
COL 351

TUTORIAL SHEET 11

1. [KT-Chapter8] You have a set of friends F whom you’re considering to invite, and
you’re aware of a set of k project groups, S1, . . . , Sk, among these friends (these sets
need not be disjoint). The problem is to decide if there is a set of n of your friends
whom you could invite so that not all members of any one group are invited. Prove
that this problem is NP-complete.

Solution: It is in NP because a solution can just exhibit such a set of friends, and
the verifying algorithm has to just check that for each group this set does not contain
all the elements from that set – a task which can be easily done in polynomial time.

To prove NP-completeness, we reduce from independent set. Consider a graph G and
a number k. We map it to an instance of this problem as follows: set of friends F
correspond to the set of vertices in G. For every edge e = (u, v) in G, we have a set Se

consisting of {u, v} only. It is easy to check that G has an independent set of size k iff
the instance of this problem has a set of friends of size k with the desired property.

2. [KT-Chapter8] Given an undirected graph G = (V,E), a feedback set is a set X ⊆ V
with the property that G − X has no cycles. The undirected feedback set problem
asks: given G and k, does G contain a feedback set of size at most k? Prove that the
undirected feedback set problem is NP-complete.

Solution: Easy to check that the problem is in NP: a solution needs to show a set of
vertices S. The verifying algorithm first removes S, and then checks that the resulting
graph does not have a cycle (can be done by any graph traversal algorithm).

We reduce from vertex cover. Let G, k be an instance of vertex cover. We produce
a graph G′ = (V ′, E ′) from G = (V,E) as follows: for every vertex v in G, we have
a vertex v in G′ as well (G′ will have some more vertices). For an edge e = (u, v) in
G, we create a new vertex ve in G′, and add edges (u, ve), (ve, v), (u, v) in G′. Now,
suppose G have a vertex cover of size k. Let these vertices be S. We claim that S will
be a feedback set in G′. Indeed, any cycle in G′ must contain a pair u, v, where (u, v)
is an edge in G. Since S contains at least one of u and v, S must intersect this cycle.
Thus after removing S from G′, we will not have any cycle.

Conversely, consider a feedback set S of size k in G′. First we claim that S need not
contain any of the vertices ve – indeed, if e = (x, y), then any cycle containing ve must
also contain x. Thus we can replace ve by x. Finally, any feedback set in S ′ must
contain a vertex from the cycle x, y, ve in G′, where e = (x, y) is an edge in E. We just
argued that S must contain either x or y. Thus, S is a vertex cover in G.

3. [KT-Chapter8] We have seen the Interval Scheduling problem in class; here we con-
sider a computationally much harder version of it that we will call Multiple Interval

1



Scheduling. As before, you have a processor that is available to run jobs over some
period of time. (E.g. 9 AM to 5 PM.)

People submit jobs to run on the processor; the processor can only work on one job
at any single point in time. Jobs in this model, however, are more complicated than
we’ve seen in the past: each job requires a set of intervals of time during which it needs
to use the processor. Thus, for example, a single job could require the processor from
10 AM to 11 AM, and again from 2 PM to 3 PM. If you accept this job, it ties up
your processor during those two hours, but you could still accept jobs that need any
other time periods (including the hours from 11 to 2). Now, you’re given a set of n
jobs, each specified by a set of time intervals, and you want to answer the following
question: For a given number k, is it possible to accept at least k of the jobs so that
no two of the accepted jobs have any overlap in time? Show that Multiple Interval
Scheduling is NP-complete.

Solution: Easy to check that it is in NP. We reduce from Independent Set. Take an
instance of independent set: graph G and number k. We map it to an instance of the
multiple interval scheduling (MIS) as follows: the time interval stretches from 0 to m,
where m is the number of edges. Let the edges be numbered e1, . . . , em. Then the
interval [i, i + 1] will correspond to the edge ei. For a vertex v, we define a job: this
job will consist of intervals [i, i + 1] for every edge ei which has v as an end-point. It
is easy to check that G has an independent set of size k iff the corresponding k jobs in
the MIS instance do not overlap (prove this yourself).

4. [KT-Chapter8] The following is a version of the Independent Set problem. You are
given a graph G = (V,E) and an integer k. For this problem, we will call a set I ⊆ V
strongly independent if for any two nodes v, u ∈ I, the edge (v, u) does not belong
to E, and there is also no path of 2 edges from u to v, i.e., there is no node w such
that both (u,w) ∈ E and (w, v) ∈ E. The Strongly Independent Set problem is to
decide whether G has a strongly independent set of size k. Prove that the Strongly
Independent Set problem is NP-complete.

