
COL 351 Sept 18,20, 21, 26, 27, 28

TUTORIAL SHEETS 6-7

1. [KT-Chapter 6] Suppose we want to replicate a file over a collection of n servers,
labeled S1, S2, ..., Sn. To place a copy of the file at server Si results in a placement
cost of ci, for an integer ci > 0. Now, if a user requests the file from server Si, and
no copy of the file is present at Si, then the servers Si+1, Si+2, Si+3, . . . are searched
in order until a copy of the file is finally found, say at server Sj, where j > i. This
results in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, ...
are not consulted in this search.) The access cost is 0 if Si holds a copy of the file.
We will require that a copy of the file be placed at server Sn, so that all such searches
will terminate, at the latest, at Sn. We would like to place copies of the files at the
servers so as to minimize the sum of placement and access costs. Formally, we say
that a configuration is a choice, for each server Si with i = 1, 2, ..., n − 1, of whether
to place a copy of the file at Si or not. (Recall that a copy is always placed at Sn.)
The total cost of a configuration is the sum of all placement costs for servers with a
copy of the file, plus the sum of all access costs associated with all n servers. Give a
polynomial-time algorithm to find a configuration of minimum total cost.

Solution: Build a table T [] where T [i] stores the minimize the sum of placement and
access cost assuming we have servers Si, . . . , Sn and we place a copy at Si. So, T [n] is
cn. Now to compute T [i], we need to place a copy at Si. Suppose the optimal solution
for the problem considered by T [i] places the next copy at T [k] (k > i) – then we need

to pay for the access cost of (k − (i + 1)) + . . . + 1 = (k−i)(k−i−1)
2

. Therefore,

T [i] = ci + min
k=i+1,...,n

(
(k − i)(k − i− 1)

2
+ T [k]

)
.

2. [Dasgupta, Papadimitriou, Vazirani -Chapter 6] You are given a string of n
characters s[1...n], which you believe to be a corrupted text document in which all
punctuation has vanished (so that it looks something like “itwasthebestoftimes...”).
You wish to reconstruct the document using a dictionary, which is available in the
form of a Boolean function dict(): for any string w, dict(w) outputs true if w is a
valid word false otherwise. Give a dynamic programming algorithm that determines
whether the string s[] can be reconstituted as a sequence of valid words. The running
time should be at most O(n2), assuming each call to dict() takes unit time.

Solution: Have a table T [], where T [i] tells you where the part of the string s[i...n]
can be reconstituted (so, the table entry is true or false). Clearly,

T [i] = ∨j=i,...,n(dict(s[i...j]) ∨ T [j + 1]).

1



3. [KT-Chapter 6] We are given a checkerboard which has 4 rows and n columns, and
has an integer written in each square. We are also given a set of 2n pebbles, and we
want to place some or all of these on the checkerboard (each pebble can be placed on
exactly one square) so as to maximize the sum of the integers in the squares that are
covered by pebbles. There is one constraint: for a placement of pebbles to be legal, no
two of them can be on horizontally or vertically adjacent squares (diagonal adjacency
is fine). Give an O(n) time algorithm to find an optimal placement of the pebbles.

Solution: Note that there are only 8 ways in which you can tile a particular column
– call these ways W1, . . . ,W8 (3 ways in which you can put two pebbles, 4 for 1 pebble,
and 1 for 0 pebble). Call two arrangements Wi, Wj compatible if placing pebbles like
Wi and Wj in two adjacent columns (with Wi being on the left) does not violate any
rules. Now have a table T [i, c] which tells you the optimal placement for columns c till
n provided the configuration in the column c is Wi. Now,

T [i, c] = value(Wi) + max
j

T [j, c + 1],

where the maximum is taken over those configurations Wj which are compatible with
Wi.

4. [KT-Chapter 6] Suppose we are given a directed graph G = (V, E), with costs on
edges – the costs may be positive or negative, but every cycle in the graph has positive
cost. We are also given two nodes v and w in the graph G. Give an efficient algorithm
to compute the number of shortest v − w paths in G (the algorithm should NOT list
the paths; it should just output the number of such paths).

Solution: We modify Bellman Ford algorithm. We build a table S[i, u], which stores
the length of the shortest path from u to w which uses at most i edges. Further, we
have a table T [i, u] which stores the number of paths using i edges from u to w whose
cost is S[i, u] (i.e., the shortest path using i edges). Now, suppose the out-neighbours
of a vertex u are v1, . . . , vk. Then,

S[i + 1, u] =
k

min
r=1

(l(u,vr) + S[i, vr]).

Now, let vs1 , . . . , vsl
be the neighbours of u which achieve the minimum above, i.e., for

which S[i + 1, u] = l(u,vr) + S[i, vr]. Then, we update

T [i + 1, u] = T [i, vs1 ] + . . . + T [i, vsl
].

Show how to initialize the tables.

