
COL 351 Aug 23, 24, 28

TUTORIAL SHEET 4

1. We have n nuts and n bolts. The nuts (and the bolts) are of different sizes. Each bolt
fits in exactly 1 nut. We would like to match the nuts with the bolts which fits into
them. Since the dimensions of the nuts and the bolts are so small, we can not really
tell if a nut (or a bolt) is bigger than another nut (or bolt). So the only operation that
is allowed is comparing a nut and a bolt – with such a comparison we can distinguish
between three cases, namely, the nut fits a larger bolt, or the nut fits a smaller bolt,
or the nut fits this bolt. Give a randomized algorithm which matches nuts with bolts.
The expected number of comparisons (of a nut with a bolt) done by this algorithm
should be O(nlogn).

Solution: This one is like randomized quick-sort. Divide the nuts and bolts into two
sub-problems as follows: pick a random nut – call it n. Now find the matching bolt,
call it b. Partition the bolts into two parts: those which are larger than b and those
smaller than b – we can do this by comparing the bolts with n – note that we cannot
just compare two bolts and say which one is larger. Similarly, by comparting with
b, partition the nuts into two – those smaller than n, and those larger than n. This
gives two sub-problems. As in the quick-sort algorithm, with probability at least 1/3,
both the sub-problems will have at most 2n/3 nuts (or bolts). If this event happens,
solve the two sub-problems recursively, else repeat the random selection process. The
analysis is as for the quick-sort algorithm.

2. [KT-Chapter5] We are interested in analyzing some hard to obtain data from two
databases. Each database contains n numerical values (so there are 2n values in total).
Assume that these values are distinct. We would like to determine the median of these
2n values, which we define as the nth smallest value. However, the only way to access
these values is through queries to the databases. In a single query, we specify a value
k to one of the two databases, and the chosen database returns the kth smallest value
that it contains. Give an algorithm which finds the median value using O(logn) queries
only.

Solution: Let the two data-bases be A and B – think of them as two arrays of size nA

and nB respectively (initially, nA = nB = n. At any point of time, we will be interested
in a sub-array of A and B. We cannot explicitly store these sub-arrays, but we just
need to store the indices of the left and the right end-point of the sub-arrays. Thus,
we maintain two counters lA, rA for A which denote the left and the right end-point
of this array (initially, lA = 1, rA = n). Maintain variables lB, rB similarly. Now, let
A′ denote the part of A between lA and rA. Define B′ similarly. First compute the
median of A′ and B′ : we can do this by call the database with a suitable index k (for
example, the median of A′ will be at location lA plus half the size of A′ in the array

1



A. Compare the two medians, and show that you can throw away at least half of A′

or B′.

3. Given an array of n objects, you need to decide if there is an object which is present
more than n/2 times. The only operation by which you can access the objects is a
function f , which given two indices i and j, outputs whether the objects at positions
i and j in the array are identical or not. Given an O(n log n)-time algorithm for this
(where each call to f is counted as 1 operation).

Solution: We divide the array into equal sub-arrays (left and right half). Solve the
problem recursively for the two parts. Two cases happen: (i) In both the parts, there
is no majority element: in this case it is easy to see that the original array does not
have a majority element, (ii) In either of the two parts, the recursive call returns a
majority element: let these be x and y (in case only one the recursive calls returns a
majority element, then y will not be defined). Now compare x with all the elements
of A to see if it appears more than half the time – if yes, x is the answer. Perform the
same steps for y. If neither x nor y turn out to be a present more than n/2 times, then
the original array cannot have a majority element.

4. (Dasgupta, Papadimitriou, Vazirani Chapter 2)You are given an infinite array
A[] in which the first n cells contain integers in sorted order and the rest of the cells
are filled with ∞. You are not given the value of n. Describe an algorithm that takes
an integer x as input and finds a position in the array containing x, if such a position
exists, in O(log n) time.

Solution: Start with a counter c = 1. We keep doubling the counter c till A[c] be-
comes at least x – say it happens when c = 2i. Then we know that c lies between A[2i−1]
and A[2i]. We also know that 2i−1 ≥ n. Now the size of the sub-array A[2i−1, . . . , 2i]
is 2i−1 ≤ n. We can search for x in this sub-array using binary search – it will take
O(log n) time.

2


