
COL 351 Aug 9,10,14

TUTORIAL SHEET 2

1. You are given a set of intervals on a line segment. You wish to color these segments
such that no two overlapping segments get the same color. Devise a greedy algorithm
for coloring the intervals which uses as few colors as possible.

Solution Sketch: For point p, let Cp denote the number of intervals containing p.
Clearly, one needs at least Cp colors. Therefore, C, defined as, maxpCp is a lower
bound on this minimum number of colors. Now, we show how to color the intervals
using C colors using a greedy algorithm.

Order the intervals in increasing order of their starting points – let this ordering be
I1, I2, . . . , In. Consider the intervals in this ordering. Suppose we have already colored
I1, . . . , Ik. Now, we look at Ik+1. The intervals among {I1, . . . , Ik} which overlap with
Ik+1 must contain the starting point of Ik+1, and so, there can be at most C − 1 such
intervals. Thus, if we have C colors, then we can color Ik+1 with one of the unused
colors.

2. Consider the problem of making change for n rupees using the fewest number of coins.
Suppose that the available coins are in denominations that are powers of c, i.e., the
denominations are c0, c1, . . . , ck for some integer c > 1 and k ≥ 1. Show that the
following greedy algorithm always yields an optimal solution – pick as many coins of
denomination ck as possible, then pick as many coins of denomination ck−1 and so on.

Solution Sketch: The algorithm is greedy: if M is the remaining money, then find
the largest i such that M ≥ ci, and take a coin of value ci, and iterate with M − ci
remaining money. For the proof, we can proceed by induction. Fix an optimal solution
O. Suppose, M ≥ ci, but M < ci+1. If O also picks a coin of value ci, proceed by
induction. Suppose all the coins picked by O are of value ci−1 or less. Suppose O
picks αj coins of value cj, j ≤ i − 1. First notice that αj < c (why ?). But then∑i−1

j=1 αjc
j < ci, which is a contradiction.

3. (KT-Chapter 4) Suppose you are given an undirected graph G, with edge weights
that you may assume are all distinct. G has n vertices and m edges. A particular edge
e of G is specified. Give an algorithm with running time O(m+ n) to decide whether
e is contained in a minimum-weight spanning tree of G.

Solution Sketch: We need to check if the greedy algorithm will pick e or not. This
will happen only if at the time it considers e, the end-points of e are in different compo-
nents. Therefore, consider the graph formed by taking all edges of weight less than the
weight of e. If the end-points of e, lie in different components of this graph, then e has
to be in the minimum spanning tree, otherwise it cannot be in the minimum spanning
tree. Now, note that we can construct such a graph and its connected components can
be found in linear time (depth first search or breadth first search).

1



4. (KT-Chapter 4) Suppose you have n video streams that need to be sent, one after
another, over a communication link. Stream i consists of a total of bi bits that need to
be sent, at a constant rate, over a period of ti seconds. You cannot send two streams
at the same time, so you need to determine a schedule for the streams: an order in
which to send them. Whichever order you choose, there cannot be any delays between
the end of one stream and the start of the next. Suppose your schedule starts at time
0 (and therefore ends at time

∑n
i=1 ti whichever order you choose). We assume that

all the values bi and ti are positive integers. Now, because you’re just one user, the
link does not want you taking up too much bandwidth – so it imposes the following
constraint, using a fixed parameter r:

(*) For each natural number t > 0, the total number of bits you send over
the time interval from 0 to t cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at 0, not for time
intervals that start at any other value. We say that a schedule is valid if it satisfies
the constraint (*) imposed by the link. The problem is: Given a set of n streams, each
specified by its number of bits bi and its time duration ti, as well as the link parameter
r, determine whether there exists a valid schedule.

Example. Suppose we have n = 3 streams, with (b1, t1) = (2000, 1), (b2, t2) =
(6000, 2), (b3, t3) = (2000, 1), and suppose the link’s parameter is r = 5000. Then
the schedule that runs the streams in the order 1, 2, 3, is valid, since the constraint
(*) is satisfied:
t = 1: the whole first stream has been sent, and 2000 < 5000 · 1
t = 2 : half the second stream has also been sent, and 2000 + 3000 < 5000 · 2.
Similar calculations hold for t = 3 and t = 4.

(a) Consider the following claim:
Claim: There exists a valid schedule if and only if each stream i satisfies bi ≤ rti.

Decide whether you think the claim is true or false, and give a proof of either the
claim or its negation.

Solution Sketch: It is clearly false. For example, if r = 1, and we have two
streams (2, 1) and (1, 1000), then the first stream does not satisfy this condition.
But we can build a valid schedule by ordering the second stream before the first
stream.

