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1. (KT-Chapter 1) Decide whether the following statement is true or false: “In every
instance of the stable matching problem, there is a stable matching containing a pair
(m,w) such that m is ranked first in the preference list for w, and w is ranked first in
the preference list of m”.

Solution Sketch: False. It is easy to give instances where there is no such pair.

2. Give an instance of the stable matching problem for which the algorithm discussed in
class takes Q(n?) time.

Solution Sketch: The men have identical rankings of all women (the ranking list of
women can be arbitrary.

3. (KT-Chapter 1) Gale and Shapley published their paper on the stable marriage
problem in 1962; but a version of their algorithm had already been in use for ten years
by the National Resident Matching Program, for the problem of assigning medical
residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain
number of available positions for hiring residents. There were n medical students
graduating in a given year, each interested in joining one of the hospitals. Each hospital
had a ranking of the students in order of preference, and each student had a ranking
of the hospitals in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals. The interest, naturally,
was in finding a way of assigning each student to at most one hospital, in such a way
that all available positions in all hospitals were filled. (Since we are assuming a surplus
of students, there would be some students who do not get assigned to any hospital.)
We say that an assignment of students to hospitals is stable if neither of the following
situations arises.

— First type of instability: There are students s and s’, and a hospital h, so that
(i) s is assigned to h, (ii) ' is unassigned, and (iii) h prefers s’ to s.

— Second type of instability: There are students s and s’, and hospitals h and
I, so that (i) s is assigned to h and s’ is assigned to b/, (ii) h prefers s’ to s, and
s’ prefers h to h'.

So we basically have the stable marriage problem, except that (i) hospitals generally
want more than one resident, and (ii) there is a surplus of medical students. Show
that there is always a stable assignment of students to hospitals, and give an efficient
algorithm to find one. The input size is 6(mn); ideally, you would like to find an
algorithm with this running time.



Solution Sketch: The algorithm is similar to the stable matching algorithm. The
hospitals propose to the candidates in order of preference. A candidate, if not already
assigned or assigned to a less preferable hospital, accepts the proposal; otherwise rejects
it. There can be at most mn proposals, and so we are done. Check that all of the
operations can be implemented using arrays.

A common pitfall is that if candidates propose to hospitals, then hospitals need to
check if they have a less preferable candidate. Since a hospital can have large number
of positions, it is not clear how to perform this operation in constant time.

. Consider the following algorithm for finding minimum spanning tree: sort all edges in
decreasing order of weight. Let the edges be eq,...,e,. Consider edges in this order,
and initialize the set T to GG, the entire graph. When we consider an edge e;, we remove
it from 7T if T' contains a cycle containing e;; otherwise we keep e;. Prove that the final
set 7" will be a minimum spanning tree (assume that G is connected).

Solution Sketch: You can argue directly as in proof of Kruskal’s algorithm, or prove
that the tree constructed here will be exactly the one constructed by Kruskal’s al-
gorithm. Let us try the latter approach. Suppose this algorithm discards an edge
e = (u,v). Let L. be the set of weight less than that of e. Because the algorithm
discards e, it follows that there is already a path from w to v in L.. Now consider
running Kruskal’s algorithm. It will consider edges in L. before looking at e. Note
that that if x and y are in the same connected component in L., they will also be in
the same connected component in Kruskal (why?). So w and v will be in the same
connected component when the Kruskal’s algorithm considers e. But then, it will not
select e.

. You want to throw a party and is deciding whom to call. You have n people to choose
from, and you have made up a list of which pairs of these people know each other. You
want to pick as many people as possible, subject to two constraints: at the party, each
person should have at least five other people whom they know and five other people
whom they don’t know. Give an efficient algorithm that takes as input the list of n
people and the list of pairs who know each other and outputs the best choice of party
invitees. Give the running time in terms of n.

Solution Sketch: Initialize a set S to the set of all n people. Repeat the following
step as long as we are able to shrink the size of S — if there is a person x in S who
knows less than 5 other persons in S or there are less than 5 people in S who do not
know z, we remove x from S.

In order to prove correctness, let x1,xs, ..., 2, be the persons discarded by our algo-
rithm (in this order). Now prove by induction on ¢ that no feasible solution can invite
T1,T2,...,T;.