Solution: Checking membership in NP is again straightforward. We reduce from
independent set. Let G, k be an input to the independent set problem. We map it to an
input to the Strongly Independent Set problem. For every edge e in G, we subdivide it
by adding a new vertex ve, i.e., if e = (u, v) is an edge, then we replace it by two edges
: (u, ve), (ve, v). Further, we form a clique over all the new vertices ve. Call this new
graph G′. Now check that if S is an independent set in G, then the same set of vertices
is a strongly independent set in G′. Conversely, let S be a strongly independent set
in G′. First observe that k > 1 (otherwise, the reduction is trivially correct). Now S
cannot contain any of the new vertices ve (because any other vertex in G′ is reachable
from ve by a path of length 2). Therefore, S contains vertices which correspond to
those in G. Now check that these vertices form an independent set in S.

5. [KT-Chapter8] Consider the following problem. You are given positive integers
x1, . . . , xn, and numbers k and B. You want to know whether it is possible to partition
the numbers {xi} into k sets S1, . . . , Sk so that the squared sums of the sets add up to

2



at most B:
k∑

i=1

 ∑
xj∈Si

xj

2

≤ B.

Show that this problem is NP-complete.

Solution: A solution just needs to exhibit the partition. Since addition and multi-
plication take polynomial time, we can easily verify a solution in polynomial time. We
reduce PARTITION to this problem. Recall that an input to partition consists of a
set of positive numbers x1, . . . , xn, and we need to check if they can be divided into
two parts, each of which has the same sum. We map this to our problem as follows:
the set of numbers is x1, . . . , xn again. The parameter k = 2, and B = Σ2/2, where Σ
is the sum of these n numbers. Now suppose there were a partition of x1, . . . , xn into
two sets A and B of equal sum. Then, the same partition in our problem will have the
sum Σ2/2.

Now we show the converse. Suppose it is possible to partition the numbers into parts
A and B such that Σ2

A + Σ2
B ≤ Σ2/2, where ΣA denotes the total sum of numbers in

A (and similarly for ΣB). But note that ΣA + ΣB = Σ. It is an easy exercise to show
that Σ2

A + Σ2
B ≥ Σ2/2 with equality if and only if ΣA = ΣB. Thus, ΣA = ΣB.

6. [KT-Chapter8] Suppose you’re consulting for a group that manages a high-performance
real-time system in which asynchronous process make use of shared resources. Thus,
the system has a set of n processes and a set of m resources. At any given point in
time, each process specifies a set of resources that it requests to use. Each resource
might be requested by many processes at once; but it can only be used by a single
process at a time. Your job is to allocate resources to processes that request them.
if a process is allocated all the resources it requests, then it is active; otherwise it is
blocked. You want to perform the allocation so that as many processes as possible are
active. Thus, we phrase the Resource Reservation problem as follows: given a set of
process and resources, the set of requested resources for each process, and a number
k, is it possible to allocate resources to processes so that at least k processes will be
active? Show that Resource Reservation is NP-complete.

Solution: The problem is in NP because a solution needs to exhibit the resources
allocated to each process. We reduce from independent set. Let G, k be an instance of
the independent set problem. For every edge e, we have a resource re. For every vertex
v, we have a process Pv which demands the resources {re : v is an end-point of e}. It
is easy to check that G has an independent set of size k if and only we can have k
active processes.

8. In an undirected graph G = (V,E), we say a subset D ⊆ V is a dominating set if every
v ∈ V is either in D or adjacent to at least one member of D. In the DOMINATING
SET problem, the input is a graph and a number b, and the aim is to find a dominating
set in the graph of size at most b, if one exists. Prove that this problem is NP-complete.

Solution: A solution just needs to exhibit the vertices in the dominating set – one
can easily verify the solution in polynomial time. So the problem is in NP. We can

3



reduce from the vertex cover problem. Let G = (V,E) be an instance of the vertex
cover problem. We map it to an instance of the dominating set problem as follows:
we define a graph G′ = (V ′, E ′). V ′ has one vertex for every vertex in V , and one
vertex (call it we) for every edge e in G. Now we describe E ′. For an edge e = (u, v)
in G, we add edges (u,we), (v, we) in G′. Further, we add edges between every pair of
vertices from V in G′. Now suppose S is a vertex cover of size k in G. Then S is also a
dominating set in G′. Conversely, let S be a dominating set of size k in G′. First of all,
if a vertex of type we belongs to S, we can get another dominating set by replacing we

by v in S, where v is one of the end-points of e in the graph G. Thus, we can assume
S contains vertices which form a subset of V . Now it is easy to check that S should
be a vertex cover in G.

4