5. [Dasgupta, Papadimitriou, Vazirani -Chapter 6]Suppose you are given n words
w1, . . . , wn and you are given the frequencies f1, . . . , fn of these words. You would like
to arrange them in a binary search tree (using lexicographic ordering) such that the
quantity

∑n
i=1 fihi is minimized, where hi denotes the depth of the node for word wi

in this tree. Give an efficient algorithm to find the optimal tree.

Solution: Suppose w1, . . . , wn are arranged in lexicographic ordering. Build a table
T [], where T [i, j] gives the cost of the optimal tree for the words wi, . . . , wj. If i = j,

2



then T [i, i] = fi. For T [i, j], consider the optimal tree. If the root is wr, then we have
wi, . . . , wr−1 in the left sub-tree and wr+1, . . . , wj in the right subtree. Further while
computing the cost of the overall tree for T [i, j] we need to account for the fact that
the depth of the nodes (other than root node) increases by 1. So,

T [i, j] = (fi + · · ·+ fj) + max
r=i,...,j

(T [i, r − 1] + T [r + 1, j]).

6. [Dasgupta, Papadimitriou, Vazirani -Chapter 6] Consider the following 3-PARTITION
problem. Given integers a1, . . . , an, we want to determine whether it is possible to par-
tition of {1, . . . , n} into three disjoint subsets I, J, K such that

∑
i∈I

ai =
∑
j∈J

aj =
∑
k∈K

ak =
1

3

n∑
l=1

al.

For example, for input (1, 2, 3, 4, 4, 5, 8) the answer is yes, because there is the partition
(1, 8), (4, 5), (2, 3, 4). On the other hand, for input (2, 2, 3, 5) the answer is no. Devise
and analyze a dynamic programming algorithm for 3-PARTITION that runs in time
polynomial in n and in

∑
i ai.

Solution: Build a table T [i, s1, s2], which stores a boolean value – this value is true
if it is possible to partition ai, . . . , an into 3 parts such that the first part adds up to s1

and the second part adds up to s2. Now, you can easily check the following recurrence
(write the base cases yourself):

T [i, s1, s2] = OR(T [i + 1, s1, s2], T [i + 1, s1 − ai, s2], T [i + 1, s1, s2 − ai]).

The three options correspond to the three options for ai.

7. As in the interval selection problem, you are given a set of intervals of the line. Give
an efficient algorithm to find a maximum cardinality subset of these intervals such that
for every point, there are at most two intervals in this subset which contain this point.

8. [KT-Chapter 6] Consider the following inventory problem. You are running a store
that sells some large product (let us assume you sell trucks), and predictions tell you
the quantity of sales to expect over the next n months. Let di denote the number of
sales you expect in month i. We will assume that all sales happen at the beginning
of the month, and trucks that are not sold are stored until the beginning of the next
month. You can store at most S trucks, and it costs C to store a single truck for a
month. You receive shipments of trucks by placing orders for them, and there is a fixed
ordering fee of K each time you place an order (regardless of the number of trucks you
order). You start out with no trucks. The problem is to design an algorithm that
decides how to place orders so that you satisfy all the demands {di}, and minimize the
costs. In summary:

• There are two parts to the cost. First, storage: it costs C for every truck on hand
that is not needed that month. Second, ordering fees: it costs K for every order
placed.

3



• In each month you need enough trucks to satisfy the demand di, but the amount
left over after satisfying the demand for the month should not exceed the inventory
limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

Solution: Build a table T [i, s] which tells the optimal solution for month i till n
given that you have s trucks at the beginning of month i (before you place any order
for this month). Observe that s ≤ S, and so, this table has nS entries. There are two
cases – (i) s ≥ di, and (ii) s < di. In the first case, we need to place an order (of at
least di − s trucks), and the remaining number of trucks can be at most S. Therefore,
if s′ denotes the number of trucks remaining after servicing the order for month i, then
if we pay s′C storage cost. Therefore,

T [i, s] = K +
S

max
s′=0

s′ · C + T [i + 1, s′].

If s > di, we need not place an order in this month (why?), and so,

T [i, s] = (s− di) · C + T [i + 1, s− di].

9. Consider the generalisation of the interval selection problem to binary trees (i.e., every
node has at most 2 children) – you are given a binary tree and a set of paths in the
tree. Two paths are said to be disjoint if they do not have a common edge. Give an
efficient algorithm which finds a maximum cardinality subset of paths such that each
pair of paths in this subset is disjoint.

10. Given a tree T = (V, E), where edges have lengths le (which are positive), we would
like to find a subset S of vertices of size k such that the quantity

∑
v∈V d(v, S) is

minimized. Here d(v, S) denotes the distance between v and the nearest vertex of S,
i.e., minw∈S d(v, w). Note that d(v, w) denotes the length of the unique path between v
and w in the tree. Give an algorithm for this problem whose running time is polynomial
in n (with no dependence on the values of the lengths of edges).

4


