
COL 351 Oct 25, 27, 28

TUTORIAL SHEET 8

1. [KT-Chapter7] Consider the following problem. You are given a flow network with
unit-capacity edges: it consists of a directed graph G = (V,E), a source s and a sink
t, and ue = 1 for every edge e. You are also given a parameter k. The goal is delete k
edges so as to reduce the maximum s − t flow in G by as much as possible. In other
words, you should find a set of edges F ⊆ E so that |F | = k and the maximum s − t
flow in the graph G0 = (V,E \ F ) is as small as possible. Give a polynomial-time
algorithm to solve this problem.

Solution First observe that by removing any k edges in a graph, we reduce the
capacity of any cut by at most k, and so, the min-cut will reduce by at most k.
Therefore, the max-flow will reduce by at most k. Now we show that one can in fact
reduce the max-flow by k. To achieve this, we take a min-cut X and remove k edges
going out of it. The capacity of this cut will now become f − k, where f is the value
of the max-flow. Therefore, the min-cut becomes f − k, and so, the max-flow becomes
f − k.

2. [KT-Chapter7] In a standard s − t maximum flow problem, we assume edges have
capacities, and there is no limit on how much flow is allowed to flow through a node. In
this problem, we consider the variant of the maximum flow and minimum cut problems
with node capacities. Let G = (V,E) be a directed graph, with source s, sink t , and
non-negative node capacities uv for each v ∈ V . Given a flow f in this graph, the flow
though a node v is defined as

∑
e∈δ−(v) fe. where δ−(v) denotes the edges coming into

v. We say that a flow is feasible, if it satisfies the usual flow-conservation constraints
and the node-capacity constraint: the flow through a node v cannot exceed cv. Give
a polynomial-time algorithm to find a s − t maximum flow in such node-capacitated
network. Define an s− t cut for node-capacitated networks, and show that the analog
of the Maximum Flow Min Cut theorem holds true.

Solution We construct a new graph H where for every vertex v in G, we have two
vertices vi and vo. There is an edge from vi to vo of capacity cv. If the graph G has
an edge (u, v), then we add an edge (uo, vi) in H of infinite capacity. Now notice that
any flow in H entering vi must go through the edge (vi, vo) and so the total amount of
flow entering vi (or leaving vo) cannot exceed cv. Now it is easy to check that a flow
of value v in G results in a flow of the same value in H and vice-versa.

3. [KT-Chapter7] Let M be an n × n matrix with each entry equal to either 0 or 1.
Let mij denote the entry in row i and column j. A diagonal entry is one of the form
mii for some i. Swapping rows i and j of the matrix M denotes the following action:
we swap the values mik and mjk for k = 1, 2, . . . , n. Swapping two columns is defined
analogously. We say that M is re-arrangeable if it is possible to swap some of the

1



pairs of rows and some of the pairs of columns (in any sequence) so that after all the
swapping, all the diagonal entries of M are equal to 1.

(a) Give an example of a matrix M which is not re-arrangeable, but for which at least
one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix M with 0-1
entries, is re-arrangeable.

Solution Try (a) yourself. Draw a bipartite graph G where we have n vertices on
both sides. We have an edge between vertex i (on the left side) and vertex j (on the
right side) iff M(i, j) is 1. Now, show that such a swapping exists iff G has a perfect
matching.

4 [KT-Chapter7] Consider a set of mobile computing clients in a certain town who
each need to be connected to one of several possible base stations. Suppose there
are n clients, with the position of each client specified by its (x, y) coordinate in the
plane. There are also k base stations; the position of each of these is also specified
by its (x, y) coordinate in the plane. For each client, we wish to connect it to exactly
one of the base stations. Our choice of connections is constrained in the following
ways: (i) there is a range parameter r, and a client can only be connected to a base
station that is within distance r, (ii) there is a load parameter L, and no more than L
clients can be connected to any single base station. Your goal is to design a polynomial
time algorithm for the following problem – given the above data, decide whether it is
possible to assign every client to a base station subject to the two constraints.

Solution This is an application of max flow problem. Have one vertex for every client
and one vertex for every base station. Add two extra vertices s and t. Now, add an
edge from s to every client vertex and capacity of this edge is 1. Similarly add edges
from every base station vertex to t of capacity L. Finally, add an edge from a client
vertex to a base station vertex if the client can be assigned to this base station. The
capacity is infinity (or 1, does not matter).

5 [KT-Chapter7] Give a polynomial time algorithm for the following minimization
analogue of the max-flow problem. You are given a directed graph G = (V,E), with a
source s and sink t, and numbers (capacities) le for each edge e ∈ E. We define a flow
f , and the value of a flow, as usual, requiring that all nodes except s and t satisfy flow
conservation. However, the given numbers are lower bounds on edge flow, i.e., they
require that fe ≥ le for each edge e, and there is no upper bound on flow values on
edges.

(a) Give a polynomial time algorithm that finds a feasible flow of minimum possible
value (Hint: Start with any flow from s to t which obeys the lower bounds, and
try to send a maximum flow from t to s in a suitable modification of the graph
G).

(b) Prove an analogue of the max- flow min-cut theorem for this problem.

2



Solution For part (a), first send a flow from s to t such that all lower bounds are
satisfied. We can easily do this as follows: for every edge e = (u, v) find a path from s
to t which goes through (u, v), and send le amount of flow on this path. Let f denote
this flow. Now that we have a feasible flow, we will try to reduce the flow as much as
possible, but we do not want to reduce the flow on an edge below le. Therefore, we
reverse every edge, and make it’s capacity equal to fe − le. Now we send a max flow
from t to s in this “reversed” graph.

6 You are given a directed graph G with source and sink vertices s and t respectively.
All edges have integer capacities, and you are given a maximum flow f in this graph
(you can assume that f is also integral). Now we reduce the capacity of an edge e from
ue to ue − 1. Give an O(m+ n) time algorithm to find the new maximum flow.

Solution Let f denote the given max-flow. We can assume that fe = ue, otherwise
there is nothing to prove. We will compute a new flow f ′ whose value is 1 less than
that of f (or may be equal to that of f), but it will have the property that f ′e = ue−1.
Once we have such a flow, we can run one iteration of the augmenting path algorithm
to check if we can increase the flow by 1 more unit.

Recall that the flow-decomposition theorem shows that f can be written as a union of
flows along cycles and s-t paths. Clearly, e will lie on at least one such cycle or path –
if it lies on such a cycle, we can reduce one unit of flow along every edge in this cycle
to get f ′ (and the flow value does not change). If it lies along an s-t path, we can
reduce one unit of flow along this path to get f ′ (whose flow value is 1 less than that of
f). Thus it remains to find such a cycle or path. For this, we use the following trick:
let G′ be the edges of G with positive flow – note that G′ contains either an s-t path
containing e or a cycle containing e. Now, add an edge e0 from t to s in G′. Thus,
G′ will now contain a cycle containing e. So, we can find a path from v to u in G′. If
this path does not contain e0, we have found a cycle containing e. If it contains e0,
removing e0 gives a path containing e.

3