(b) Give an algorithm that takes a set of n streams, each specified by its number of
bits bi and its time duration ti, as well as the link parameter r, and determines
whether there exists a valid schedule. The running time of your algorithm should
be polynomial in n. You should prove that your algorithm works correctly, and
include a brief analysis of the running time.

Solution Sketch: Order the streams in order of bi/ti, and check if this schedule
has the desired property. Prove that there is a valid schedule which orders the
stream in this order (if not, there will be two consecutive streams in this schedule
which are out of order. Then perform an exchange and argue as we did in class.

2



• (KT-Chapter 4) Timing circuits are a crucial component of VLSI chips; here’s a
simple model of such a timing circuit. Consider a complete binary tree with n leaves,
where n is a power of two. Each edge e of the tree has an associated length le, which is
a positive number. The distance from the root to a given leaf is the sum of the lengths
of all the edges on the path from the root to the leaf. The root generates a clock signal
which is propagated along the edges to the leaves. We?ll assume that the time it takes
for the signal to reach a given leaf is proportional to the distance from the root to the
leaf. Now, if all leaves do not have the same distance from the root, then the signal
will not reach the leaves at the same time, and this is a big problem: we want the
leaves to be completely synchronized, and all receive the signal at the same time. To
make this happen, we will have to increase the lengths of certain edges, so that all
root-to-leaf paths have the same length (we’re not able to shrink edge lengths). If we
achieve this, then the tree (with its new edge lengths) will be said to have zero skew.
Our goal is to achieve zero skew in a way that keeps the sum of all the edge lengths
as small as possible. Give an algorithm that increases the lengths of certain edges so
that the resulting tree has zero skew, and the total edge length is as small as possible.

Solution Sketch: Let the subtrees below the root r be L and R. If the height of
L (where we think of height as maximum length over all root-leaf paths) is ∆ more
than that R, ∆ ≥ 0, then we increase the length of the edge (r, R) by ∆. Now, we
repeat the same process over L and R independently. Again, argue by induction that
this greedy algorithm is optimal – if it does not increase the length of (r, R) edge by
∆, then prove that we can improve the solution.

5. (KT-Chapter 4) Given a list of n natural numbers d1, d2, . . . , dn, show how to decide
in polynomial time whether there exists an undirected graph G = (V,E) whose node
degrees are precisely the numbers d1, . . . , dn. (That is, if V = {v1, . . . , vn}, then the
degree of vi should be exactly di.) G should not contain multiple edges between the
same pair of nodes, or “loop” edges with both endpoints equal to the same node.

Solution Sketch: If all the di are 0, then we know that there is such a graph:
the graph has n vertices and no edges. So assume this is not the case. Sort the di
in decreasing order: d1 ≥ d2 ≥ . . . ≥ dn. Now argue that there is a graph with
degree sequence (d1, . . . , dn) if and only if there is a graph (on n − 1 vertices) with
degree sequence (d2− 1, d3− 1, . . . , dk− 1, dk+1, . . . , dn), where k = d1. In other words,
we are saying that if a graph with sequence (d1, . . . , dn) exists, then we can assume
that the highest degree vertex (of degree d1) has edges to the next d1 highest degree
vertices. Let us see why. One direction of the proof is easy: if there is a graph G with
degree sequence (d2 − 1, d3 − 1, . . . , dk − 1, dk+1, . . . , dn), then there is a graph with
degree sequence (d1, . . . , dn): add a new vertex to G which has edges to the vertices
with degrees d2 − 1, d3 − 1, . . . , dk − 1. Let us now prove the reverse (and the more
non-trivial direction of the proof). Suppose there is a graph G with degree sequence
(d1, . . . , dn). Let vi be the vertex with degree di. If v1 has edges to v2, . . . , vk in G, then
we are done – just remove v1 and you have the graph with the desired degree sequence.
So assume there is an index i, 2 ≤ i ≤ k such that (v1, vi) is not an edge. Since degree
of v1 is k (=d1), there must be an index j > k such that (v1, vj) is an edge. Since

3



degree of vi is at least that of vj, there must be a vertex vk such that (vi, vk) is an
edge, but (vj, vk) is not an edge. Now, in G, we remove the edges (v1, vj) and (vi, vk),
and add the edges (v1, vi) and (vj, vk). Note that this does not change the degree of
any vertex, but now, we have increased the number of edges from v1 to the vertices in
the set {v2, . . . , vk}. Repeat this process till v1 has edges to {v2, . . . , vk}.

4


