A and it terminates with $h_{n+1, n}=0$ for some $n<m$ (i.e., the vector $q_{n+1}=0$). Let K_{n} denote the Krylov space spanned by $\left\langle b, A b, \ldots, A^{n-1} b\right\rangle$.
(i) (3 marks) Show that $K_{n}=K_{n+1}=K_{n+2}=\ldots$.
(ii) (3 marks) Show that each eigenvalue of the matrix H_{n} is an eigenvalue of A.
(iii) (4 marks) Show that if A is invertible, then the solution x to $A x=b$ lies in K_{n}.
2. Let A and B be real $n \times n$ symmetric matrices such that $A B=B A$.
(i) (5 marks) Suppose A has n distinct eigenvalues. Show that there are diagonal matrices D_{1} and D_{2} and an orthogonal matrix Q such that $A=Q D_{1} Q^{T}$ and $B=Q D_{2} Q^{T}$.
(ii) (5 marks) Now prove the same statement as above but without the assumption that A has n distinct eigenvalues.
3. Let A be a real $n \times n$ symmetric matrix. Let $\lambda_{1} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of A.
(i) (5 marks) For a subspace S, let $M(S)$ denote $\max _{u \in S,|u|=1} u^{T} A u$, and let $N(S)$ denote $\min _{u \in S,|u|=1} u^{T} A u$. Show that

$$
\lambda_{k}=\max _{S} N(S)=\min _{T} M(T),
$$

where the maximum is taken over all subspaces of dimension k and the minimum is taken over all subspaces of dimension $n-k+1$.
(ii) (10 marks) Suppose A is of the form $\left(\begin{array}{cc}H & b^{T} \\ b & u\end{array}\right)$, where H is an $(m-1) \times(m-1)$ symmetric matrix. Let the eigenvalues of H be $\mu_{1} \geq \ldots \geq \mu_{n-1}$. Show that for each $i \leq n-1, \mu_{i} \leq \lambda_{i}$, and $\mu_{i} \geq \lambda_{i+1}$.
4. Let A be an $m \times m$ complex matrix.
(i) (4 marks) Suppose $A^{*} A=A A^{*}$. Show that there is a unitary matrix X such that $X^{*} A X$ is a diagonal matrix.
(ii) (3 marks) Let $W(A)$ denote the set of all values $\frac{u^{*} A u}{u^{T} u}$, where u is a non-zero (complex) vector. Show that $W(A)$ contains the convex hull (in the complex plane) of all the eigenvalues of A.
(iii) (3 marks) Suppose the matix A satisfies the condition in (i) above. Then show that $W(A)$ is equal to the convex hull of the eigenvalues of A.

5. (Heath 5.18)

(a) (5 marks) Write a method based on Newton's method to solve the following system of non-linear equations:

$$
\begin{aligned}
\left(x_{1}+3\right)\left(x_{2}^{3}-7\right)+18 & =0 \\
\sin \left(x_{2} e^{x_{1}}-1\right) & =0
\end{aligned}
$$

with the starting point $x_{0}=\left[\begin{array}{ll}-0.5 & 1.4\end{array}\right]^{T}$.
(b) (5 marks) Solve the above problem using Broyden's method.
(c) (3 marks) Compare the convergence rates of the two methods by computing error at each iteration, given that the exact solution is $\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$. How many iterations does each method require to achieve error close to the machine precision?
6. (Heath 4.14)The matrix exponential of an $n \times n$ matrix A is defined as

$$
e^{A}:=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots
$$

(a) (3 marks) Write a program to compute e^{A} using the definition above.
(b) (3 marks) Write a program based on the eigenvalue-eigenvector decomposition of A (assume it has distinct eigenvalues and you are given the eigenvalues and the eigenvectors).
(4 marks) Test the above two methods on

$$
\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
-49 & 24 \\
-64 & 31
\end{array}\right)
$$

Compare your results with the matlab function for matrix exponential. Which of the two methods is more accurate (on the above examples), and why?
7. (10 marks) Write a program implementing the Lanczos method. Test your method on a random symmetric matrix of order n having eigenvalues $1,2, \ldots, n$. To generate such a matrix, first generate a random $n \times n$ matrix B with random entries uniformly distributed in $[0,1)$. Let the $B=Q R$ be the $Q R$ factorization of B. Now take $A=Q D Q^{T}$, where D is a diagonal matrix with diagonal entries $1,2, \ldots, n$. The Lanczos algorithm needs to find eigenvalues of a tridiagonal matrix - use matlab library routine to find these eigenvalues. For the purpose of this exercise, run the Lanczos iteration for a full n iterations.

To see graphically how the Ritz values behave, construct a plot with the iteration number on the vertical axis and the Ritz value at each iteration on the horizontal axis. Plot each pair (γ, k) where γ is a Ritz value in iteration k as a discrete point. Try several values of $n=30,40,50$.

